Monitor-Based Runtime Assurance for Temporal Logic Specifications

Matthew Abate, Eric Feron, and Samuel Coogan

Abstract— This paper introduces the safety controller archi-
tecture as a runtime assurance mechanism for system specifica-
tions expressed as safety properties in Linear Temporal Logic.
The safety controller uses a monitor, constructed as a finite
state machine, to analyze a desired control input policy online
and form a sequence of control inputs that is guaranteed to
keep the system safe for all time. A case study is presented
which details the construction and implementation of a safety
controller on a cyber-physical system with a nondeterministic
dynamical model.

I. INTRODUCTION

Modern cyber-physical systems (CPS) are complex and
sometimes do not behave as expected. Correctness can be
partially addressed with offline verification, however, the
end-to-end verification of an entire system is often prevented
by its complexity. In order to compensate for the lack of
assurances, it is desirable to enforce correctness online.

For purely cyber systems, runtime correctness can be
checked online using monitors [1], [2], [3], [4], [S]. In this
context, correctness is evaluated with respect to a temporal
logic specification; a monitor observes the temporal behav-
iors of the cyber system and notifies the system operator
if a fault is suspected. Such monitors are convenient for
verification because they can be algorithmically generated
from temporal logic specifications; however, monitors can
only detect system faults and do not have the ability to
enforce correct behavior at runtime. As an alternative, an
edit automaton can be employed in the control loop to assure
correct system behavior online [6]. Edit automata are formed
corresponding to temporal logic specifications, however, it is
unclear how hard it is to generate an edit automaton given
such a specification. It was shown in [7], for instance, that
an edit automaton for a given specification is not unique.

For controlled dynamical systems, runtime correctness
can be enforced online; typically, this procedure involves
ensuring that the system does not exceed the boundary of a
known controlled forward-invariant region in the state-space.
Numerous verification techniques exist in this paradigm, in-
cluding level set based methods [8], barrier certificate based
methods [9], and certain model predictive control (MPC)

This research was supported in part by the National Science Foundation
under award #1749357.

An extended version of this work is availible
https://arxiv.org/abs/1908.03284

M. Abate is with the School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, 30332, USA Matt .Abate@GaTech.edu.

E. Feron 1is with the School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, 30332, USA
Eric.Feron@Aerospace.GaTech.edu.

S. Coogan is with the School of Electrical and Computer Engineering
and the School of Civil and Environmental Engineering, Georgia Institute
of Technology, Atlanta, 30332, USA Sam.Coogan@GaTech.edu.

on ArXiVe,

Assurance Mechanism

LTL Specification
Monitor Automaton

State feedback

Fig. 1: Safety Controller Architecture

based methods [10], [11]. These approaches, however, are
typically only well suited to analyze invariance specifications
or reach specifications; more complex temporal behaviors
cannot be enforced in this manner.

It is not overtly clear how one might combine results for
purely cyber systems with results for physical systems in
order to ensure correct behavior of CPS against complex
specifications. For example, by the time a monitor recognizes
that a physical system is about to violate its operating
specification, the system may have entered an invariant
region of the state space from which it is impossible to
satisfy the system specification going forward. A basic idea
that has emerged in different contexts is to enforce correct
performance online through the incorporation of a backup
control policy. This technique is referred to as “runtime
assurance” or the Simplex Architecture [12].

This paper introduce the safety controller: a correct-
by-construction runtime assurance mechanism system for
mission objectives encoded in linear temporal logic (LTL)
. The safety controller (Figure 1) has three fundamental
components: a performance controller, a backup controller
and an assurance mechanism. The assurance mechanism uses
a monitor, constructed as a finite-state machine (FSM), to
assess the performance control input and generate a provably
correct control input policy at runtime. In this setting, the
backup controller is characterized by a subset of the system-
monitor statespace where correct performance can be assured
on an infinite time horizon; importantly, the proposed frame-
work allows the performance controller to steer the system
outside this region, provided that the performance controller
can demonstrate safety beforehand. This creates a trade-off
between the a priori computation required to generate a
backup controller and the real-time computational burden
placed on the safety controller.

We organize this paper in the following way. We introduce
monitor automata, a correct-by-construction tool for runtime
verification, in Section II. Section III presents the problem

formulation and then introduces the safety controller archi-
tecture. We provide a discussion on the trade-off between
offline platform development and online assurance in Section
IV, and the paper concludes with an experimental demon-
stration, provided in Section V.

II. PRELIMINARIES ON MONITORING FOR LINEAR
TEMPORAL LOGIC PROPERTIES

In this section, we introduce monitor automata as a run-
time verification tool from automata based model checking.

A. Monitor Construction in LTL3

To formally describe the execution of a CPS, we encode
system events as atomic propositions; a sequence of events,
or a word, therefore denotes the progression of the system
through time. We use AP to denote a set of atomic proposi-
tions, ¥ = 24% to denote a finite alphabet, and ¥* and ¥¢
to denote the sets of finite and infinite system traces over
3, respectively. System properties are specified in Linear
Temporal Logic (LTL). For an in depth discussion on the
semantics of LTL, we refer the reader to [13] Section 2.1.

Consider an LTL specification ¢ and a finite path fragment
w € ¥*. Note that there may be no continuations of w which
satisfy ¢, or equivalently, the system may have reached a
state where it can no longer satisfy its specification under
any possible future execution. We therefore introduce the
definitions of good and bad prefixes in order to describe the
set of finite words from which it is impossible to violate or
satisfy the mission objective.

Definition 1 (Good and Bad Prefixes). Consider a finite word
w; € X* and an LTL property . w; is said to be a good
prefix for ¢ if wiws = ¢ for all we € . Similarly, w; is
said to be a bad prefix for ¢ if wiws = ¢ for all wy € 3¢,

In order to classify whether a finite word is a good or bad
prefix for ¢, we use the truth value of the mission objective.

Definition 2 (LTL3 Semantics, [2] Section 2.2). Let w € ¥*
denote a finite word. The truth value of an LTL3 formula
¢ with respect to w, denoted [w = ¢], is an element of
By = {T,L,?} defined as follows:

T ifVoeX¥
[wEe =11 ifVoeXxv
? otherwise.

D wo
D wo

Equivalently, the truth value ¢ with respect to w is true “T”
if w is a good prefix for ¢, false “1” if w is a bad prefix
for ¢, and inconclusive “?” otherwise.

Finally, we formalize the automata-based monitoring pro-
cedure for LTL3 (Definition 3). We refer the reader to [2]
for a comprehensive discussion on monitor automata, and we
provide a sample monitor construction in Figure 2.

Definition 3 (Monitors in LTL3). For a given property ¢ a
monitor automaton M¥ is a finite state machine that reads
finite words w € X* and outputs [w = ¢].

Fig. 2: Monitor Automaton M¥ where ¢ = 0@ V Qa is
an LTL property evaluated over X = {&, a}. Monitor states
qT and g, output true and false, respectively, and qg, - - -, q3
output inconclusive.

Note that, for a given mission objective, any continuation
of a good/bad prefix for that property will also be a good/bad
prefix. Consequently, a monitor M?¥ will never have more
than one state with output T and one state with output L
after minimization. In the following, we use the symbols
gt and g, to denote monitor states with outputs T and L,
respectively.

B. Monitoring Safety Properties

In the following, we focus the scope of our study to LTL
properties which guarantee certain monitor output behaviors.
Specifically, we recall the definition of safety properties [14].

Definition 4 (Safety Property). An LTL property ¢, is said
to be a safety property if all words which violate ¢ contain
a bad prefix for ;.

LTL safety properties make up a broad class of system
specifications; for example, ¢ = 0@ V Oa (Figure 2) is a
safety property in LTL. Furthermore, applying Definition 2.3,
we can guarantee system safety by ensuring that the system
trace does not contain a bad prefix for ¢,. We formalize this
result in Proposition 1.

Proposition 1. An infinite word w € X¥ satisfies s if [0 =
ws] #L for all prefixes W € Pref(w).

Note that a monitor M®+, for a safety property ¢ not
semantically equal to true, is guaranteed to have a state with
output L. Moreover, we can verify system trajectories against
s by ensuring the system run over M+ never enters ¢ .

III. THE SAFETY CONTROLLER ARCHITECTURE

In this section, we apply monitor automata in a framework
which enforces system objectives at runtime. For system
objectives expressed as safety properties in LTL, we create
a notion of system safety and describe a runtime assurance
mechanism which enforces safe system behavior.

A. Assurance Through Monitoring

We model CPS as discrete-time non-deterministic control
systems of the form

zt = f(z,u,d) (1)

where x, € X CR", up, e Y CR™ and d, € D C RP
represent the system state, the control input and a non-
deterministic bounded disturbance at a time k € Ny,
respectively.

Associated with the system (1) is a set of atomic
propositions AP and a labeling function L X —
24P For the remainder of this paper, we use the
notation L(xy, ---, 2,) to denote the string of labels
L(z1, -+, xy) := L(x1) - - - L(z,), and we use the symbols
3* and X“ to denote the sets of finite and infinite words
over X, respectively. Additionally, let ¢ be property in LTL.
We aim to ensure that a safety property ¢ € LTL is satisfied
over a (infinite) system run of (1).

Following Proposition 1, we say that a finite system
trajectory xo, - - -,z is safe if [L(zo---zx) E @] € {T,7},
and unsafe if [L(xo - - x) E @] = L. A controller which is
implemented on the system must first ensure the system stays
safe before pursuing any auxiliary system objectives, such
as enforcing optimality constraints or attempting to satisfy
additional LTL properties.

B. Components of a Safety Controller

In the following, we assume knowledge of a controller
which is claimed to be able to keep the system safe, while
also possibly meeting some auxiliary system objective. This
controller, denoted a performance controller, is characterized
by three assumptions:

Assumption ITL.1. At each time k, the performance con-
troller proposes a control input to be applied to the system.

Assumption IIL.2. If requested, the performance
controller can also propose a sequence (X, gk),
o (XktN, s> Gk+N,,..) Of feedback control laws

gi + X = U and regions of the state space X; C X, such
that at a future time ¢, the performance controller intends to
choose its inputs using g; provided the current state of the
system z; € X;. The performance controller is not obligated
to choose future inputs using these policies.

Assumption IIL.3. The performance controller might bear
faulty, i.e. applying the performance control input to (1) may
eventually cause the system to violate its specification ¢.

This definition of the performance controller is quite broad
and encompasses general unverified feedback control laws.
For example, a human operator, whose effectiveness cannot
be verified a priori, can be thought of as a performance
controller for a manned CPS. Despite the lack of global
assurances, we assume that certain aspects of the perfor-
mance controller law make it preferable; for instance, the
performance controller may be designed to optimize some
objective or achieve some auxiliary goal.

We additionally assume knowledge of a controller which is
known to satisfy the safety objective, but might be limited in
abilities or performance. We denote this mechanism a backup
controller, formalized next.

Definition 5 (Backup Controller and High Assurance Re-
gion). For a system of the form (1), a safety property ¢ €

LTL, and a corresponding monitor M? = (X, @, qo, 0, A),
let S = & x @ denote the total state space of the combined
system and monitor. A backup controller is characterized
by a subset of the state space S® C S such that for any
(x,q) € S, there exists an infinite sequence of control inputs
known to the backup controller such that the resulting infinite
horizon system trace satisfies . S® is referred to as the high
assurance region of the backup controller.

For the remainder of this section we fix a safety property
©, a corresponding monitor MY¥ = (3, @, qo, 0, A), a
backup controller and a high assurance region S°. Trivially,
the system can be kept safe for all time by applying the
backup control input to the system at each time step, how-
ever, this method of input generation restricts the system to
operating inside the high assurance region and removes the
possibility of reaching auxiliary goals. For this reason, we
interpret the problem formulation as follows: create a logical
architecture which chooses whether to apply the performance
control input or the backup control input to the system at
each time step such that the resulting infinite-time system
trace satisfies . In this case, whenever possible, the chosen
input should be that of the performance controller.

In the following, we refer to the aforementioned logical
architecture as the assurance mechanism of the safety con-
troller. Importantly, the assurance mechanism should allow
the system to leave S if a control policy is known which
returns the system to S® at a future time. We justify this
decision with Proposition 2.

Proposition 2. Let xq,-- -,z denote a finite trajectory of
system (1), and let qo,---,qi be the corresponding run of
the trajectory over M®. If (xy, qi) € S°, then L(xq---x})
is not a bad prefix for .

It follows from Proposition 2 that if the performance
controller is able to suggest a path back to the high assurance
region S® from every point along a system trajectory, then
the performance controller is functioning correctly. In order
to check this condition, we call Algorithm 1.

Algorithm 1 takes an initial state (x,q) € X x @, and
returns a finite sequence of control inputs ~, such that:

1) v, = @ signifies a fault in the performance controller,
and

2) v» = go,---,gx signifies that choosing inputs accord-
ing to the sequence of feedback control laws sequential
will return the system to S°.

This procedure relies, in part, on the calculation of finite
time reachable sets, notated as follows. For an initial state
(x0,90) € S, and a sequence of feedback control laws
Jo, g1, - - -» we denote the set of reachable states after ¢ steps
by R;, i.e.

Ry ={(z,q) | z = f(z0,90(x0), d),
d €D, ¢=105(qo, L(x))}
Riy1={(z,q) |z = f(Z,9:(%),d), (7,9) € Ry,
de€D, q=46(g, L(z))}

for all + > 1. While calculating reachable sets can be compu-
tationally expensive, numerous methods exist to approximate
reachable sets efficiently. Therefore, let Ri denote an over-
approximation of R;, i.e. R; C Ri.

We check to see whether the performance controller is
functional by calling RECOVERY(x,q), provided in Algo-
rithm 1. Succinctly, RECOVERY (z, ¢) simulates the system
dynamics using the current system monitor state and a non-
empty sequence of suggested future performance control
inputs; if the future system monitor state is contained in .S’ b,
then the suggested input sequence is returned, and, if not,
the null sequence is returned, signaling a system fault. We
use the term recovery input sequence to denote a sequence
of control inputs which drive the current system state into
S®. Therefore, if the suggested control input is guaranteed
to drive the system to S°, then the output of Algorithm 1 is
a non-empty recovery input sequence for the current system
monitor state.

Algorithm 1 Generate A Non-Empty Recovery Input Se-
quence in the Presence of Disturbances

input : a current state (x,q) € S.
output: a sequence of feedback control laws -,
1: function RECOVERY(z, q)

Initialize: Ry = {(z,q)},i=10
while (i < Nyp,q,) do
X, g; < Request_Next_Control Law
if {z | (z,q) € R;} € X, then
return v, = &
Compute R¢+1 using Rz— and g;
if (Ri+1 - Sb) then
return v, = go, -+, gi
14 1+1
11: return v, = &

R A A

=

12: end function

We next use Algorithm 1 to design a logical architecture
which chooses between the performance control input and
the backup control input at each timestep. This procedure is
implemented through the following steps:

1) At each time k the assurance mechanism calls RECOV-
ERY(xg, qx) and stores the output in a variable -,.

2) If 7, is non-empty, then go(xy) is applied to the system
and g1,---,g; is stored to memory.

3) If v, = @, then the performance controller has
suggested an input sequence that cannot be verified.
The memorized recovery input sequence is applied to
return the system to S?, and the backup control input
is then applied for all future time.

This procedure is implemented with Algorithm 2. Impor-

tantly, choosing control inputs by Algorithm 2 guarantees
system safety for all time; see Theorem 1.

Theorem 1 (Runtime Assurance for Non-Deterministic
CPS). Let ¢ € LTL be a safety property, and let w =
L(zgxy---) be the trace of an infinite trajectory resulting

Algorithm 2 Runtime Assurance for Non-Deterministic
Discrete-Time Control Systems

Initialize: = = zo, ¢ = qo

v < RECOVERY(z, q)

while (v, # @) do
Apply go(z) to system;
Store gy, --,g; to Memory
(x,q) < CURRENT_STATE
¥r <= RECOVERY(z, q)

O I S

Apply Recovery Input Sequence to system
while (True) do
Apply BACKUP_INPUT to system

R AU

._
4

from a sequence of inputs chosen using Algorithm 4. If
the system is initialized in the high assurance region, i.e.
(70, q0) € SP, then w |= ¢.

The proof of this result is available in an extended version
of this paper: see https://arxiv.org/abs/1908.03284.

IV. CLASSIFYING THE TRADE-OFF BETWEEN A PRIORI
DEVELOPMENT AND EFFECTIVENESS

Here, we discuss the feasibility of designing and im-
plementing a safety controller architecture. Specifically, we
address the offline computation involved in constructing a
backup controller and the computational complexity of the
algorithms which run online in the assurance mechanism.

A. Developing a Safety Controller Offline

Two steps are required to construct a safety controller from
an LTL safety specification ¢ and a given system model: the
first step is to convert the system specification to a monitor
automaton and the next step is to design a backup controller.

We refer the reader to [2] for a detailed discussion on
monitor construction. In short, this process involves realizing
two deterministic finite automata (DFAs) and then computing
their minimal product automaton. There are well-defined pro-
cedures for constructing a DFA from an LTL specification, as
well as procedures for computing product automata [15]. The
resulting product automaton is reduced to its minimal form
by removing every unreachable state and every pair of non-
distinguishable states. This procedure is implemented using
Moore’s algorithm [16], which has an average complexity
O(n -log(n)) when minimizing a DFA with n states.

A backup control law is developed by identifying a
controlled invariant region of the system monitor state space
S C X x Q, such that for all (z,q) € S° ¢ # ¢q.. In
order to compute such an invariant region, abstraction based
methods are possible [13], [17].

B. Online Computation for the Assurance Mechanism

We next attempt to characterize the online computational
resources required by a safety controller. First, we propose
that Assumption III.2, which requires the performance con-
troller to suggest potential future inputs, fits well with exist-
ing control architectures; for instance, all MPC controllers

employ this functionality. Moreover, as the performance
controller is assumed to be provided in advance of the
development process, we do not discuss the computational
complexity of designing a performance controller.

Next, we note that the assurance mechanism must have
sufficient computational capabilities to over-approximate
reachable system states at runtime. Reachable set compu-
tation is a well-studied problem in the controls and hybrid
systems literature, with numerous efficient algorithms. See
[18, Chapter 29] for an overview.

C. Discussion

The assurance mechanism will only choose the perfor-
mance control input if the set of reachable states resulting
from that sequence is contained inside the high assurance
region. There is, therefore, an intuitive trade-off between
the a priori development of the assurance mechanism and
the amount of computational resources which are necessary
online. For example, the likelihood of finding a safe per-
formance control input sequence is maximized for safety
controllers with large, well developed, high assurance re-
gions. Similarly, an assurance mechanism which computes
tight approximations of reachable sets will be less likely to
return a fault flag, in comparison to an assurance mechanism
which uses conservative approximations.

There are in fact other methods of increasing the ca-
pabilities of the safety controller, beyond those presented
previously. For instance, note that if the performance con-
troller is ever determined to be faulty, Algorithm 2 first
applies the recovery input sequence, driving the system to
reenter S°, and then applies the backup control input for
all future time; an assurance mechanism may instead choose
to reactivate the performance controller once S® is reached.
In this case, the performance controller is certainly faulty
and may again suggest an unsafe sequence of inputs at
some-point in the future. However, even in this instance, the
resulting infinite-time system trace is guaranteed to satisfy
the mission objective. As a second extension, we suggest that
if the system leaves S, with assurance from the performance
controller, then the assurance mechanism might choose to
expand S® on the fly with the knowledge of the new system
state and its corresponding recovery input sequence. As
the S° expands, the system will effectively learn how to
stay safe in previously unverified product states, increasing
system performance. Safe learning is an active research
area in the controls and formal methods communities. One
modern technique, referred to as shielding, enforces LTL
safety properties in a runtime assurance framework [19].
Current shielding methods, however, only assure discrete-
time discrete-state systems, whereas the safety controller
architecture is applicable to systems with a continuous state
space. Shielding also assumes a probabilistic system distur-
bance, which we intentionally avoid in our construction.

V. CASE STUDY: AN ACCELERATING DELOREAN

To demonstrate the results of this paper, a safety controller
was implemented on a modified F1/10 race car (Figure 4a).

Fig. 3: Monitor M?¥ for p = (—=Tower) U (Tower A Fast).
Monitor states qT, g and go output true, false and incon-
clusive, respectively.

F1/10 is an open-source 1/10 scale autonomous vehicle test-
bed designed primarily for use by academic researchers [20].

When traveling along a straight line, the plant dynamics
of the system conform to a non-deterministic discrete-time
double integrator model. Here the system state at a time
k € N>, is described by the car’s position along the road
x(k) and the car’s forward velocity v(k). Control inputs were
suggested by a human operator, who chose the applied motor
torque with a wireless Logitech Gamepad F710 controller
(Figure 4a); this input is therefore proportional to the experi-
enced acceleration. A non-deterministic factor was included
in the system model in order to encapsulate the effects of
drag on the vehicle.

Our mission objective is taken from the movie Back to
the Future: when the car passes the clock tower, the car’s
velocity must be greater than 2 meters per second. We give
the car, hereafter referred to as a DeLorean, an initial position
(xo,v0) = (0,0), and arbitrarily place the clock tower a
distance 2.54 meters from the origin.

Without an enforcement mechanism, the human operator
has the ability to suggest an input sequence which causes
the vehicle to pass the clock tower with inadequate speed,
thus violating the mission objective. We therefore design an
assurance mechanism to act as a filter between the the human
operator and the plant, assuring the system at runtime.

We convert our system specification to an LTL safety
property as follows. Let AP = {Tower, Fast} be the set
of events, where Tower indicates that the DelLorean has
driven past the clock tower, and F'ast indicates that the
velocity of the DeLorean is greater than 2 m/s. The trace of a
system trajectory is therefore given by the labeling function

L:R2 — 24F

16 r <254, v<2
Tower r>2.54, v<2
Fast r <254, v>2
Tower AN Fast x > 2.54, v > 2.

L(z,v) =

In order to ensure that the DeLorean passes the clock
tower with sufficient velocity, we enforce the LTL safety
specification ¢ = (=Tower) U (Tower A Fast); see Figure
3. We take S® to be a region of the state space from which
the DeLorean can decelerate to zero velocity safely:

S* = {(z,v,9) | g =qr or v < —0.692+ 1.66, ¢ = ¢+ }.

(a) Experimental test-bed. A human operator suggested per-
formance control inputs to an modified F1/10 race car (left)
using a Logitech Gamepad F710 controller (lower right).

Assuring F1/10 with Human Driver

3.5+ 5‘?
3| d
2 2.5+ $
£ Region 3 Region 4
_@i' Region 2 Region 5
2 15f o P
o
=
1F °w° g‘;ﬁﬁ
0.5} ﬁ’ﬁp
o Region1 ‘ I ‘ ‘
0 0.5 1 1.5 2 2.5 3 3.5

Position (m)

(b) Safety controller implementation on F1/10 race car. The
safe zone of the backup controller, S® is shown in green
(Regions 1 and 4). Regions 2, 3, 4 and 5 are labeled @,
Fast, Tower A\ Fast and Tower, respectively. The current
vehicle state is shown in pink. The non-deterministic trajectory
resulting from a memorized recovery input sequence is shown
in green, and the driver’s suggested trajectory, which causes
the system to violate the mission objective, is shown in yellow.

Fig. 4: Case study test-bed and trial data.

In this case, if the DeLorean is in a current state (x,v,q) €
S®, then the backup controller will suggest that the DeLorean
brake such that the vehicle decelerates to a stop. A safety
controller architecture is created by integrating Algorithms
3 and 4 into an assurance mechanism.

We present the scenario where the vehicle driver, who
initially suggested safe inputs, suggests an unsafe control
policy (Figure 4b). Performance control inputs are passed to
the system 250 milliseconds after the driver sent them via
remote control; this lag-time allows the assurance mechanism
to analyze control inputs as though they were suggested in a
string. The driver first suggests an input sequence that guar-
antees that the DeLorean will satisfy the mission objective .
This allows the DeLorean to leave S°. At a future timestep,
the driver suggests a control input sequence which allowed
for the possibility that the DeLorean would violate ¢. The
assurance mechanism then applies the memorized recovery
input sequence, and the DeLorean passes the clock tower
with sufficient velocity.

VI. CONCLUSIONS

This paper introduces the safety controller as a runtime
assurance mechanism for system objectives expressed as

linear temporal logic properties. A case study is presented
which details the construction and implementation of a safety
controller on a non-deterministic cyber-physical system.

VII. ACKNOWLEDGEMENTS

The authors wish to thank Will Stuckey for his work with
test-bed development.

REFERENCES

[1] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Nickovi¢, and S. Sankaranarayanan, Specification-Based Moni-
toring of Cyber-Physical Systems: A Survey on Theory, Tools and
Applications, pp. 135-175. Cham: Springer International Publishing,
2018.

[2] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, pp. 14:1-
14:64, Sept. 2011.

[3] D. Neider, M. Schwenger, P. Tabuada, A. Weinert, and M. Zim-
mermann, “Robust monitoring of linear temporal properties,” CoRR,
vol. abs/1807.08203, 2018.

[4] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A.
Seshia, “Robust online monitoring of signal temporal logic,” Formal
Methods in System Design, vol. 51, pp. 5-30, Aug 2017.

[5] S. Mitra, Y. Wang, N. Lynch, and E. Feron, “Safety verification of

model helicopter controller using hybrid input/output automata,” in

Hybrid Systems: Computation and Control (O. Maler and A. Pnueli,

eds.), pp. 343-358, Springer Berlin Heidelberg, 2003.

J. Ligatti, L. Bauer, and D. Walker, “Edit automata: enforcement

mechanisms for run-time security policies,” International Journal of

Information Security, vol. 4, pp. 2-16, Feb 2005.

N. Bielova and F. Massacci, “Do you really mean what you actually

enforced?,” in Formal Aspects in Security and Trust (P. Degano,

J. Guttman, and F. Martinelli, eds.), (Berlin, Heidelberg), pp. 287—

301, Springer Berlin Heidelberg, 2009.

[8] I. Mitchell and C. J. Tomlin, “Level set methods for computation

in hybrid systems,” in Hybrid Systems: Computation and Control

(N. Lynch and B. H. Krogh, eds.), (Berlin, Heidelberg), pp. 310-323,

Springer Berlin Heidelberg, 2000.

S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems us-

ing barrier certificates,” in Hybrid Systems: Computation and Control

(R. Alur and G. J. Pappas, eds.), (Berlin, Heidelberg), pp. 477-492,

Springer Berlin Heidelberg, 2004.

[10] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proceedings of the
48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pp. 5997-6004, Dec 2009.

[11] A. Jadbabaie, J. Yu, and J. Hauser, “Unconstrained receding-horizon
control of nonlinear systems,” IEEE Transactions on Automatic Con-
trol, vol. 46, pp. 776-783, May 2001.

[12] J. G. Rivera and A. A. Danylyszyn, “Formalizing the uni-processor
simplex architecture,” tech. rep., Carnegie Mellon University School
of Computer Science, 1995.

[13] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-
Time Dynamical Systems, vol. 89. Springer, 2017.

[14] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, pp. 291-314, Nov 2001.

[15] C. Baier and J.-P. Katoen, Principles of Model Checking,
vol. 26202649. MIT Press, 01 2008.

[16] J. Berstel, L. Boasson, O. Carton, and I. Fagnot, “Minimization of
automata,” CoRR, vol. abs/1010.5318, 2010.

[17] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer Publishing Company, Incorporated, 1st ed., 2009.

[18] W. S. Levine, The Control Systems Handbook: Control System Ad-
vanced Methods. CRC press, 2010.

[19] M. Alshiekh, R. Bloem, R. Ehlers, B. Knighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in AAAI Con-
ference on Artificial Intelligence, 2018.

[20] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna,
“F1/10: An open-source autonomous cyber-physical platform,” 2019.

[6

=

[7

—

[9

—

