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Abstract—We consider contractive systems whose trajectories
evolve on a compact and convex state-space. It is well-known
that if the time-varying vector field of the system is periodic
then the system admits a unique globally asymptotically stable
periodic solution. Obtaining explicit information on this periodic
solution and its dependence on various parameters is important
both theoretically and in numerous applications. We develop an
approach for approximating such a periodic trajectory using the
periodic trajectory of a simpler system (e.g. an LTI system). The
approximation includes an error bound that is based on the input-
to-state stability (ISS) property of contractive systems. We show
that in some cases this error bound can be computed explicitly.
We also use the bound to derive a new theoretical result, namely,
that a contractive system with an additive periodic input behaves
like a low pass filter. We demonstrate our results using several
examples from systems biology.

I. INTRODUCTION

A dynamical system is called contractive if any two trajec-
tories approach each other at an exponential rate [14], [1]. This
is a strong property with many important implications. For ex-
ample, if the trajectories evolve on a compact and convex state-
space () then the system admits an equilibrium point e € €2,
and since every trajectory converges to the trajectory emanat-
ing from e, e is globally asymptotically stable. Establishing
this requires no explicit information on e. More generally,
contractive systems with a periodic excitation entrain, that is,
their trajectories converge to a periodic solution with the same
period as the excitation [14]. In fact, contractive systems have
a well-defined frequency response [21], [29]. This property
is very important in applications ranging from entrainment of
biological systems to periodic excitations (e.g., the 24h solar
day or the periodic cell division process) to the entrainment of
synchronous generators to the frequency of the electric grid.
However, the proof of the entrainment property of contractive
systems is based on implicit arguments (see, e.g. [31], [14])
and provides no explicit information on the periodic trajectory
(except for its period).

Contraction theory has found numerous applications in sys-
tems and control theory and in systems biology (see e.g.[33],
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[1]). A particularly interesting line of research is based on
combining contraction theory and graph theory in order to
study various networks of multi-agent systems [32], [2], [30],

[5].

As already noted by Desoer and Haneda [7], contractive sys-
tems satisfy a special case of the ISS property (see the survey
paper [36]). Under additional conditions, contractive systems
are also input-to-output stable [11]. Desoer and Haneda used
the ISS property to derive bounds on the error between
trajectories of a continuous-time contractive system and its
time-discretized model. This is important when computing
solutions of contractive systems using numerical integration
schemes [15]. Sontag [37] has shown that contractive systems
satisfy a “converging-input converging-output” property. A
recent paper [3] used the ISS property to derive a bound on
the error between trajectories of a continuous-time contractive
system and those of some “simpler” continuous-time system
(e.g. an LTI system). This bound is particularly useful when
the simpler model can be solved explicitly.

Here, we derive new bounds on the distance between the
periodic trajectory of a contractive system and the periodic
trajectory of a “simpler” system, e.g. an LTI system with a
periodic forcing. We show several cases where the periodic
trajectory of the simpler system is explicitly known and the
bound is also explicit, so this provides considerable infor-
mation on the unknown periodic trajectory of the contractive
system. We use one of the explicit bounds to prove that any
contractive system with an additive sinusoidal forcing behaves
like a low-pass filter, i.e. as the frequency of the sinusoidal
signal goes to infinity the solution of the contractive system
converges to an equilibrium state. This generalizes the well-
known behavior of asymptotically stable LTI systems.

II. PRELIMINARIES

We briefly review some relevant properties of contractive
systems. For more details, see e.g. [35], [12]. Consider the
time-varying dynamical system

= f(t,z), (D

with the state x evolving on a positively invariant set 2 C R".
Let x(¢,t0, o) denote the solution of (1) at time ¢ > tq for
the initial condition x(tg) = .

We assume from here on that the following properties hold:
(1) the state space € is compact and convex; (2) both f(¢, x)

and its Jacobian J(t,x) := %(t, x) are continuous in (¢,x);



and (3) z(t, to, zo) exists and is unique for all ¢ > to > 0 and
all zg € Q.

The system (1) is said to be contractive on §2 with respect
to a vector norm |- | : R™ — R if there exists 17 > 0 such
that

|z (¢, to,a) — z(t, to, )| < e_(t_t‘))"|a — b 2)

for all t > ty > 0 and all a,b € 2, i.e. any two trajectories
approach one another at an exponential rate 7). Note that this
implies in particular that (1) is incrementally stable, and under
our assumptions on € this also means that (1) is a convergent
system [29]. Contraction can be defined in a more general
way, for example with respect to a time- and space-varying
norm [14] (see also [9]).

We focus here on exponential contraction with respect to a
fixed vector norm because there exist easy to check sufficient
conditions, based on matrix measures, guaranteeing that (2)
holds. A vector norm | - | : R® — R, induces a matrix
measure [ : R"*™ — R defined by

1
w(A) :=lim —(||I +4]| - 1),

el0 €
where || - || : R™*™ — R, is the matrix norm induced by
the vector norm | - | [40]. For example, for the ¢; vector

norm, denoted | - |1, the induced matrix measure is p1(A4) =
max{ci(A),...,cn(A)}, where ¢;(A) := Aj; + 32,5 |44,
i.e., the sum of the entries in column j of A, with non-diagonal
elements replaced by their absolute values.

If the Jacobian of f satisfies

p(J(t,x)) < —n, forall z € Q and all ¢t > 0, 3)

then (2) holds for all t; > 0 (see [31] for a self-contained
proof).

Often it is useful to work with scaled vector norms [34],
[4]. Let | - |« : R™ — R, be some vector norm, and let p, :
R™*™ — R denote its induced matrix measure. If D € R™*"
is an invertible matrix, and | - |. p : R™ — Ry is the vector
norm defined by |z|..p := |Dz|, then the induced matrix
measure is /. p(A) = p(DAD™). For example, the matrix
measure induced by the Euclidean norm | - |2 is po(4) =
max{A: X € A{(A+ A")/2}}, where A{A} denotes the set
of eigenvalues of A. Hence,

pi2,0(A) = p2(DAD™Y)
=max{\: \ € A{(DAD™ + (DAD™YY)/2}}.
The next result describes an ISS property of contractive
systems with an additive input.
Theorem 1 ([7], Thm. A) Consider the system

z = f(t,z) + u(t), 4)

where y — f(t,y) is C' and f(t,0) = 0 for all t > t,
and u(t) is piecewise continuous. Fix some vector norm | - | :
R™ — R and suppose that (3) holds for the induced matrix

measure ((-). Then

t
2(t, to, x0)| < e =10 |0 | 4 / e 719 |u(s)| ds

to
for all t > to.

Ref. [3] has applied this property to derive a bound on the
error between trajectories of a contractive system (1) and those
of a “simpler” system. Here, we consider the specific case
where the vector field f(t,z) is time-varying and T-periodic
for some T' > 0, that is, f(t,2) = f(t + T, z) for all t > %,
and all z € Q. In this case every trajectory of (1) converges
to a unique periodic solution ~(¢) of (1) with period 7" [31].
This entrainment property is very important in applications
(see, e.g. [17], [31]). However, the proof of entrainment is
based on implicit arguments and provides no information on
the properties of the period trajectory (except for its period).
Here, we derive a bound for the difference between ~y(¢) and
the periodic solution «(t) of some “simpler” approximating
system. We also suggest suitable approximating systems.

III. BOUNDING THE DIFFERENCE BETWEEN TWO
PERIODIC TRAJECTORIES

The next result provides a bound on the distance between
a T-periodic trajectory of a contractive systems and a 7T-
periodic trajectory of some approximating system (AS).

Theorem 2 Consider the system (1). Suppose that f(t,x)
and J(t,x) are continuous in (t,x) and that f(t,x) is T-
periodic. Let | - | be some vector norm on R™ and u(-) its
induced matrix measure, and suppose that (3) holds. Let ~(t)
be the unique periodic trajectory of (1) with period T.
Consider another time-varying system

(5)
and suppose that g(t,y) is also T-periodic and that k(t) is a
T-periodic trajectory of (5) with k(t) € Q for all t € [0,T).
Define ¢ : Ry — Ry by c(a) = [ e "= f(s, k(s)) —
g(s,k(s))|ds. Then

(0) — ()] < S0

Y= g(tvy)

+c(t), forallt € [0,T]. (6)

Note that the bound here depends on the difference between
the vector fields f and g evaluated along the periodic trajec-
tory k(s) of the “simpler” y system. This is useful for example
when the y system is an asymptotically stable LTI system with
a sinusoidal forcing term, as then x(¢) is known explicitly.

Proof. Let z(t) := v(t) — x(¢). Then
2(t) = f(t,7 (1) = f(t (1) + u(t),
where u(t) := f(t,k(t)) — g(t, x(t)). Note that
Ft @) = [t m(t) = M(£)(7(t) — w(t))
= M(t)z(t),

where M (t) := [, J(t, s7(t)+(1—s)x(t)) ds. Using the sub-
additivity of the matrix measure to conclude that u(M(t)) <



—n, and using Thm. 1 gives
[2(t)] < e7™[2(0)] + c(t). )
Substituting ¢+ = T vyields |z(T)| < e~ "T|z(0)| + ¢(T). By
periodicity, z(T) = z(0), so |z(0)] < ¢(T)/(1 — e="7T),
Substituting this in (7) yields (6). m
The next example demonstrates a case where the bound (6)
is tight for t — oo.

Example 1 Consider the scalar system & = f(¢,z) := —x +
1 + sin(27t/T), with T > 0. Note that Q := [0,2] is an
invariant set of this dynamics, and that f is T-periodic. The
attracting T-periodic trajectory is

T?sin(27t/T) — 27T cos(2nt/T)

t)=1 .
() =1+ n? + T?

The Jacobian of f is J(z) = —1, so for any vector norm
the induced matrix measure satisfies p(J(x)) = —1. Consider

the AS y = —y, which is (vacuously) T-periodic, and admits
the T-periodic solution x(t) = 0, that belongs to ) for all ¢.
It is not difficult to show that for t = T — ¢, with € > 0 and
very small, the left- and right-hand sides of (6) become equal
as T' — oo. (]

By the definition of ¢(-),

ne(e) < (1= ™) max |f(t £(1) = g(t, £(8))]
for all & > 0, and combining this with (6) yields a simpler
(and less tight) bound.

Corollary 1 For all T > 0,
[v(T) = k()] < (1/n) max, |f(t, k(1) — g(t, (@) (8)

tel0,T
This is useful when one can establish a bound on the
difference between the vector fields f and g along the periodic
trajectory x of the AS. For the special case of the Lo-norm,
Corollary 1 can be obtained from the results in [22, Ch. 2].

The bound (8) demonstrates a tradeoff: if g is “close” to f
then the error f — g will be small, yet x may be an unknown
complicated trajectory (as we assume that f is a nonlinear
vector filed). On the other hand, if g is relatively simple (e.g.,
the vector field of an LTI system) then x may be known
explicitly yet that difference |f — g| may be large.

Thm. 2 and Corollary 1 provide a bound on the distance
of the unique T'-periodic trajectory of a contractive system
and some T'-periodic trajectory of an AS. The next step is to
determine a suitable AS.

From hereon, we consider a special case of a contractive
system with the form

&= [f(t,x) = F(z,u(t)) ©)

where u(t) is a given m-dimensional, T-periodic excitation.
We also assume from here on that all the conditions in Thm. 2
hold.

The first case to consider is the AS ¢y = 0 for which any z €
 is an equilibrium and thus a periodic solution. This yields

the following.

Corollary 2 Let c(z) := maxycjo,7) |F(2,u(t))]. For all T €
[0,T] and all z € Q,

e "

T
[v(r) — 2] < m/o e "T=9)|F(z,u(s))| ds

+ / e 19| F(z,u(s))| ds
0

<c/n.

(10)
Y

The bound (11) is known in the particular case of the Lo-
norm [22]. The following simple example demonstrates a case
where the bounds in Corollary 2 are tight.

Example 2 Consider the scalar system & = F(x,u) :=
—ax + b with @ > 0. Then v(¢t) = b/a =: e is a periodic
trajectory. This system is contractive with rate = a. The
bound (11) gives |e—z| < |—az+b|/a = |e—z| for any z € R,
so this bound is tight. ]

The next example demonstrates an application of Corol-
lary 2 to a nonlinear contractive system.

Example 3 The ribosome flow model (RFM) [28] is a non-
linear compartmental model describing the unidirectional flow
of particles along a 1D chain of n sites using n non-linear
first-order differential equations. Recently, the RFM has been
extensively used to model and analyze the sequential flow of
ribosomes (the particles) on groups of codons (the sites) along
the mRNA molecule during translation (see, e.g. [42], [19],
(18], [17], [26], [27], [25], [44], [43], [45D).

Consider the RFM with n = 2 and a time-varying initiation
rate ug(t), that is,

L'Cl = (]. — CEl)’U,O — )\11‘1(1 — 1‘2),

:].92 = )\1!171(1 — IL'Q) — )\21’2, (12)

where A1, Ay are positive constants. Suppose that ug(t) =
Ao + sin(27t/T), with A\g > 1, T > 0, i.e. the initiation
rate is a strictly positive periodic function with (minimal)
period T'. The state space here is {2 := [0, 1]2. The Jacobian
. o —’U,Q(t> — )\1(1 — $2) )\1371

of (12) is J(t,z) = M1 — ) Nz |
The off-diagonal terms are non-negative for any = € [0, 1],
so p1(J(t,x)) = max{—ug(t),—A2} for all ¢ > 0 and
all z € [0,1]2. Thus, the system is contractive with respect to
the /1 norm with contraction rate 1 := min{\g — 1, Ao} > 0.
Let v € [0, 1]? denote its unique T-periodic attractive solution.
Entrainment in mRNA translation is important as biological
organisms are often exposed to periodic excitations, for ex-
ample the periodic cell division process. Proper biological
functioning requires entrainment to such excitations [17].

Let 4o := + fOT up(s) ds = A\ and consider the AS

U1 =Ao(1 —y1) — My (1 —y2),

P2 = AMy1(1 — y2) — Aaye. (13)
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Fig. 1. The error |y(t) — e|1 (solid line) and the bounds (15) (dashed line)
and (16) (dotted line) derived from Corollary 2.

This system admits an equilibrium point

/
e = Aod —Aod2—A1 A +Vd Ao +Aode+ A1 A —Vd c (O 1)2
o1 2A1 A2 ’ ’
(14)

where d := 4)\%)\1)\2 + ()\0/\1 — )\())\2 — /\1)\2)2.
Here,

Fle,u(s)) = {()\0 +sin(27s/T))(1 —e1) — Arer (1 — 62)} 7

)\161(1 — 62) — )\262

and since e is an equilibrium point of (13), F'(e,u(s)) =
[(1—e1)sin(2rs/T) 0] Thus, (10) yields

() —eh <

(]. — 61)

e
1—e T

+(1—ey) / e 19| sin(27s/T)| ds
0

T
/ e "T=9)| sin(2rs/T)| ds
0
(15)
for all 7 € [0, T]. Furthermore,
|F(e,u(t))1 = (1 —e1)|sin(27t/T)| <1—e1
so (11) implies the simpler yet more conservative bound

V(7)) —elr < (1 —ex)/m,

Note that the bounds above can be computed analytically
so that we obtain considerable explicit information on the
periodic trajectory 7.

for all 7 € [0,T]. (16)

Fig. 1 illustrates the bounds on the periodic trajectory for
the case \g = 4, A\; = 1/2, Ay =4, and T' = 2. It may be seen
that these bounds indeed provide a reasonable approximation
for the ¢; distance between the unknown periodic trajectory
and the point e. (I

The next natural AS is an LTI system that is excited by the
original periodic input.

Corollary 3 Let e € ) denote the globally attractive equilib-
rium point of the unforced dynamics of (9), i.e. & = F(z,0).
Without loss of generality, assume that e = 0. Let A :=
%(0, 0), B:= 2—5(0,0), and consider the LTI AS

y = Ay + Bu := G(y, u). 17)

Let k(t) be the unique T-periodic trajectory of (17) and
assume that k(t) € Q for all t. Then for all T € [0, T,

e

T
_ - —n(T—s)
(7)) < T [ e ds

+ [ e ") E(s)|ds

S

(18)

< E(t
< mnax, |[E(®)|/7,

where E(t) := F(k(t), u(t)) — G(r(t), u(t)).

We emphasize again that the advantage of the bounds
here is that the integrand depends on the difference between
the vector fields F' and G evaluated along the solution x
of the LTI system (17). Note that our assumptions imply
that A is Hurwitz and thus, for any initial condition, y(t)
converges to the periodic trajectory «(t). In some cases, this
solution and the error bounds can be written explicitly. For
example, if w(¢) is a complex exponential then k() can
be easily computed using a Fourier transform and then a
bound on |F(k(t),u(t)) — G(k(t),u(t))|, t € [0,T], may be
straightforward to establish, as demonstrated in the example
below.

Example 4 Consider again the RFM with n = 2 and the
periodic initiation rate ug(t) = Ao + wu(t), with A\g > 1
and u(t) = sin(2nt/T). Again, let e be the unique equilibrium
of the system when the initiation rate is Ag (see (14)).
Let 6 := z—e. Then the linearized system is Sz = Adx+ Bu,

. L 7/\0 — )\1(1 — 62) )\161 L
with A := { M1 —e) CMer — Ao’ and B =
1-—

061 . Note that 111 (A) = max{—Xg, —A2} < 0, so, in
particular, A is Hurwitz. Thus, the AS is
y=A(y —e) + Bu=: G(y,u), u(t)=sin2nt/T). (19)
The difference between the vector fields evaluated along a
solution of the y system is
F(y,sin(2nt/T)) — G(y,sin(27t/T)) =

[Al(yl —e1)(y2 —e2) — (y1 —e1) SiH(QWt/T)]
—A(y1 —e1)(y2 — e2) '

isls)| = (sI — A)7'B, and let k(t) : R — R?

be the unique periodic trajectory of (19) defined for all —oco <
t < oco. For a complex number v, let Zv denote the argument
of v. Then

g1 (jw) | sin(wt + Zg1 (jw))
wlt) e = [lfn(a‘w)l sin(wt + ééz(fwﬂ} ’

Let §(s) == Fl(sq

with w := 27/T, and Corollary 3 implies
y(®) = £l < max [F(s(t), u(t)) = Gla(t), w(t)l/n

= (2M1]91(Gw)l[g2(Gw)| + g1 (Gw)[) /n (20)

where 1 := min{Ag — 1, A2} as before. Note that the bound
here depends on the frequency of the periodic excitation. The
more exact bound in (18) can be computed numerically.
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Fig. 2. Periodic trajectory ~(t) of the RFM (solid line) and the periodic
trajectory r(t) of the linearized system (dashed line) when ug(t) = 4 +
sin(27¢/T'). The equilibrium e for A9 = 4 is marked by a dot.
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Fig. 3. RFM in Example 4. The error |y(t) — x(¢)[1 (solid line) and the
bounds (18) (dashed lines) and (20) (dotted line).

For A\; = 1/2, Ay = 4, and T = 2, Fig. 2 shows the
equilibrium point when A\g = 4, the periodic trajectory when
the initiation rate is ug(t) = 4+ sin(27t/T"), and the periodic
trajectory of the linearized system. Fig. 3 illustrates the bounds
from Corollary 3. It may be observed that these bounds provide
a reasonable estimate of the error. (]

The bound (20) has some interesting implications. For
example, if §;(jw) = 0 for some w then (20) implies
that v(t) = k(t) for a sinusoidal excitation with frequency w.
Similarly, if lim,, o §1(jw) = 0 then (20) implies that for
a high frequency sinusoidal forcing term, « will approach &.
Note that the conclusions on « here are based on properties
of the LTI system. The next section uses this idea to derive a
new theoretical result on the response of contractive systems
to a sinusoidal input.

IV. CONTRACTIVE SYSTEMS ARE LOW-PASS FILTERS

We consider a contractive system with an additive input and
show that for a high-frequency sinusoidal input, the periodic
trajectory of the contractive system is very similar to that of
a suitable asymptotically stable LTI system. For the sake of
simplicity, we state this for the case of a scalar control.

Theorem 3 Consider the system & = f(x) + bu with scalar
input u(t) = acos(wt + ¢), and suppose that it admits a

compact and convex invariant state space ) C R™. Assume
that for some matrix measure induced by a norm | -

>

I (3f (z)) < —-n<0, forall zeq. (21)

Ox
Let v(-) : R — §Q be the unique, attracting, T = 27/w

periodic orbit of this system. Without loss of generality, assume
that the globally asymptotically stable equilibrium point' e €
Q of the unforced system & = f(x) is e =0. Let A := %(O),
and consider the AS
y = Ay + bu:= G(y,u). (22)

Let §(s) := (sI—A)~'b and let k(t) be the unique T-periodic
trajectory of (22), so that the ith coordinate of x(t) is

ki(t) = algi(jw)| cos(wt+d+ £gi (jw)), i = 1,...,n. (23)
Then

e (1) = (D) = O(1/2). (24)
Proof. For any T,
() = w(r)n < mase |F(s() — Aw()
< max O(ls(t)))- (25)
Since di(s] — A

g(s) = dot(sT — A)"

where adj denotes the adjugate, (23) implies that |k,(t)| =
O(1/w) for all ¢ and all ¢ € [0,T]. Combining this with (25)
completes the proof. m

Note that (26) implies that the linear system behaves as a
low-pass filter (LPF), in the sense that §(jw) — 0 as w — oo,
and thus the bound (24) implies that the contractive system is
also an LPF.

Example 5 We consider a basic model for an externally
driven transcriptional module that is ubiquitous in both biology
and synthetic biology (see, e.g., [6], [31]):

1 =u — dz1 + k1xe — ka(er — z2)x1,

&g = — k1xa + ko(er — z2) 1, 27

where 0, k1, ks, er > 0. Here x1(¢) is the concentration at
time ¢ of a transcriptional factor X that regulates a downstream
transcriptional module by binding to a promoter with con-
centration e(t) yielding a protein-promoter complex Y with
concentration xo(t). The binding reaction is reversible with
binding and dissociation rates ko and kp, respectively. The
linear degradation rate of X is §, and as the promoter is
not subject to decay, its total concentration, e, is conserved,
so e(t) = epr — x2(t) for all ¢ > 0. The input wu(t)
might represent for example the concentration of an enzyme
or of a second messenger that activates X, so we assume
that w(¢) > 0 for all ¢ > 0.

Trajectories of (27) evolve on [0, 00) x [0, ep]. For an input
satisfying 0 < wu(t) < ¢ for all ¢ > 0, the set 2 := [0, (¢ +

IExistence of e follows from (21).



kier)/d] x [0,er] is a convex and compact invariant set.

Ref. [31] has shown that (27) is contractive with respect
to a certain weighted L; norm. Indeed, the Jacobian of (27)

. | =0 —ka(er —x2) k1 + ke .f
is J(z) = ka(er — 22) ey — k| 5© for D :=
diag(d, 1), with d > 0,
_ —0—k (GT - xQ) (kl + leL’l)d
DJ(z)D™ ! = 2 . (28
(33) |: kg(eT — :L‘g)/d —kl — kQ!L‘l ( )

The off-diagonal terms here are non-negative, and this means

that for any d € (%, 1),

p1,p(J (@) < —n, for all [z :172]/ €9,
where 1 := min{k; (1—d),d+keer(1—d=1)} > 0. Thus, (27)

is contractive with respect to the scaled norm | - |1, p with
contraction rate 7.

Linearizing (27) yields y = G(y,u) = Ay + bu, with A :=
—0 — k/’geT kl
kgeT —kl
3(s) = (s — 4)~1b
_ 1 s+ k1
s2 + (5 + k1 + k‘geT)S + 0k k1

Since f(y) — Ay = kayrya [I —1], the bound (25) yields

,and b = O,so

ADO(7) = KOs < ke ot sa(Dma(t) [1 1] |

<ky(d+1) [ |k1(t)r2(t)].  (29)
Note that for any input u(t) = Y7, a; cos(w;t + ¢;) the
periodic trajectory (t) is explicitly known and thus the
bound (29) is explicit. Fig. 4 depicts the trajectories of both
the contractive system (27) and of the LTI system for the
parameters k1 = 1, ko = 5, § = 1, ep = 2, and the
excitation u(t) = cos(wt) for two different values of w.?
It may be seen that for a larger value of w the difference
between v and k decreases, as anticipated by (24). (]

V. DISCUSSION

Contractive systems entrain to periodic excitations. Ana-
lyzing the corresponding periodic solution of the contractive
system and its dependence on various parameters is an impor-
tant theoretical question with many potential applications. It
is known that such contractive systems posses a well-defined
frequency response leading to a nonlinear Bode plot [21],
however, computing this response is generally challenging as
it requires solving a partial differential equation. In this paper,
we developed approximation schemes for periodic solution
of a contractive system using an LTI system and, using
the ISS property of contractive systems, provided bounds on
the approximation error. An important advantage of these
bounds is that in some cases they can be computed explicitly.

2This control is not positive for all times, yet for the initial conditions in the
simulations the trajectory remains in a convex and compact region in which
the off-diagonal terms in (28) are non-negative and contraction holds.

6

Fig. 4. Trajectories ~ (solid line) and ~ (dashed line) for the system in
Example 5 for w = 1 (top) and w = 5 (bottom). Note the different scales in
the figures.

This also led to a new theoretical result on the behavior of
contractive systems with a sinusoidal additive input.

Interesting topics for further research include: (1) deriving
more theoretical results using the explicit bounds described
here; (2) the design of an excitation signal that yields a pre-
specified periodic trajectory for a contractive system. This is-
sue arises for example in synthetic biology, where an important
goal is to design programmable biochemical oscillators (see
e.g., [8], [10], [38], [41]), and this objective can be addressed
in part by the nonlinear Bode plots introduced in [21], [22];
(3) defining other systematic approaches to determining ap-
proximating systems, for example, by employing the classical
describing function method [13, Ch. 10.4]; and (4) the exten-
sion of the results presented here to more general classes of
dynamical systems. For example, systems that are contractive
for restricted classes of inputs [24], [23]. See also [20] for
a special class of infinite-dimensional systems that admit a
frequency response function, and [39] for analysis of a class
of systems where solutions converge to an equilibrium if the
excitation is sufficiently fast.
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