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ABSTRACT

Batteryless sensor nodes compute, sense, and communicate using
only energy harvested from the ambient. These devices promise
long maintenance free operation in hard to deploy scenarios, mak-
ing them an attractive alternative to battery-powered wireless
sensor networks. However, complications from frequent power
failures due to unpredictable ambient energy stand in the way of
robust network operation. Unlike continuously-powered systems,
intermittently-powered batteryless nodes lose their time upon each
reboot, along with all volatile memory, making synchronization
and coordination difficult. In this paper, we consider the case where
each batteryless sensor is equipped with a hourglass capacitor to
estimate the elapsed time between power failures. Contrary to prior
work that focused on providing a continuous notion of time for a
single batteryless sensor, we consider a network of batteryless sen-
sors and explore how to provide a network-wide, continuous, and
synchronous notion of time. First, we build a mathematical model
that represents the estimated time between power failures by using
hourglass capacitors. This allowed us to simulate the local (and
continuous) time of a single batteryless node. Second, we showÐ
through simulationsÐthe effect of hourglass capacitors and in turn
the performance degradation of the state of the art synchronization
protocol in wireless sensor networks in a network of batteryless
devices.
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1 INTRODUCTION

Recent advancements in micro-electronics have enabled harvesting
circuits that can efficiently convert and store ambient energy [13].
This led to the emergence of batteryless sensor nodes that can op-
erate by relying on ambient energy sources only [4, 16] which hold
promise for replacing existing battery-powered wireless sensor net-
works. A typical batteryless sensor is composed of several ultra
low-power electronic components: a harvesting circuit that targets
ambient sources such as solar or radio frequency, an energy reser-
voir (typically a tiny capacitor), an ultra low-power microcontroller
with an integrated non-volatile memory; e.g. TI MSP430 series with
FRAM [18], a communication circuitry such as a passive backscat-
ter radio [8] or an ultra low-power active radio [17], and several
low-power sensors. When the energy accumulated in the capacitor
is above a threshold, the microcontroller and the peripherals start
operating to sense the environment, to perform computation on
the data and to communicate with other devices. When the energy
level drops below the minimum operating voltage, this leads to a
power failure and the batteryless sensor dies. When enough energy
is accumulated in the capacitor again, the batteryless sensor starts
operating. Thus, batteryless sensors operate intermittently.

A power failure resets the volatile state of the batteryless sensor;
e.g. the contents of its stack, program counter, and registers are
lost. This prevents the progress of computation and makes existing
programs and libraries designed for continuously-powered devices
useless under intermittent power. There are several efforts that aim
to mitigate the effects of power failures to preserve the progress
of computation [1, 3, 5, 7, 9ś11, 15, 19, 22]. These solutions present
runtime libraries that backup the volatile state of the processor into
the nonvolatile memory so that the computation can be recovered
from where it left-off despite power failures. Moreover, they also
ensure that the backed-up state in the nonvolatile memory is always
consistent with the volatile state; i.e. they are always equal. It has
been shown that several prototype sensing applications can be
developed using these runtimes; such as intermittent actuation and
activity recognition [22], and greenhouse monitoring [5].
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Persistent notions of time: Providing a continuous notion of
time is critical to real-time, real world embedded computing appli-
cations. Unlike continuously-powered systems, the values of the
timer registers in microcontrollers are lost at each power failure
and intermittently-powered batteryless devices will lose knowledge
of the time upon each reboot. Recent work proposed zero-power
timekeepers that use remanence decay to measure the time elapsed
between power failures [6, 14]. One approach relies on calculating
the percentage of decayed memory cells in an SRAM array to esti-
mate the duration of a power failure. The second approach uses a
capacitor as an hourglass: when the device is on the capacitor is
charged to a specific voltage, when the device turns off the capacitor
slowly begins to dissipate, the elapsed time is estimated by mea-
suring how much the voltage decayed across the capacitor upon
reboot. The latter approach is shown to provide a finer grained
timing at the cost of additional hardware [6].

The problem statement: In this paper, we consider the case where
each batteryless sensor is equipped with a hourglass capacitor to
estimate the elapsed time between power failures. Therefore, each
batteryless sensor can build a continuous but local time notion;
namely a local clock, by combining its microcontroller’s clock to-
gether with its hourglass capacitorÐthe former is more precise
and stable but volatileÐused when the device is on; the latter is
less precise, unstable but persistent despite power failuresÐused to
measure death time. Contrary to the prior work that only focuses
on providing a continuous time notion for a single batteryless node,
we consider a network of batteryless sensors. We ask: how to pro-
vide not only a continuous but also a synchronous and global time
notion within this network where each node turns on and off at
different times and uses its local clock to measure time intervals.

Contributions: This paper provides two major contributions to
the state of the art. Our first contribution is to build a mathematical
model that represents the estimated time between power failures
by using hourglass capacitors. This allowed us to simulate the lo-
cal (and continuous) time notion of a single batteryless node. Our
second contribution is to showÐthrough simulationsÐthe perfor-
mance degradation of the state of the art synchronization protocol
in wireless sensor networks; namely Flooding Time Synchroniza-
tion Protocol (FTSP) [12], in a network of batteryless devices where
devices uses hourglass clocks to measure time intervals between
power failures. Our simulations indicate that even in a small net-
work of ten batteryless nodes, the synchronization performance
is approximately 16× worse than a network in which nodes are
always on and do not use their hourglass clocks.

2 A MATHEMATICAL MODEL FOR
HOURGLASS CLOCKS

Ideally, for a resistor-capacitor circuit with a DC source, the voltage
across a capacitor at time t0 + ∆t can be represented as

V (t0 + ∆t) = V (t0)e
−∆t
RC , (1)

where t0 is the time at which the capacitor is fully charged and
the stored energy starts to dissipate. Therefore, given V (t0), R and
C , the voltage value across the capacitor can be sampled and the
elapsed time since the capacitor is fully charged can be calculated

+

R1 R2

C
GPIO ADC

Figure 1: The experimental setup (also depicted in [6, Figure

4]) to sample elapsed time from a hourglass capacitor. We

used the following values for the components: R1 = 100Ω,

R2 = 10KΩ, C = 10 µF, 1n4007 diode. An Arduino evaluation

board with 12-bit ADC has been used for driving GPIO input

and measuring the voltage across the capacitor.

as

∆t = RC ln

(

V (t0)

V (t0 + ∆t)

)

. (2)

However, since the sampled voltage readings are subject to mea-
surement errors and also the accuracy of the measurement is de-
pendent on the energy stored in the capacitor, only an estimate of
the elapsed time can be obtained. Therefore, instead of the actual
∆t , the estimated elapsed time is represented by

∆̂t = RC ln

(

V (t0)

V̂ (t0 + ∆t)

)

, (3)

where V̂ (t0 + ∆t) denotes the inaccurate voltage reading.

2.1 Experimental Setup for Data Collection

In order to explore how an hourglass clock behaves in practice, we
used the experimental setup depicted in Figure 1Ðthis setup is also
presented in [6, Figure 4]. We used an Arduino with 12-bit ADC to
sample voltage readings across the capacitor. We programmed the
Arduino so that it executed the following loop: (i) the capacitor is
charged by driving a GPIO port to high; (ii) the corresponding port
is driven to low so that the voltage level across the capacitor starts
to decay; (iii) the timer interrupt is generated periodically at every
ten milliseconds; and (iv) the voltage level across the capacitor is
sampled and logged. The loop (i)ś(iv) is executed ten times to collect
data from several charge-discharge periods. By using the logged
voltage readings from each loop (i)ś(iv), we estimated the elapsed
time values by using (3).

Minimizing sumof squared errors:Wedenote the actual elapsed

time by x =
[

x1, . . . ,xN
]T

and the average of our corresponding es-

timates by t =
[

t1, . . . , tN
]T
. Therefore, we have (xi , ti ) pairs each

capturing the information that states when xi amount of seconds
have passed since the capacitor was fully charged, it is estimated
that an average value of ti seconds have passed by putting the
collected voltage measurements in (3). The absolute value of the
estimation error of the elapsed time; i.e. |ti − xi | is depicted in Fig-
ure 2. It can be seen that the accuracy of the estimation is degrading
as the voltage across the capacitor is depleted. In order to model
this observation analytically, we curve fit to find a representative
curve that captures the relationship between |ti − xi | and xi . The
curve fitting finds the best curve that minimizes sum of squared
errors (SSE)Ðas depicted by the red curve in Figure 2 (top), which is
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Figure 2: Top of the figure: the Y-axis denotes |ti − xi | and

the X-axis denotes xi . The red curve denotes the MATLAB’s

curve fitting by using a polynomial of order 9Ðit minimizes

sum of squared errors (SSE). Bottom figure: residuals from

the curve.

a polynomial of order 9. The residuals depicted in Figure 2 (bottom)
also justifies that the accuracy of this model degrades as the voltage
across the capacitor is depleted.

Maximizing the likelihood: Instead of curve fitting that consid-
ers error minimization, we can also provide a probabilistic perspec-
tive to maximize the likelihood of the observed values. To this end,
we follow the procedure described in [2]. As indicated previously,
the estimated elapsed time by using hourglass capacitors can be
represented by the following polynomial curve

y(xi ,w) = w0 +w1xi + . . . +wMxMi =

M
∑

k=0

wkx
k
i (4)

whereM is the order and w =
[

w0, . . . ,wM

]T
are the coefficients

of the polynomial. From the residuals depicted in Figure 2, by ob-
servation, we can assume that

|ti − y(xi ,w)| ∝ x2i . (5)

and in turn we can model variance of the fitted data by

Var [y(xi ,w)]) = x4i σ
2. (6)

Therefore, given the value of xi , the corresponding value of ti can
be assumed to have a Gaussian distribution where

p(ti |xi ) ∼ N

(

y(xi ,w),x4i σ
2
)

. (7)

Using this model and by assuming that each voltage measurement
are taken independently from each other, the likelihood function
can be described as

p(t|x) =

N
∏

i=1

N

(

y(xi ,w),x2i σ
2
)

=

N
∏

i=1

1
√

2πx2i σ
2
exp

{

−
(ti − y(xi ,w))2

2x2i σ
2

}

. (8)

Therefore, the log-likelihood function is given by

lnp(t|x) = −
N
∑

i=1

(ti − y(xi ,w))

2x2i σ
2

2

−
1

2

N
∑

i=1

lnx2i σ
2

−
N

2
ln(2π ). (9)

The value of w that minimizes the log-likelihood function can be
obtained by solving

w
∗
= argmin

w

N
∑

i=1

(ti − y(xi ,w))2

2x2i σ
2

. (10)

Using w
∗, the σ 2

∗ that maximizes the likelihood can be expressed
as

σ 2
∗ = argmin

σ 2
−

N
∑

i=1

(ti − y(xi ,w
∗))2

2x2i σ
2

−
1

2

N
∑

i=1

lnx2i σ
2 (11)

which can be found by solving

∂

∂σ 2

[

−

N
∑

i=1

(ti − y(xi ,w
∗))2

2x2i σ
2

−
1

2

N
∑

i=1

lnx2i σ
2

]

= 0. (12)

By straightforward algebraic manipulations, we reach

σ 2
∗ =

1

N

N
∑

i=1

(ti − y(xi ,w
∗))2

x2i
. (13)

2.2 A Probabilistic Model for Hourglass Clocks

In summary, a node can take a voltage sample at time t = t0 +

∆t to estimate the actual elapsed time ∆t . Based on our previous
derivations, this estimate can be represented by ∆̂t and it can be
modeled using the following distribution

∆̂t ∼ N

(

y(∆t ,w∗),∆t4σ 2
∗

)

. (14)

Alternatively, we can write

∆̂t = y(∆t ,w∗) + η (15)

where

η ∼ N

(

0,σ 2
η = ∆t4σ 2

∗

)

. (16)

3 CONTINUOUS LOCAL CLOCK MODEL

So far, we explored how an hourglass clock can be modeled ana-
lytically. In this section, we will provide an analytical model for
the continuous local clock of a batteryless node by combining the
microcontroller’s volatile timers together with the hourglass clock.
We assume that when a batteryless node has sufficient harvested
energy to turn on and operate, it measures the real-time intervals
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clock
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Figure 3:Maintaining the continuous and local clock by com-

biningmicrocontroller’s timer register and hourglass capac-

itor.When the batteryless sensor has sufficient energy to op-

erate, themicrocontroller is active and the timer register can

be used as a source of time.When the energy accumulated in

the capacitor of the batteryless sensor drops below a prede-

fined threshold, the hourglass clock is used to measure the

time between power failures.

by using the timers of its micro-controller. In general, the read-only
timer register is incremented with each periodical pulse of a crystal
oscillatorÐthe oscillator produces an event at time t(k), k ∈ N.

We follow the notation presented in [21]. Let C(t) denote the
timer register, which can be seen as the counter of these events and
defined as

C(t) =

∞
∑

k=0

u(t − t(k)) (17)

where u(t) is the unit step function defined as

u(s) =

{

0, t < 0,

1, t ≥ 0.
(18)

Table 1: Parameters used in MATLAB simulations

B f fdr if t W σ 2
∗

10ms 32 kHz ± 0.1 kHz 8 0.02

In this way the output of the timer register is the step shaped func-
tion, as shown in Figure 3 (top). The average oscillator frequency
in the interval ∀t ∈ [t(k), t(k + 1)] can be represented by

f (t) :=
1

t(k + 1) − t(k)
. (19)

Using the oscillator frequencies, the timer register C(t) can also be
represented by

C(t) =

⌊

∫ t

ton

f (v)dv

⌋

, (20)

where ton indicates the time at which the batteryless sensor started
operating. It should be noted that upon a power failure, the timer
register will reset.

3.1 Combining Timer Register and Hourglass
Clock

When the batteryless sensor runs out of energy, it measures the
duration between power failures by using the hourglass clock in
Figure 3, which is modeled in (15). Using the volatile timer register
and the persistent hourglass clock, any node can build a continuous
local clock that represents the local time, which can be modeled as
the following monotonously-increasing function

L(t) = L(tdie) + ∆̂toff +C(t)

= L(tdie) + y(∆toff,w
∗) + η +

⌊

∫ t

ton

f (v)dv

⌋

= L(tdie) + y(∆toff,w
∗) + η + (t − ton) f̄ , (21)

where L(tdie) denotes the value of the local clock just before the
device dies at time tdie due to a power failure, ∆̂toff denotes the
measured off time, C(t) denotes the time passed since the device
starts operating again and f̄ denotes the average frequency of the
device in the interval [ton, t]. We assume that the local clock L()

is maintained in non-volatile memory of the batteryless sensorÐ
L(tdie) is saved in non-volatile memory just before the batteryless
sensor dies at time tdie . Thus, the batteryless sensor node obtains
a continuous and local time notion by updating its local clock
according to (21). Figure 3 depicts how local clock of the batteryless
sensor operates.

4 NETWORK SYNCHRONIZATION USING
HOURGLASS CLOCKS

In this section, we consider the problem of how to synchronize the
network of batteryless sensors that are equipped with hourglass
capacitors as well as timer registers of their microcontrollers. We
assume that the batteryless sensors die and wake up at different
and arbitrary times and we consider the de-facto time synchroniza-
tion protocol in wireless sensor networks, namely Flooding Time
Synchronization Protocol (FTSP) [12], to synchronize them.
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4.1 A Brief Summary of FTSP

In FTSP, a predetermined or dynamically elected reference node
r floods its time information Lr periodically at every B seconds
into the network. Each direct neighbor v of the reference node
stores the synchronization point (Lv ,Lr ) as a pair (xi ,Yi ) in its
least-squares table (LST) of sizeW that holds the most recently
obtainedW pairs. It should be noted that upon receiving a new
synchronization message, the earliest pair is removed from LST, the
received pair is stored in LST. Node v assumes a linear relationship
between its local clock Lv and the received local clock Lr of the
reference node. It performs least-squares regression by using the
stored pairs in order to calculate the estimated local clock value of
the reference node. In least-squares regression, the real relationship
between Lr and Lv is assumed to be linear; i.e.

Lr = α + βLv . (22)

By using the pairs {(xi ,Yi ) ∈ LST |i = 0, . . . ,W − 1}, the estimated
slope β̂ and intercept α̂ is calculated as

β̂ = SxY /Sxx , α̂ = Y − β̂x (23)

where

x =
∑

xi/W , Y =
∑

Yi/W (24)

Sxx =
∑

(xi − x)2, SxY =
∑

(xi − x)Yi . (25)

Therefore, batteryless sensor v can estimate the local clock of the
reference at any time t by using its local clock Lv and the calculated
values α̂ and β̂ as

L̂r (t) = α̂ + β̂Lv (t). (26)

In order to provide network-wide synchronization, batteryless sen-
sor also sends the estimated clock value of the reference node;
i.e. L̂r to its neighboring nodes. Upon receiving this message, the
neighboring nodes follow the same procedure to estimate the clock
of the reference batteryless sensor. After each batteryless sensor
collects sufficient information, the whole network can estimate the
clock of the reference node; i.e. the network-wide synchronization
is established.

4.2 Simulations

In order to have a first look at the performance of FTSP in a bat-
teryless network, we relied on MATLAB simulations. In order to
simulate the local clocks of the batteryless sensor nodes, we used
our analytical model described in (21). We used the arbitrarily-
selected parameter setting shown in Table 1. We assumed that the
microcontroller’s timer register operates at 32 kHz with a random
drift of ±0.1 kHz, the batteryless nodes communicate with a fre-
quency of 10ms1 We did not take into account the message delays
occurring due to the communication among the batteryless sensors.
We generated arbitrary on and off times for each batteryless node
for each interval of 10ms length by using a uniform distribution.

We performed ten MATLAB simulations where each simulates
500 flooding rounds for FTSP. Figure 4 presents the average syn-
chronization errors for the nodes 2, 5, 8 and 10 on a line topology

1This can be seen as impractical in a real-world setting but even in this ideal setup, it
is possible to get an intuition about the distortion of synchronization due to hourglass
clocks.

network during these simulations. In order to explore how hour-
glass clocks and in turn the death time of the nodes effect the
synchronization accuracy, we simulated two cases: (i) the nodes die
and wake-up arbitrarily and use their hourglass clocks to measure
the intervals between power failures as well as microcontroller’s
timer counter to measure time intervals when they are on; (ii) the
nodes are always on and they use their microcontroller’s timer
counter only to measure time intervals. It can be observed that as
the distance to the reference node increases, the synchronization
accuracy degrades for both cases. However, the inaccuracy and
instability of the hourglass clocks have a multiplicative effect on
the synchronization accuracy; in particular for the far-away nodes.

As can also be observed from Figure 5, which depicts the max-

imum synchronization error during our simulations, batteryless
node 10 has approximately 16× performance degradation. Our sim-
ulations indicate that even in a network of small size in diame-
ter exhibits a poor synchronization performance with hourglass
clocksÐwith a communication frequency of 10ms, the batteryless
node at the end of the line topology had a synchronization error of
35ms. In the setting where batteryless sensors do not die and oper-
ate continuously as in wireless sensor networks, node 10 exhibited
a synchronization error of approximately 2ms.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we considered a batteryless sensor network where
each node was equipped with an hourglass capacitor to estimate
the elapsed time between power failures. We built a mathematical
model that represents the elapsed time and we showedÐthrough
simulationsÐthe performance of the state of the art multi-hop syn-
chronization protocol in wireless sensor networks when hourglass
capacitors are used to measure time.

Since we are unaware of a real networking setup for battery-
less sensors operating intermittently, future work can target the
real-world implementation of the proposed ideas and the evalua-
tion by considering actual values rather than simulations. More-
over, other protocols for batteryless sensors, such as proportional-
integral controller-based time synchronization [20] can also be
implemented by using the hourglass clocks and their performance
can be evaluated by using the analytical clock model proposed in
this article.
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Figure 4: The evolution of the average estimation errors of the nodes 2, 5, 8 and 10 on a line topology network. The figures plot

when the nodes are continuously powered and they do not use hourglass clocks (depicted as w/0 hourglass clock) and when

the nodes are intermittently powered and they use their hourglass clocks to measure time interval between power failures

(denoted as w. hourglass clock).
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Figure 5: The maximum synchronization error to the reference node (a) when batteryless nodes use their hourglass clocks

together with their microcontrollers’ timers (left); (b) when batteryless nodes do not die due to power failures and use their

microcontrollers’ timers only.

REFERENCES
[1] Naveed Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instrumenta-

tion for Transiently-powered Embedded Devices. In Proc. IPSN (April 18ś20,).
ACM/IEEE, Pittsburgh, PA, USA.

[2] ChristopherM. Bishop. 2006. Pattern Recognition andMachine Learning. Springer.
[3] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable

Intermittent Programs. In Proc. OOPSLA (Oct. 30 ś Nov. 4). ACM, Amsterdam,
Netherlands, 514ś530.

[4] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things. In Proc. SenSys (Nov. 6ś8). ACM, Delft, The Netherlands,
19:1ś19:13.

[5] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Inter-
mittently Powered Batteryless Sensors. In Proc. SenSys (Nov. 6ś8). ACM, Delft,
The Netherlands.

[6] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb,
Kevin Fu, Wayne P. Burleson, and Jacob Sorber. 2016. Persistent Clocks for
Batteryless Sensing Devices. ACM Transactions onn Embeddded Computing



On the Accuracy of Network Synchronization

Using Persistent Hourglass Clocks ENSsys ’19, November 10, 2019, New York, NY, USA

Systems 15, 4 (Aug. 2016), 77:1ś77:28.
[7] MatthewHicks. 2017. Clank: Architectural Support for Intermittent Computation.

In Proc. ISCA (June 24ś28). ACM, Toronto, ON, Canada, 228ś240.
[8] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall,

and Joshua R. Smith. 2013. Ambient Backscatter: Wireless Communication out
of Thin Air. In Proc. SIGCOMM (Aug. 12ś16,). ACM, Hong Kong, China.

[9] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Proc. PLDI (Aug. 13ś17). ACM,
Portland, OR, USA, 575ś585.

[10] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent
Execution without Checkpoints. In Proc. OOPSLA (Oct. 22ś27). ACM, Vancouver,
BC, Canada, 96:1ś96:30.

[11] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2018. Adaptive Dynamic Check-
pointing for Safe Efficient Intermittent Computing. In Proc. OSDI (Oct. 8ś10).
USENIX, Carlsbad, CA, USA.

[12] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. 2004. The Flood-
ing Time Synchronization Protocol. In Proc. SenSys (Nov. 3ś5). ACM, Baltimore,
MD, USA, 39ś49.

[13] Ufuk Muncuk, Kubra Alemdar, Jayesh D. Sarode, and Kaushik Roy Chowdhury.
2018. Multiband Ambient RF Energy Harvesting Circuit Design for Enabling
Batteryless Sensors and IoT. IEEE Internet of Things Journal 5, 4 (2018), 2700ś2714.

[14] Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber, Wayne P.
Burleson, and Kevin Fu. 2012. TARDIS: Time and Remanence Decay in SRAM
to Implement Secure Protocols on Embedded Devices Without Clocks. In Proc.
Security Symposium (Aug. 8ś10). USENIX, Bellevue, WA, USA, 36ś36.

[15] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support
for Long-running Computation on RFID-scale Devices. In Proc. ASPLOS (March
5ś11). ACM, Newport Beach, CA, USA.

[16] Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexander V. Mamishev,
and Joshua R. Smith. 2008. Design of an RFID-based Battery-free Programmable
Sensing Platform. IEEE Transactions on Instrumentation and Measurement 57, 11
(Nov. 2008), 2608ś2615.

[17] Texas Instruments. 2019. CC1101 Low-Power Sub-1 GHz RF Transceiver. http:
//www.ti.com/lit/ds/symlink/cc1101.pdf. Last accessed: September 2019.

[18] Texas Instruments. 2019. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx Family User’s Guide. http://www.ti.com/lit/ug/slau367o/slau367o.
pdf. Last accessed: September 2019.

[19] Joel VanDerWoude andMatthewHicks. 2016. Intermittent ComputationWithout
Hardware Support or Programmer Intervention. In Proc. OSDI (Nov. 2ś4,). ACM,
Savannah, GA, USA.

[20] Kasım Sinan Yildirim, Henko Aantjes, Przemysław Pawełczak, and Amjad Yousef
Majid. 2018. On the Synchronization of Computational RFIDs. IEEE Transactions
on Mobile Computing 18, 9 (Sept. 2018), 2147ś2159.

[21] Kasım Sinan Yıldırım, Ruggero Carli, and Luca Schenato. 2018. Adaptive
ProportionalśIntegral Clock Synchronization in Wireless Sensor Networks. IEEE
Transactions on Control Systems Technology 26, 2 (March 2018), 610ś623.

[22] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemysław Pawełczak, and Josiah Hester. 2018. InK: Reactive kernel for tiny
batteryless sensors. In Proc. SenSys (Nov. 4ś7). ACM, Shenzhen, China, 41ś53.


	Abstract
	1 Introduction
	2 A Mathematical Model for Hourglass Clocks
	2.1 Experimental Setup for Data Collection
	2.2 A Probabilistic Model for Hourglass Clocks

	3 Continuous Local Clock Model
	3.1 Combining Timer Register and Hourglass Clock

	4 Network Synchronization Using Hourglass Clocks
	4.1 A Brief Summary of FTSP
	4.2 Simulations

	5 Conclusions and Future Work
	Acknowledgments
	References

