Specification-Based Maneuvering of Quadcopters Through Hoops

Christopher Banks, Kyle Slovak, Samuel Coogan and Magnus Egerstedt

Abstract—In this paper, we study the problem of navigating
quadcopters through a sequence of hoops. The specification
may be given directly or indirectly via a linear temporal logic
(LTL) formula. We approach this problem in three phases.
First, we introduce a planner that generates a path through
a given sequence of hoops. Second, we augment our planner
to leverage a given specification in linear temporal logic (LTL)
and generate a sequence that satisfies this specification. Third,
we implement cross-entropy optimization on this planner to
enhance trajectory performance where quadcopter trajectories
are modified within the solution space to optimize over a cost
function. We implement this planner as a novel interaction
modality between users and quadcopters on the Robotarium.
Simulation and experimental results are provided.

I. INTRODUCTION

Emerging unmanned vehicle applications such as farming
[1] and reconnaissance [2] require navigating through a
sequence of waypoints. With such applications, multiple
objectives must be defined throughout the operation period
of the vehicle. For example, a robot tasked with surveillance
may be required to visit certain locations within a targeted
area, report key information to users and periodically charge
itself if its battery decreases below a threshold level. Despite
a wealth of work on point-to-point motion planning[3], [4],
[5], it is still challenging to provide end-to-end solutions for
this waypoint problem on an actual platform that allows for
reconfigurable waypoints and expressive task formulas.

Motivated by these applications and challenges, in this
paper, we study the problem of flying quadcopters through a
sequence of hoops. This problem is dynamically challenging
and using hoops provides a rich set of specifications for
creating end-to-end planners. We first consider the problem
using a set of oriented hoops, meaning they have a front and
a back. The hoop flying problem can then be solved by a user
directly specifying a desired sequence of hoops. We develop
a sequence-of-hoops algorithm that ensures a quadcopter flies
through this exact sequence when given as hoop/direction
pairs by an external user. This paper also considers use cases
that involve complex tasks where explicit sequences may be
difficult to create.

For complex tasks, linear temporal logic formula can
be used to characterize hoops rather than specifying them
directly. For example, a user may specify “visit hoopy or
hoopi before hoops” which can be represented by the LTL

This work is supported in part by the National Science Foundation
through the Graduate Research Fellowship grant #DGE-1650044 and
through grant #1836932, and in part through the grant ARL DCIST CRA
WOI1INF-17-2- 0181.

All authors are affiliated with Georgia Institute of Technology, Atlanta,
GA 30332, USA, {cbanks34, kgslovak, sam.coogan,
magnus}@gatech.edu

formula { = —hoops U (hoopg V hoopi) A Qhoops or a
user may indicate “avoid hoop; at all times” which can
be captured in the formula (= [O—hoop;. Work in [6]
proposed a sampling-based technique for agents to satisfy
a global linear temporal logic specification, and [7] utilized
a hybrid controller approach to design continuous trajectories
using the dynamics of an autonomous system to satisfy LTL
specifications. In addition to these prior works, we address
the issue of autonomous systems satisfying global LTL
specifications; however, our algorithm identifies more closely
with the latter work as we consider the continuous dynamics
of quadcopters in addition to considering tasks specified in
linear temporal logic. Moreover, given a LTL specification,
we model it as a Nondeterministic Biichi Automaton (NBA)
and find a satisfying run [8]. The satisfying run corresponds
to an infinite sequence of hoops that we parse through the
planner as inputs. The planner then defines a trajectory via
hand-picked control points around each hoop in the continu-
ous space for quadcopters. We leverage the differentially flat
dynamics of quadcopters [9], [10] to generate continuous
trajectories using spline interpolation. With a solution to
generating feasible trajectories, we turn to optimality.

This work follows [11] and [12] in applying cross-entropy
optimization. We use cross entropy as a way to avoid dis-
cretizing the action space of the quadcopters, thus reducing
computational complexity by not generating a transition
system for the quadcopters. Cross-entropy optimization also
improves upon feasible trajectories by minimizing over a user
defined cost function.

A. Contributions

Our work contributes to the application and development
of controllers and algorithms designed to provide abstraction-
free planning methods for autonomous vehicles subject to
complex specifications given as a temporal logic formula.
The main contributions of this paper include: i) an end-to-end
solution to the hoop flying problem via a planner given any
explicitly labeled sequence of oriented hoops; ii) we utilize
linear temporal logic without constructing a finite abstraction
of the dynamics of the autonomous system to augment the
expressive capabilities of our planner; iii) and we use cross-
entropy optimization on nominal trajectories to optimize via
user provided cost functions.

We provide this planner as a novel framework for external
users to interact with quadcopters in the Robotarium, a
remotely accessible multi-robot testbed housed at the Geor-
gia Institute of Technology [13]. To date, the Robotarium
has only supported ground robots for remote-access exper-
imentation due to the ground robots ability to be easily

accessed and controlled at different levels of abstraction
(trajectories, paths, behaviors, way points). For aerial robots,
these abstractions are not as clear and this paper provides
such an interaction modality, i.e., users can engage with the
quadcopters at the level of discrete locations (hoops) and
mission specifications (LTL). As such, the contribution in
this paper should be understood partially as a technical devel-
opment, partially as an approach to making quadcopters fly
through hoops, and partially as providing a novel interaction
modality for users engaging with the Robotarium.

B. Paper Overview

The paper proceeds in the following manner. We present a
brief overview of the quadcopter model and controller design
in Section II. We develop the mathematical foundation for
the hoop flying problem and present three scenarios and
approaches in Section III. Finally, we discuss experimental
results in Section IV.

II. QUADCOPTER MODEL AND CONTROLLER

In this section, we give a brief overview of quadcopter
dynamics and the controller used in experiments.

Fig. 1. A quadcopter with respect to the world frame (F’,), intermediate
frame (F) and body frame (F}). Four motors (w1.4) produce torques and
thrust for the system.

The rotation matrix, R(e), that translates between the
world frame (F,) and body frame (F}) is given by

R(o = [e g
—s s¢ch cocl

where s and cf stand for sin() and cos(6), respectively.
The angles 6,1, and ¢ are the angles between the axes of
the quadcopter in the body frame and the axes of the world
frame. The input (1) to the system consists of y = [f,,wi |7
with f, as the thrust and wp, = (W, wy,w,]T as the body
rotational rates of the quadcopter in the world frame. We use
the quadcopter model from [14] to describe the dynamics that
generate trajectories for quadcopters:

1
= gzy + *R(E)waz (2)
m
) 1 soth coth
€= F(e)wbw =10 co —5¢ | Wow, €)]
0 s¢scl copsch
where 2, = [001]7 is the z-direction vector for force in

F,, and scf and t0 are sec(f) and tan(6), respectively. The
position of the center of mass () in the world frame (F,) is

r = [rg,7y,7:]T; m, and g are the mass and acceleration of

gravity, respectively. We represent the Euler angles as € =
[6,0,]T, and T'(¢) is the transformation matrix from body
rotational rates in F}, to euler angles in F},. These dynamics
give the 12-dimensional state (£) of the quadcopters where

E=1rT 77,0, 6,4, wk)T and input (u).
A. Controller

We define desired trajectories (74) as parametric curves in
R? that are three-times differentiable such that n,(t) € C3.
The state (£) and inputs (1) are generated from trajectories
using differential flatness [10], [15] to develop the controller.
This allows us to represent the entire state vector (£) of the
quadcopter and its inputs (u) as algebraic functions of the
outputs. These outputs are called flat outputs, and are selected
asn = [rT, ¢]T. Through differential flatness, we control the
quadcopters using a feedforward term p;; adapted from the
differentially flat outputs and a feedback term i f,. The py
is derived by inverting (2) and (3) to get the feedforward
thrust (f., ;) and body rotation rates (W,). From [9],

fepr = 0,0) = —m||iF — g2y

1. 1 0 —89d
Whw,ff =T(€) 7 €=10 ey 8¢d89d €
0 —s¢q copacly

where 04 = atan2(B,, Bp), da = atan2(B., /B2 + 57) and
the d stands for desired. The functions [, 55, and (3. are
defined as: B, = —&q4cos(q) — Yasin(g), B = —24+ g
and 8. = —&gsin(vg) + Jaq cos(¢q).

For the feedback term p 45, the feedback thrust (f; f,) and
body rotation rates (wy.,, r5) terms take the form,

Fefo = Kp(R(€) 2w, ma — 1) + Ka(R(€) 2w, Ta —),
ba— @ ba— ¢ Yd — Y

wbw,fb:Kp 0(1—0 + Ky 9,1—9 +K Tqg—T
hqg — P Ya — P 0

with gains K, K4, and K, € R where our total input to
the system is pt = iy ¢ + ppp. We next define the hoop flying
problem and our proposed approach.

III. PROBLEM FORMULATION AND APPROACH

Given a quadcopter with dynamics described in Section II,
we are interested in developing a fully autonomous planner
capable of navigating through suspended hoops. We define
a hoop in R?, with the following definition:

Definition 1: We define a hoop set H={Ho, H1,---,Hn}
according to F;(r) = (r‘”;fi)z + (’“y;f”z + (Tz;z")z and
H; = {r € R*|E;(r) < 1} where(ry,ry,7.) is the pose
of the quadcopter, (z;,y;, ;) is the position of a hoop (#;)
with index ¢ and a, b, and ¢ are the x-radius, y-radius and
z-radius of the hoops, respectively. We define these three
constant radii (a, b, c) € Ry for the hoops to represent the
volume covered by each hoop in our experiments and note

th%d%%lgﬂuhvalg%goﬁoaol%) hc%%[t)ams five control points (two

avoid points, front, rear, and center) in R3, as illustrated in
Fig. 2. We leverage these control points as anchor points
defining locations of interest near hoops and use them to
guide trajectories between hoops. A motion plan is provided

[center

(a) A top-down view of the orientation of control points for a
hoop where the straight line depicted represents a hoop as seen
from above. The five labeled dots represent the five control points
(two avoid points, rear, center, and front) for each hoop.

[Avid | Avoid |

Front View

[avoid | [avoid |

(b) A front view of the hoop, depicted as a circle in the above
image, with the five control points (two avoid points, rear, center
and front). Note, the center and rear control points are occluded
in this view.

Fig. 2. The orientation of the control points around an example hoop. We
define five control points as points in R? at desired positions around hoops
which are used as anchor points for trajectories generated between them.

to the sequence-of-hoops planner. This motion plan is a
sequence of hoops given by name and direction indicating
which labeled side of the hoop the quadcopter must fly
through. For example, to fly through “hoopy” in the forward
direction followed by “hoop;” in the rear direction, the
sequence would be G = ‘hoopoF hoopiR’. We now follow
with the description of our sequence-of-hoops planner.

A. Flying through Hoops in a Given Sequence

In this section, we describe our sequence-of-hoops trajec-
tory planner in Algorithm 1. In particular, we consider the
following scenario: Scenario 4.1: Given a quadcopter and a
set of pre-positioned labeled hoops, design a trajectory to fly
through a specific sequence of hoops.

The algorithm receives as input the current pose of the
robot (r), a set of n hoops (#) (each defined by the control
points previously mentioned), the input sequence (G) of
hoop/direction pairs, and the previous control points visited
by the quadcopter (c1.,,). These control points are used to
generate four distinct curves based on the distance of the cur-
rent pose and future control points along with the direction of
the quadcopter and generates segments (segment) via spline
interpolation that joins control points together. We first define
the current (pos_curr) and previous (pos_prev) pose which
are found based on the order of the input sequence. In Line 3,
the past direction (dirp.s¢) of the last control point transition
is recovered from the list of previous control points.

In Lines 5 - 7 we define the next control point (pos_next)

and the distance vector (diStcyrrnest) to the next control
point. In Line 5, the function NEXT_CONTROL_POINT uses
the current sequence to determine which control point on
a labeled hoop is next. The function DIRECTION in Line
7 gets the direction that the quadcopter is heading. This
will inform our algorithm which type of trajectory, out of
four pre-determined curves, will be chosen for a particular
path segment. Starting at Line 8, hoops that are in the state
space but not in the input sequence (G) are avoided using
the AVOID function. The AVOID function receives as input
the current position, a hoop from the list of hoops and the
desired next position. If a hoop is between these two points,
the function will choose the closest avoid control point of a
particular hoop without crossing through that hoop and that
resulting segment from the avoid control point to the current
position will be added to the total trajectory 7(t).

Algorithm 1: Sequence-of-Hoops Planner

input : pose of quadcopter r, hoops H, input sequence G,
control_points_prev ci:m

output: trajectory n(t)
1 poS_curr <—r
2 POS_PTrev < Cm
3 dirpast < DIRECTION(pos_curr, pos_prev)
4 for i < 0 to len(G) do
pos_next < NEXT_CONTROL_POINT(G;)
disteurr,nest < DISTANCE(pos_curr, pos_next)
dircurr,nest < DIRECTION(pos_curr, pos-next)
for hoop in H do

if pos_next != hoop then

10 segment
< AVOID(pos-curr, hoop, pos-next)

N-T-CHEE B N

1 end

12 end

13 if disty;,, e == 0 then

14 | segment < STRAIGHT(pos_curr, pos_prev)
15 end

16 if dircurrnest == dirpast then

17 if disty e newt < distdy,., ope then

18 | segment < U_TURN(distcurr,next)
19 else

20 | segment < S_CURVE(diStcurr newt)
21 end

22 else

23 | segment < TURN(diStcurr,neat)

24 end

25 POS_PTev <— pos_curr

26 pos_curr <— RETURN_CONTROL_POINT(segment)
27 n(t) = n(t) + segment

28 end

29 return 7(t)

Characterizing a Trajectory Segment: For the four types
of trajectories that can be generated, all are parameterized by
time and are described by our algorithm in Lines 14 - 24.
We describe each function in detail here.

STRAIGHT: If dist,, == 0, The function STRAIGHT
in Line 14 generates a trajectory segment length ||n;s(t)|| =
|re —r¥| where 7§ is the © — component of the current pose
and Y indicates the x — component of the previous pose.

U_TURN: A trajectory the length of two quarter arcs joined
by a straight segment is returned by the U_TURN function in

/’ ¢
&)
o})
y
\ e N

(b) STRAIGHT: a straight
line curve generated in the
x-direction when disty.
is zero

(a) S_.CURVE: an arc pro-
duced when dist, >
disty, and quadcopter is
not changing direction

Fig. 3.

Line 18 where ||n,(t)|| = (dist,. — dist,) + (dist, -).
S_CURVE: In Line 20, the length of the trajectory segment

is created by first defining a right triangle leg (rt), such that

rt = §,/dist2 — distZ,. Then, theta (f) and the hypotenuse

(h) of the triangle are defined as 6 = atan2(dist,,, dist,,)
and h = si;tQ’ respectively. The total length of the trajectory
results in ||ns(¢)|| = 2(2hH) which generates two equal
length tangent arcs or an “s-curve” in function S_CURVE.

TURN: If the direction is not the same as last, the
trajectory length becomes a straight segment followed by
a half-circle that changes the direction of the quadcopter
such that ||n,(t)|| = dist, + (dist, -), the function TURN
generates this segment.

In Fig. 3 we show each type of trajectory segment that our
planner can generate. The path lengths are then transformed
into time segments via ts = w where v is the desired
speed. These time segments (ts) along with the waypoints
(w1.m) given by the input sequence are used to generate
smooth trajectories (7(t)) via spline interpolation.

Scenario 4.1 Example: Using the sequence-of-hoops
planner, we provide the following sequence G = ‘hoopgF
hooprF hoopoF hoopiR’. The provided sequence requires
a quadcopter to navigate through 4 unique hoop direction
pairs in a specified order. In Fig. 4, we provide an illustrated
trajectory following the specified sequence passed to this
algorithm. A path is planned through all desired hoops and
the quadcopter navigates to a pre-specified final waypoint.
In the depicted simulation, our trajectories are constrained
with respect to predefined sequences. In the next section, we
propose using the expressive capacity of LTL to enhance our
algorithm. Moreover, we implement an improvement on the
sequence-of-hoops planner that can utilize LTL specifications
to generate sequences that are not explicitly given by a user.

B. Finding Satisfying Sequences Given an LTL Specification

In Section III-A, we proposed a planner that can generate
trajectories through explicitly defined sequences of hoops.
However, suppose instead of satisfying explicit sequences,
we utilized LTL as a method to convey high-level user input
into trajectories that satisfy these specifications. Consider the
following scenario: Scenario 4.2: Given a quadcopter and

(¢c) U_-TURN: curve pro-
duced when quadcopter is
changing direction

(d) TURN: curve produced
when disty > disty.
and quadcopter is not
changing direction

Trajectory segments that are generated in the sequence-of-hoops planner.

hoop_0
hoop_1
— hoop_2

Fig. 4. A sample sequence G = ‘hoopoF hoopiF hoopaF hoopiR’ in
simulation using the sequence-of-hoops planner.

a set of pre-positioned labeled hoops, design a trajectory
that satisfies an LTL specification. For example, consider the
following specification: “always ensure flying through hoopg
implies hoops is flown through before hoop; and eventually
reach hoop;”. This specification can be represented by the
LTL formula ¢ = O(Qhoopy — —hoopy U hoopa A Qhoopy).
In this section, we define LTL and modify our sequence-of-
hoops planner to accommodate LTL specifications.

Defining LT L_x Over Continuous Space: LTL [8] is
a logic formalism that is suited for specifying linear time
properties [16], [17], [18]. Because our formula is con-
strained to the dynamics of a quadcopter, we use a subclass
of LTL known as LT L_x that is similar to LTL except it is
defined without the X (next) operator. This subclass of LTL is
well-known for formal verification of trajectories for robotic
systems [19] and we will refer to it as LTL.

Definition 2: Let II be a finite set of atomic propositions.
Atomic propositions can be used to define state space proper-
ties like if certain regions in the state space are occupied (eg.
“Is robot in area A?”). We define hoops (hoop,,) as atomic
propositions so that II={hoopy, hoops, . .., hoop, }.

We check that propositions hoop; are satisfied by mapping
the hoop set (#;) in Definition 1, to the propositions through
the labeling function k, where k(r) = {hoop; € Il : r €
H;}. In other words, we map the position of a quadcopter
(r € R®) to a set of corresponding hoop propositions.
For example, k(r) = {hoopo} iff r belongs to Hg. For

continuous quadcopter trajectories 7.(t), we use a slight
overload of notation for the following definition.

Definition 3: Let us define k over a continuous trajectory
where k(n.) = {hoop;,, hoopi,, hoop;,, ..., hoop;,} is the
sequence of hoops visited by a quadcopter and hoop; € II
and j indicates the 5" hoop in the sequence.

This labeling function generates a sequence of propo-
sitions from the continuous trajectory 7.(¢) for ¢ > 0.
For example, a sequence could have the form k(7.) =
{hoopy, hoop1, hoopy }. If the continuous trajectory 7.(t) is
created such that all propositions (hoop;) generated from the
trajectory satisfy an LTL formula ¢, then we have success-
fully found a trajectory that satisfies a given LTL formula.
Therefore, the trajectory 7). satisfies the LTL formula ¢ iff
k(ne) E ¢

Generating Biichi Automata from LTL: After defining
discrete propositions in continuous space, we can plan trajec-
tories in the discrete space and map the trajectories back into
the continuous domain using our sequence-of-hoops planner.
From [8], any LTL formula can be represented as a Biichi
Automaton, which are defined as:

Definition 4: The tuple B = (Q,11, 6, Qp, F) is a nonde-
terministic Biichi Automaton (NBA) where O denotes a finite
set of states, IT denotes the input alphabet, § : Q x II — 29
is the transition function, Qy C Q represents the set of initial
states, and F C Q is the set of final states.

A run g = qopq; ... of a Biichi Automaton where ¢; € Q
is an accepting run if g; € F for infinitely many indices.
Associated with run ¢ is a sequence of propositions (7 € II)
such that an infinite word o = mg, 7, € 1I is accepted
if there is an accepting run for o. Using efficient tools to
translate LTL to nondeterministic Biichi Automaton (NBA)
[20], we represent the NBA as a directed graph. We then
search through the graph for runs ¢ of the prefix-suffix form
o =1(qos---qn)(@nt1,--.)* where the suffix portion of the
run contains at least one state g; within the accepting set.
The n'" state indicates the last state in the prefix of the run.
Once a satisfying run has been found, the satisfying word
(i.e., a sequence of hoops) has been found and we apply our
sequence-of-hoops planner to find a continuous trajectory.

Scenario 4.2 Example: In regards to our pro-
posed scenario, we augment the sequence-of-hoops plan-
ner to accept LTL specifications. We introduce a function
LTL_TO_SEQUENCE which receives an LTL specification,
generates an equivalent NBA and searches for a satisfying
sequence. In order to determine which direction (front or
rear) the quadcopter must fly through the hoop from, we
use the Euclidean distance between each proposed hoop to
find the closest control point between two consecutive hoops
in the sequence. The corresponding directions are appended
to the hoops in the sequence and the planner executes as
before. From the proposed scenario, we get the sequence:
Yprop = (hoopi)(hoop2)® in prefix-suffix form. We note
that ., is used to denote the accepting word for the NBA
generated from our sample LTL specification and w indicates
the hoop, or set of hoops, that can be visited infinitely
often during the execution of the algorithm. The resulting

hoop_0
hoop_1
— hoop_2

Fig. 5. A satisfying run from the LTL specification (¢ = O(Ohoopo —
—hoop1 U hoopa A Ohoop1)). We show the prefix portion of the trajectory
in black and the suffix portion in red. The suffix portion indicates the set
of hoops that can be visited infinitely often.

trajectory is shown in Figure 5.

C. Optimizing Sequences Using Cross-Entropy

Although the sequence-of-hoops planner is able to gen-
erate trajectories from user provided LTL specifications, the
path is generally not optimal. We draw from the following
scenario to motivate our problem: Scenario 4.3: Given a
sequence-of-hoops planner for quadcopters, utilize the cross-
entropy method to return trajectories that satisfy the sequence
as well as minimize cost. Use this method to guarantee an
optimal trajectory with respect to a cost function J(r,u),
parameterized by the robot pose, 7, and its control input .
We use the cross-entropy method as a stochastic optimization
technique for choosing trajectories according to our cost
function, which we define to minimize the total length of the
trajectory, i.e., J(r,u) = ||n(:)||. In the following, a high-
level overview of the cross-entropy method will be given
followed by a proposed algorithm that further extends the
augmented sequence-of-hoops planner in Section III-B to
ensure optimality. For a more detailed description of the
method see [21], [11].

The Cross Entropy Method: Cross-entropy optimization
is a method of importance sampling for probablistically rare
events. The algorithm design for using cross-entropy with
motion planning [12] can be generalized as the following:

1) Generate a set of sample trajectories (J) from a distribution

and calculate cost J(r, u) for each trajectory

2) Update the distribution using a subset of samples (x), until

the sampling distribution converges to a desired cost () and

delta function over the optimal trajectory
The subset of samples is defined as k = pJ, where p =
{peR:107! < p < 0.3} and J is ordered from least cost
to greatest. While this method may not generate a globally
optimal solution, due to it being a non-convex optimization
method, the entire state space (X)) will be explored during
trajectory generation. In the next section, we describe our
algorithm for minimizing the sequence-of-hoops trajectory
using cross-entropy.

Optimizing the Sequence-of-Hoops Planner: From the
augmented sequence-of-hoops planner in Section III-B, we
apply cross-entropy optimization to reduce the cost of the

sampled trajectories once they are generated. Our algorithm
is adapted from [11] with modifications on sampling initial
means. We sample from the sequence-of-hoops planner to
generate initial means to ensure that only the subset of the
state space relevant to our hoop sequence is sampled.

Algorithm 2: Cross-Entropy Sequence-of-Hoops Algo-
rithm

1 input : LTL formula ¢, hoop_propositions ¢ — n Hi.n,
number of trajectories 7', optimal cost X, elite set
modifier p, sampling distribution p(uo,v),
iteration number N

output: best_path 7(t)

2 n := initial iteration number

3 o = Sequence-of-Hoops Planner(r, H;:n, , Wi:m)

4 best_cost := oo

5 while best_cost > ¥ and n < N do

6 for i in T do

7 path_samples — p(-,v)

8 n(t) — PATH(path_samples)

9 path_check — LTL_PARSER((, n(t), Hin)
10 if path_check==TRUE then

11 sorted_trajectories — n1(t) < n2(t) -+ < np(t)
12 best_cost = sorted_trajectorieso

13 elite_set = p * sorted_trajectories

14 p(-,v) — UPDATE(sorted_trajectories)

-

s return 7)(t)

Path samples are sampled from a multi-variate Gaus-
sian distribution. The means (ug) are initialized to be n
equidistant samples from the augmented Sequence-of-Hoops
planner. As a result, we get path samples from Line 7. Line
8 defines a PATH function that receives as input samples
from the distribution p(ug,v) and generates a trajectory via
spline interpolation. This trajectory is then checked in Line
9 where it is monitored for inclusion in hoop sets (#). The
trajectory is then parsed in the syntax of the accepting set of
hoops and checked for whether it satisfies the string received
initially from the augmented planner generated from the LTL
formula (¢). If this check returns TRUE the trajectory is
returned, otherwise a new trajectory is sampled. Trajectories
are collected and sorted from best cost to worst cost and an
elite set is chosen corresponding to a subset of trajectories
(T). We then update the probability distribution using the
elite subset of trajectories.

Scenario 4.3 Example: Using the cross-entropy sequence-
of-hoops planner, we optimize over the LTL formula ¢ =
O(Qhoopy — —hoopy Uhoopa AQhoop) provided in Section
III-B. In Fig. 7, we show the optimized trajectory of the LTL
formula with the constraint that the each trajectory segment
(prefix and suffix) length should be less than 5 meters or
J(r,u) < 5. In Fig. 6 we show the sampled paths over an
iteration of the algorithm.

IV. DEMONSTRATION OF PLANNER

We implement the planner on the Robotarium at Georgia
Tech where we use Crazyflie 2.0 quadcopters [22], [23]. The
Robotarium uses a Vicon Tracking system which records

hoop_0
hoop_1
— hoop_2

Fig. 6. Here we show a series of trajectories generated from Algorithm
2. The prefix portion of the trajectory, represented in blue, satisfied the
cost function J = ||n(t)|| initially therefore, only one sample was needed.
Several samples of the suffix portion, in red, of the trajectory were sampled
before a satisfying trajectory was found.

hoop_0

hoop_1
— hoop_2

Fig. 7. A simulation snapshot of the LTL cross-entropy sequence-of-hoops
planner after a satisfying run. The optimized trajectory of is shown here
where each trajectory segment must satisfy the cost constraint 7 (r, u) < 5.
real-time position of robots with a 100 Hz update rate.
The algorithm was created in Python and sends control
inputs to a PID controller in C++. Commands are sent via
ROS messages to Crazyflies and a radio operating in the
2400 MHz range with a data rate of 2 Mbit/s sends these
commands to the quadcopters. We orient hoops with vertical
stands, as pictured in Fig. 8a, in the Robotarium and mark
them with Vicon tracking points to record the center of the
hoops and generate the other control points.

Using the methods we have described in the previous
sections, a user can specify either an explicit sequence of
hoops or an LTL formula via a command line interface (CLI).
Depending on the input, the sequence is then parsed through
the sequence-of-hoops planner as a sequence of hoops or
LTL formula and generates trajectories that maneuver a
quadcopter through hoops satisfying that specification. The
user is also given the option to give a minimizing cost as
well. Using the cross-entropy LTL algorithm, trajectories are
minimized via cost functions (J) provided a priori.

In Fig. 8b, a composite image of a quadcopter is shown
completing a trajectory. We define the sequence (G) for the
sequence-of-hoops planner to execute as the same in Section
III-A. We use spline interpolation to generate trajectories

(a) The hoops are mounted on adjustable stands and are tracked
via Vicon markers.

(b) A composite image of the quadcopter executing the beginning
of the automatically generated trajectory from sequence G = ‘OF
1F 2F IR’.

Fig. 8. Hoops are placed in the Robotarium and users can give se-
quences/LTL specifications via a command line interface (CLI).

between waypoints and define a constant velocity of 0.45
m/s. By restricting the planning to discrete hoop-to-hoop
transitions we argue we have provided a potential solution
to the hoop flying problem with our sequence-of-hoops
planner. Using LTL, specifications as hoops can naturally
be defined as discrete objects and enhances the range of
specifications that the planner can satisfy. Leveraging the
dynamics of quadcopters allows us to generate continuous
trajectories, implement these trajectories on actual aerial
robotic systems and provide applicable use cases for LTL
with robotic systems.

V. CONCLUSIONS

Through the methods developed and implemented in this
paper, we design an end-to-end solution to the hoop flying
problem. We show that given an explicitly labeled sequence
of hoop/direction pairs the planner generates trajectories
from four predefined trajectory segments to satisfy the se-
quence. We also show that for more complex specifications
that may not be easily defined as sequences can be defined
as LTL specifications and parsed through the planner as
input. In addition, to ensure optimality, the cross-entropy
optimization method is utilized on nominal trajectories to op-
timize via user provided cost functions. In order to enhance
the Robotarium user experience with quadcopters, we have

implemented this as a novel interaction modality for external
users to engage with aerial vehicles in the Robotarium.

REFERENCES

[1] L. Garcia-Pérez, M. Garcia-Alegre, A. Ribeiro, and D. Guinea, “An
agent of behaviour architecture for unmanned control of a farming
vehicle,” computers and electronics in agriculture, vol. 60, no. 1, pp.
39-48, 2008.

[2] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695-1708, 2011.

[3] S. M. LaValle, Planning algorithms. ~ Cambridge university press,
2006.

[4] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion plan-
ning with complex goals,” IEEE Robotics & Automation Magazine,
vol. 18, no. 3, pp. 55-64, 2011.

[51 S. A. Bortoff, “Path planning for UAVSs,” in American Control Con-
ference, 2000. Proceedings of the 2000, vol. 1, no. 6. IEEE, 2000,
pp. 364-368.

[6] C. I. Vasile and C. Belta, “Sampling-based temporal logic path
planning,” CoRR, vol. abs/1307.7263, 2013. [Online]. Available:
http://arxiv.org/abs/1307.7263

[7]1 G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: A temporal logic approach,” 2005.

[8] C. Baier and J.-P. Kateon, Principles of Model Checking. Cambridge,
Massachusetts: The MIT Press, 2008.

[9] D. Zhou and M. Schwager, “Vector field following for quadrotors
using differential flatness,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. 1EEE, 2014, pp. 6567-6572.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. 1EEE, 2011, pp. 2520-2525.

[11] S.C. Livingston, E. M. Wolff, and R. M. Murray, “Cross-entropy tem-
poral logic motion planning,” in Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control. ~ACM,
2015, pp. 269-278.

[12] M. Kobilarov, “Cross-entropy motion planning,” The International
Journal of Robotics Research, vol. 31, no. 7, pp. 855-871, 2012.

[13] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The Robotarium: A remotely accessible swarm robotics
research testbed,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 1699-1706.

[14] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning
of quadrotor dynamics using barrier certificates,” arXiv preprint
arXiv:1710.05472, 2017.

[15] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness
of mechanical control systems: A catalog of prototype systems,” in
ASME international mechanical engineering congress and exposition.
Citeseer, 1995.

[16] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291-314, 2001.

[17] G. J. Holzmann, The SPIN model checker: Primer and reference
manual. Addison-Wesley Reading, 2004, vol. 1003.

[18] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, p. 14, 2011.

[19] E. M. Clarke, O. Grumberg, and D. Peled, Model checking.
press, 1999.

[20] A. Duret-Lutz and D. Poitrenaud, “Spot: an extensible model checking
library using transition-based generalized bu/spl uml/chi automata,” in
The IEEE Computer Society’s 12th Annual International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommu-
nications Systems, 2004.(MASCOTS 2004). Proceedings. 1EEE, 2004,
pp. 76-83.

[21] P-T. de Boer et al., “A tutorial on the cross-entropy method,” Annals
of Operations Research, vol. 134, no. 1, pp. 19-67, 2005.

[22] B. AB. (2018). [Online]. Available: https://www.bitcraze.io/

[23] W. Honig and N. Ayanian, “Flying multiple UAVs using ROS,” in
Robot Operating System (ROS). Springer, 2017, pp. 83-118.

MIT

http://arxiv.org/abs/1307.7263
https://www.bitcraze.io/

	Introduction
	Contributions
	Paper Overview

	Quadcopter Model and Controller
	Controller

	Problem Formulation and Approach
	Flying through Hoops in a Given Sequence
	Finding Satisfying Sequences Given an LTL Specification
	Optimizing Sequences Using Cross-Entropy

	Demonstration of Planner
	Conclusions
	References

