Batteries
Not Included

Getting things done amid frequent power failures, batteryless intermittent
research is rethinking how we build computing systems and paving
the way to a sustainable and scalable digital future. The next trillion devices

might be a little weird.

By Josiah Hester and Jacob Sorber

DOI: 10.1145/3351474

or those of you just emerging from decades of cryosleep, this is where things stand.
We don’t have colonies on Mars or flying cars. But we do have (a lot of) smarter,
prettier phones; we have rebranded “ubiquitous computing” and “smart dust”—now
called the Internet of Things (I0T); and we have a battery problem.

Batteries are at once the best friend and the worst enemy of the IoT—having both fueled
myriad advances over the last two decades in mobile computing, and yet severely limited
the scale, scope, and consequences of our deployments. Batteryless and energy harvesting
computing is a recent, exciting alternative promising decade-long maintenance-free
deployments, but also requiring us to fundamentally change how we design very small

computing systems.

For decades, batteries have sup-
ported our mobile computing ad-
vances, enabling countless new appli-
cations and giving our devices stable
power for hours or days—long enough
to be useful between charges. But bat-
teries also add size, weight, and cost;
present safety and environmental
hazards; require special charging and
protection circuitry; and wear out af-
ter 3-5 years, even when regularly and
carefully recharged. Replacing and
disposing of trillions of batteries every
few years is inconvenient, expensive,
and irresponsible.

RIGHTS L | P Ha4p0L.26-NO1

So, what should we do? We would
love better batteries, but battery tech-
nologies have traditionally improved
slowly. We wish physicists and chem-
ists the best of luck, but we’re not
willing to wait a decade or two. In-
stead, we have decided to build mo-
bile devices that don’t need batteries.
Devices that survive using harvested
energy, store that energy in small ca-
pacitors, and work opportunistically
maintenance-free for decades. Devic-
es that make the most of energy when
it is available and get useful work
done in the face of frequent power

failures. If successful, batteryless
computing will make it possible to
deploy maintenance-free untethered
devices that communicate and gather
data in hard-to-reach places.

It sounds great, but it’s compli-
cated. With stable battery power, op-
erating systems, software libraries,
and applications have moved from
desktops to laptops and phones with
only minor incremental changes. In-
side, smartphones still look a lot like
little laptops, but unreliably powered
batteryless computing devices are
fundamentally different from their

23

feature

ancestors. Energy harvesting is in-
consistent, energy storage is scarce,
power failures are inevitable, and exe-
cution is often intermittent, as shown
in Figure 1.

Intermittence changes things.
Power failures are no longer rare ex-
ceptions. They are the rule. The devel-
oper is trying to get useful work done,
in spite of these interruptions. Simple
concerns like keeping time, making
forward progress, and keeping data
structures consistent are challenging.
Power fluctuations are difficult to pre-
dict, and outages can last for seconds
or hours. A device’s run-time behavior
determines how much energy it will
harvest—meaning application or sys-

tem decisions like when to schedule
tasks, how to use low power modes,
and when to communicate will impact
both how much energy the device will
use and how much it will harvest. In
the face of this extra complexity, ap-
plication developers often struggle to
predict how their programs will func-
tion in the wild and anticipate the
problems that are likely to occur.

Our goal is to help bring battery-
less intermittent computing out of its
infancy. For decades, we’ve built tools,
languages, algorithms, and hardware
platforms that assume power is reli-
able and outages are rare. When it
comes to developer support for bat-
teryless systems, we're just getting

Figure 1. A typical intermittent execution pattern for an energy-harvesting

batteryless device.

Energy availability varies, depending on environmental conditions and device
behavior, producing execution opportunities separated by power outages of

unknown length.

A Execution

Stored Energy

Turn off Threshold

Time

RIGHTS LI N K

started. We envision a future where
amateurs can confidently program,
test, and deploy batteryless intermit-
tent applications. Where researchers
and application designers have time-
tested hardware platforms, software
techniques, tools, runtime systems,
and programming abstractions that
allow them to focus on the logic of
their programs and the goals of their
applications, instead of worrying
about the next power outage. In the
last few years, we have seen a lot of
progress—a good start—but this ar-
ticle is really a call for more help to de-
velop the next generation of platforms
and tools, languages and runtimes,
and intermittent networks that will
fuel the batteryless revolution.

PLATFORMS AND TOOLS

New research communities thrive and
grow when they have usable platforms
and tools that simplify development
and exploration.

Hardware. A batteryless applica-
tion’s success often depends on hard-
ware design decisions or tuning. We
have come a long way since the early
days of computational RFIDs [1].
CRFIDs are simple and completely
dependent on being close to an RFID
reader, and this limits the applications
they can support. As we have explored
other energy sources (light, vibration,
motion, and thermal gradients) and
the applications they enable, our hard-

XRDS - FALL 2018 - VvOL.26 -+ NO.1

Image by HelloRF Zcool / Shutterstock.com

RIGHTS

ware is now more sophisticated. We
can federate a device’s energy storage
[2]—providing separate prioritized en-
ergy storage capacitors for processing
and individual peripherals—to make
energy harvesting more efficient and
programming simpler.

Small capacitors charge more
quickly for short bursts of low energy
peripheral usage (for example sens-
ing acceleration). Larger capacitors
charge slowly, but support longer
compute tasks and power-hungry pe-
ripherals like a radio or gesture sen-
sor. With federated energy, a device
can support more peripherals with-
out sacrificing availability. By making
this energy federation dynamic and at
runtime, platforms like Flicker [3] and
Capybara [4] let programmers decide
on the fly what is important and what
to save energy for.

Developing effective batteryless
hardware has traditionally required
an electrical engineering background.
Developers built custom hardware
and specialized highly tuned soft-
ware. The learning curve is still steep,
but we’re trying to make it easier with
Flicker—a flexible, modular hardware
platform inspired by Arduino shields
for prototyping batteryless applica-
tions. Flicker provides a general pe-
ripheral interface that simplifies soft-
ware development and makes it easier
to extend support for other hardware
peripherals.

(43026 - NO.1

With Flicker, a designer can evalu-
ate the hardware requirements for
the application they want to build (for
example, environmental monitor-
ing), choose the Flicker peripherals
they want to use (for example, a ra-
dio transceiver, moisture sensor, and
humidity sensor), then plug in those
modules and an energy harvester into
the main Flicker board to immediately
start writing code. By shortening de-
sign time from weeks to minutes by
enabling rapid prototyping, Flicker
broadens the reach of batteryless sens-
ing, lowering the barrier to entry, and
reduces the startup costs.

Timekeeping. Time is one of the
most important (and taken for grant-
ed) resources in any computing sys-
tem. Accurate and available timekeep-
ing underlies most system services
and security features of modern appli-

cations. One of the challenges for bat-
teryless computing is keeping track
of time across power failures. We’ve
learned to keep time, even in the face
of power outages. Once the device
dies, and it will, all the volatile memo-
ry, and all the internal clocks are reset.
This means any previous timestamps
on data have no reference point since
the internal clock will start back at
zero. To fix this, we can use “electronic
hourglasses” to keep time while the
batteryless computing device is in fail-
ure [5]. These electronic hourglasses
are just a capacitive element that is
“turned over” every time the device
reboots. After boot, our batteryless
computer polls the hourglass to see
how much time has elapsed since it
died, then resets and maintains the
hourglass until the next reboot, allow-
ing persistence of time through power
failures.

Emulation/experimentation. ~ We
have found ways to debug intermit-
tent programs and compare their
performance in a rigorous way. With
traditional computing platforms,
comparing different algorithms is
straightforward. We can measure the
speed, energy consumption, or anoth-
er metric, and for the same workload
the results will be comparable. When
we compare energy harvesting sys-
tems the intrinsic attributes of energy
harvesting complicate matters.

The amount of power that you

25

feature

harvest from a solar panel (or other
harvester) depends on how much en-
ergy is already stored. So, the power
depends on the supply voltage. If two
programs consume different amounts
of energy, those two programs will
harvest different amounts of energy.
So your harvesting efficiency depends
on your program behavior. When light
hits a solar panel, it produces a func-
tion that describes how much harvest-
ed current will flow at each capacitor
voltage. We can model or record these
functions and emulate them using
Ekho [6], which gives us repeatable
experimentation and accurate emula-
tion of energy harvesting conditions.
Even better, digitized representations
of energy harvesting conditions in
South Carolina can be emailed to re-
searchers in Chicago for testing and
the results will be the same.

LANGUAGES, RUNTIMES,
AND OPERATING SYSTEMS
Understanding the operation of a
program through intermittent power
failures is a cognitive burden on the
developer. Intermittent operation is
not just difficult for the machine, the
humans programming them also have
to wrap their heads around complex
bugs, stale data, and timing errors.
Execution on a batteryless device con-
sists of harvesting energy for a rela-
tively long time, then a short execu-
tion, followed by a power failure once
the supply falls below the processors’
operating voltage. Once this power
failure happens, the clock is set back
to zero, all the contents of RAM are
lost, and registers and stack are reset.
Eventually, once enough energy has
been harvested, the program will re-
start back at main. The problem is this
power failure could occur between any
two lines of code. Despite advances in
tooling and hardware, developers still
find programming batteryless devices
very challenging and nonintuitive.
Composing programs for batteryless,
intermittently powered devices still
requires in-depth knowledge of hard-
ware and energy harvesting behaviors.
Checkpointing. We expect a pro-
gram to execute line by line, with in-
structions quickly following one after
another. For batteryless sensors that
fail 10 times a second, our execution

RIGHTS LI N K

will be hindered by numerous inter-
ruptions and restarts. The first ap-
proach we tried was to save the pro-
gram state right before a power failure,
then restore that state once the device
turns back on. Mementos [7],the first
runtime checkpointing tool for bat-
teryless devices, used a compiler pass
to insert energy checks and checkpoint
logic throughout the program code.
After a power failure, the most recent
checkpoint was restored, and program
execution continued on normally.
Many researchers have since improved
on Mementos, making checkpoints
smaller, avoiding unnecessary check-
points, and saving program state more
strategically—all statically or dynami-
cally checkpointing some subset of
program state to make sure a program
is always making forward progress.
Task-based languages. Checkpoint-
ing based approaches are not the only
way to make intermittent program-
ming easier and more efficient. Check-
pointing approaches sacrifice over-
head (in terms of memory impact and
speed)to simplify conversion of code to
the intermittent application space. An
alternative approach is to wrap func-
tionality into discrete “tasks” that are
linked together to specify control flow
and data flow. Instead of checkpoint-
ing, this model asks programmers to
bear part of the work of controlling for
intermittency by organizing or rewrit-
ing their program into atomic “tasks”
and specifying how the “task graph”
behaves. Task-based languages incur
much lower overhead because they
save less data. Data dependencies are

Today batteryless
networks don’t

exist, because

we don’t know

how to effectively
coordinate and
synchronize multiple
intermittently-
powered devices.

explicit and defined at compile time,
allowing a task-based system to focus
more energy on scheduling high-prior-
ity tasks and maximizing useful work
in spite of power failures.

Timing failures. No matter the ap-
proach, fixating only on forward prog-
ress can be a mistake. Continuing
where you left off after a power failure
is not always the best thing for an ap-
plication. After a long power failure,
old sensor data may no longer be rel-
evant (for example, motion readings
in an activity detection application).
Computing on stale data is a waste of
computing time and precious energy.
The task-based language Mayfly [8]
is a response to this. Mayfly asks pro-
grammers to define a task graph, link-
ing tasks such as “sense temperature”
with “compute average” and “send
data.” These links are then annotated
with soft timing requirements, for ex-
ample, requiring that any data from
the sensor must be less than 10 sec-
onds old to send over the radio. May-
fly captures the relationship between
time and data that checkpointing and
forward-progress focused systems do
not; sometimes forward progress is
not enough, because time passes dur-
ing power failures.

INTERMITTENT NETWORKS

Today batteryless networks don’t ex-
ist, because we don’t know how to ef-
fectively coordinate and synchronize
multiple intermittently-powered de-
vices. Batteryless devices may have
only enough energy stored up to send
or receive a few packets, long net-
work conversations and long-distance
transmissions may be infeasible. A
node may not have the energy to com-
municate at a particular time, and a
node’s sense of time will also often be
too inaccurate for low-power proto-
cols, like Bluetooth low energy (BLE),
that rely on tight time synchroniza-
tion.

The future of intermittent devices
hinges on how well they can com-
municate, and in order to teach them
to communicate we need to rethink
some fundamental assumptions
about how low-power networks work.

Listening is expensive, so low-pow-
er networks listen periodically or on
a set schedule (TDMA) to avoid listen-

XRDS : FALL 2019 - VOL.26 - NO.1

ing to the channel as much as pos-
sible. With frequent power outages
and imprecise timekeeping, intermit-
tent devices have trouble sticking to a
precise schedule, and they can’t afford
the energy that BLE spends on neigh-
bor discovery. When batteryless de-
vices communicate with active radios,
they simply transmit packets blindly,
hoping that an always-listening base
station will receive them. Spray-and-
pray networking is simple but under-
whelming, limiting us to one-hop to-
pologies, power-hungry base stations,
and possible collision problems as the
number of transmitting nodes grows.

On the other hand, with low-power
signal-detection circuits and wake-up
radios, best-effort synchronization,
and protocols that tolerate and adapt
to timing errors we hope for more flex-
ible and efficient batteryless networks.

Backscatter-based communication
[9], used by RFID tags, is a promising
alternative—using a radio frequency
source to provide both power and
communication (and synchroniza-
tion). Communication requires less
power and synchronization is straight-
forward, but backscatter requires in-
stalled infrastructure that may not be
universally available. Also communi-
cation range is limited and the device
needs to be close to a transmitter (es-
pecially if we want the radio frequency
signal to power the device). It is also
unclear how backscatter techniques
will scale to large numbers of devices
as communication ranges increase.

WHAT’S NEXT?
Hopefully, you're now excited about
batteryless intermittent computing.
We hope you're wondering how you
can get involved. We’ve already men-
tioned several key research areas, but
let’s finish with a few of the open re-
search topics that we’re excited about.
Reprogramming. While we're de-
signing technologies that can be de-
ployed for decades, we would be naive
to think these devices won’t, at times,
need a software update. Reprogram-
ming and retasking devices in the
field is challenging even with reliable
power, and none of the solutions that
exist are suitable for the energy and
network constraints that are typical of
batteryless devices.

RIGHTS L | P Ha4p0L.26-NO1

Learning, inference, and adapta-
tion. Batteryless devices will experi-
ence a wide range of energy and envi-
ronmental conditions, and they will
be tasked with interpreting complicat-
ed signals and making sense out of the
world around them. Will batteryless
intermittent devices take advantage
of the recent machine learning wave?
The standard approach of sending
large amounts of raw data to the cloud
for processing will likely not be practi-
cal. How much can we learn and infer
on such scant resources? It’s difficult
for developers to predict what con-
ditions their applications will meet
when deployed. Can our devices learn
from their mistakes in the field, and
learn how to effectively adapt to meet
their changing constraints?

Sharing the load. Leaving batteries
behind significantly lowers the cost
of individual devices, leading to more
dense deployment, and potentially
leading to the trillion device Internet-
ofThings. As these devices become
ever more closely integrated into the
physical world, and networked with
each other, opportunities for these de-
vices to work together become more
apparent. Challenges remain in devel-
oping new programming models that
share the computational load across
this sensing fabric This becomes even
more difficult as the heterogeneity of
devices and applications increases. Ab-
stractions that gracefully share hard-
ware and software resources across
the swarm, but do not overburden the
developer will need to be created.

Securing a trillion devices. Battery-
free devices open up exciting new appli-
cation domains in health, space, and
infrastructure monitoring because of
the promise of long maintenance free
lifetimes. However, these applications
are sensitive in terms of privacy and
security. Wearable body health net-
works must safeguard a patient’s data
at all times, but with limited energy.
Infrastructure monitoring provides
the sensor data that helps building
managers make decisions; if these sen-
sors are wrong or compromised, poor
decision-making follows. It is not clear
what are the best strategies for secur-
ing the smallest and most energy-poor
computational devices that are easily
physically accessed. Challenges exist

in building secure clocks, attestation
protocols, sensor spoofing resilience,
and defense against energy-based de-
nial of service attacks. Providing se-
curity through intermittent execution,
however, will enable scale-up into the
most impactful applications and re-
search domains.

So, welcome to 2019. There’s work
to be done. We hope you’ll help us
solve some of these issues on our way
to the next trillion devices.

Reference s

[1] A.N.Parks, A.P.Sample, Y. Zhao, and J. R. Smith.
Awireless sensing platform utilizing ambient RF
energy. In Proceedings of the 2013 IEEE Radio and
Wireless Symposium. IEEE, 2013, 331-333.

[2] HesterJ., Sitanayah L., and Sorber J. Tragedy of
the coulombs: Federating energy storage for tiny,
intermittently-powered sensors. In Proceedings of
the 13th ACM Conference on Embedded Networked
Sensor Systems [SenSys ‘15). ACM, 2015, 5-16.

[3] HesterdJ.and Sorber J. Flicker: Rapid prototyping for
the batteryless internet-of-things. In Proceedings
of the 15th ACM Conference on Embedded Network
Sensor Systems [SenSys ‘17). ACM, 2017, 1-13.

[4] Colin A, Ruppel E., and Lucia B. Areconfigurable
energy storage architecture for energy-harvesting
devices. In Proceedings of the 23rd International
Conference on Architectural Support for
Programming Languages and Operating Systems
[ASPLOS 18). ACM, 2018, 767-781.

[S] HesterJ, Tohias N., RahmatiA., Sitanayah L.,
Holcomb D., Fu K., Burleson W.P., and Sorber J.
Persistent clocks for batteryless sensing devices.
ACM Trans. Embed. Comput. Syst. 15, 4 (20186]).

[6 HesterdJ. ScottT., and Sorber J. Ekho: realistic
and repeatahle experimentation for tiny energy-
harvesting sensors. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems
[SenSys ‘14). ACM, 2014, 330-331.

[7] Ransford B., Sorber J., and Fu K. Mementas:
System support for long-running computation
on RFID-scale devices. In Proceedings of the 16th
International Conference on Architectural Support
for Programming Languages and Operating Systems
[ASPLOS XVI). ACM, 2011, 159-170.

[8] HesterdJ., StorerK., and Saorber J. Timely execution
onintermittently powered batteryless sensors.
In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems (SenSys ‘17].
ACM, New York, 2017.

[9] VarshneyA., Harms 0., Pérez-Penichet C., Rohner
C.,Hermans F, and Voigt T. LoRea: A backscatter
architecture that achieves a long communication
range. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems [SenSys 17).
ACM, New York, 2017.

Biographies

Josiah Hester is an assistant professor of computer
engineering at Northwestern University and director of
Ka Moamoa, a mobile computing lab. Hester is passionate
aboutinvolving Native and Indigenous people in STEM.
Follow him at josiahhester.com and @ProfJosiah on
Twitter.

Jacob Sorber is an associate professor of computer
science at Clemson University, a batteryless computing
evangelist, and leader of the PERSIST lab, working for a
world with fewer wires and fewer battery changes. Follow
him online at www.jacobsorber.com.

2019 Copyright held by author.
Publication rights licensed to ACM
1528-4972/19/09 $15.00

27

