
23XRDS  •  F A L L 2 0 1 9 •  V O L . 2 6 •  N O . 1

failures. If successful, batteryless 

computing will make it possible to 

deploy maintenance-free untethered 

devices that communicate and gather 

data in hard-to-reach places.

It sounds great, but it’s compli-

cated. With stable battery power, op-

erating systems, software libraries, 

and applications have moved from 

desktops to laptops and phones with 

only minor incremental changes. In-

side, smartphones still look a lot like 

little laptops, but unreliably powered 

batteryless computing devices are 

fundamentally different from their 

F
or those of you just emerging from decades of cryosleep, this is where things stand. 
We don’t have colonies on Mars or flying cars. But we do have (a lot of) smarter, 
prettier phones; we have rebranded “ubiquitous computing” and “smart dust”—now 
called the Internet of Things (IoT); and we have a battery problem.

Batteries are at once the best friend and the worst enemy of the IoT—having both fueled 
myriad advances over the last two decades in mobile computing, and yet severely limited 
the scale, scope, and consequences of our deployments. Batteryless and energy harvesting 
computing is a recent, exciting alternative promising decade-long maintenance-free 
deployments, but also requiring us to fundamentally change how we design very small 
computing systems.

For decades, batteries have sup-

ported our mobile computing ad-

vances, enabling countless new appli-

cations and giving our devices stable 

power for hours or days—long enough 

to be useful between charges. But bat-

teries also add size, weight, and cost; 

present safety and environmental 

hazards; require special charging and 

protection circuitry; and wear out af-

ter 3–5 years, even when regularly and 

carefully recharged. Replacing and 

disposing of trillions of batteries every 

few years is inconvenient, expensive, 

and irresponsible.

So, what should we do? We would 

love better batteries, but battery tech-

nologies have traditionally improved 

slowly. We wish physicists and chem-

ists the best of luck, but we’re not 

willing to wait a decade or two. In-

stead, we have decided to build mo-

bile devices that don’t need batteries. 

Devices that survive using harvested 

energy, store that energy in small ca-

pacitors, and work opportunistically 

maintenance-free for decades. Devic-

es that make the most of energy when 

it is available and get useful work 

done in the face of frequent power 

Getting things done amid frequent power failures, batteryless intermittent 
research is rethinking how we build computing systems and paving  
the way to a sustainable and scalable digital future. The next trillion devices 
might be a little weird.

By Josiah Hester and Jacob Sorber
DOI: 10.1145/3351474

Batteries  
Not Included



24

feature

XRDS  •  F A L L 2 0 1 9 •  V O L . 2 6 •  N O . 1

started. We envision a future where 

amateurs can confidently program, 

test, and deploy batteryless intermit-

tent applications. Where researchers 

and application designers have time-

tested hardware platforms, software 

techniques, tools, runtime systems, 

and programming abstractions that 

allow them to focus on the logic of 

their programs and the goals of their 

applications, instead of worrying 

about the next power outage. In the 

last few years, we have seen a lot of 

progress—a good start—but this ar-

ticle is really a call for more help to de-

velop the next generation of platforms 

and tools, languages and runtimes, 

and intermittent networks that will 

fuel the batteryless revolution.

PLATFORMS AND TOOLS

New research communities thrive and 

grow when they have usable platforms 

and tools that simplify development 

and exploration.

Hardware. A batteryless applica-

tion’s success often depends on hard-

ware design decisions or tuning. We 

have come a long way since the early 

days of computational RFIDs [1]. 

CRFIDs are simple and completely 

dependent on being close to an RFID 

reader, and this limits the applications 

they can support. As we have explored 

other energy sources (light, vibration, 

motion, and thermal gradients) and 

the applications they enable, our hard-

ancestors. Energy harvesting is in-

consistent, energy storage is scarce, 

power failures are inevitable, and exe-

cution is often intermittent, as shown 

in Figure 1.

Intermittence changes things. 

Power failures are no longer rare ex-

ceptions. They are the rule. The devel-

oper is trying to get useful work done, 

in spite of these interruptions. Simple 

concerns like keeping time, making 

forward progress, and keeping data 

structures consistent are challenging. 

Power fluctuations are difficult to pre-

dict, and outages can last for seconds 

or hours. A device’s run-time behavior 

determines how much energy it will 

harvest—meaning application or sys-

tem decisions like when to schedule 

tasks, how to use low power modes, 

and when to communicate will impact 

both how much energy the device will 

use and how much it will harvest. In 

the face of this extra complexity, ap-

plication developers often struggle to 

predict how their programs will func-

tion in the wild and anticipate the 

problems that are likely to occur.

Our goal is to help bring battery-

less intermittent computing out of its 

infancy. For decades, we’ve built tools, 

languages, algorithms, and hardware 

platforms that assume power is reli-

able and outages are rare. When it 

comes to developer support for bat-

teryless systems, we’re just getting 

Im
a

g
e

 b
y 

H
e

ll
o

R
F

 Z
c

o
o

l /
 S

h
u

tt
e

rs
to

c
k

.c
o

m

Figure 1. A typical intermittent execution pattern for an energy-harvesting 

batteryless device. 

Energy availability varies, depending on environmental conditions and device 

behavior, producing execution opportunities separated by power outages of 

unknown length.

Time

S
to

re
d

 E
n

e
rg

y

Turn on Threshold 

Turn off Threshold 

Execution

t1 t2 t3



25XRDS  •  F A L L 2 0 1 9 •  V O L . 2 6 •  N O . 1

cations. One of the challenges for bat-

teryless computing is keeping track 

of time across power failures. We’ve 

learned to keep time, even in the face 

of power outages. Once the device 

dies, and it will, all the volatile memo-

ry, and all the internal clocks are reset. 

This means any previous timestamps 

on data have no reference point since 

the internal clock will start back at 

zero. To fix this, we can use “electronic 

hourglasses” to keep time while the 

batteryless computing device is in fail-

ure [5]. These electronic hourglasses 

are just a capacitive element that is 

“turned over” every time the device 

reboots. After boot, our batteryless 

computer polls the hourglass to see 

how much time has elapsed since it 

died, then resets and maintains the 

hourglass until the next reboot, allow-

ing persistence of time through power 

failures.

Emulation/experimentation. We 

have found ways to debug intermit-

tent programs and compare their 

performance in a rigorous way. With 

traditional computing platforms, 

comparing different algorithms is 

straightforward. We can measure the 

speed, energy consumption, or anoth-

er metric, and for the same workload 

the results will be comparable. When 

we compare energy harvesting sys-

tems the intrinsic attributes of energy 

harvesting complicate matters. 

The amount of power that you 

ware is now more sophisticated. We 

can federate a device’s energy storage 

[2]—providing separate prioritized en-

ergy storage capacitors for processing 

and individual peripherals—to make 

energy harvesting more efficient and 

programming simpler.

Small capacitors charge more 

quickly for short bursts of low energy 

peripheral usage (for example sens-

ing acceleration). Larger capacitors 

charge slowly, but support longer 

compute tasks and power-hungry pe-

ripherals like a radio or gesture sen-

sor. With federated energy, a device 

can support more peripherals with-

out sacrificing availability. By making 

this energy federation dynamic and at 

runtime, platforms like Flicker [3] and 

Capybara [4] let programmers decide 

on the fly what is important and what 

to save energy for.

Developing effective batteryless 

hardware has traditionally required 

an electrical engineering background. 

Developers built custom hardware 

and specialized highly tuned soft-

ware. The learning curve is still steep, 

but we’re trying to make it easier with 

Flicker—a flexible, modular hardware 

platform inspired by Arduino shields 

for prototyping batteryless applica-

tions. Flicker provides a general pe-

ripheral interface that simplifies soft-

ware development and makes it easier 

to extend support for other hardware 

peripherals. 

With Flicker, a designer can evalu-

ate the hardware requirements for 

the application they want to build (for 

example, environmental monitor-

ing), choose the Flicker peripherals 

they want to use (for example, a ra-

dio transceiver, moisture sensor, and 

humidity sensor), then plug in those 

modules and an energy harvester into 

the main Flicker board to immediately 

start writing code. By shortening de-

sign time from weeks to minutes by 

enabling rapid prototyping, Flicker 

broadens the reach of batteryless sens-

ing, lowering the barrier to entry, and 

reduces the startup costs.

Timekeeping. Time is one of the 

most important (and taken for grant-

ed) resources in any computing sys-

tem. Accurate and available timekeep-

ing underlies most system services 

and security features of modern appli-

Replacing and 
disposing of 
trillions of batteries 
every few years 
is inconvenient, 
expensive, and 
irresponsible.



26

feature

XRDS  •  F A L L 2 0 1 9 •  V O L . 2 6 •  N O . 1

harvest from a solar panel (or other 

harvester) depends on how much en-

ergy is already stored. So, the power 

depends on the supply voltage. If two 

programs consume different amounts 

of energy, those two programs will 

harvest different amounts of energy. 

So your harvesting efficiency depends 

on your program behavior. When light 

hits a solar panel, it produces a func-

tion that describes how much harvest-

ed current will flow at each capacitor 

voltage. We can model or record these 

functions and emulate them using 

Ekho [6], which gives us repeatable 

experimentation and accurate emula-

tion of energy harvesting conditions. 

Even better, digitized representations 

of energy harvesting conditions in 

South Carolina can be emailed to re-

searchers in Chicago for testing and 

the results will be the same.

LANGUAGES, RUNTIMES,  

AND OPERATING SYSTEMS

Understanding the operation of a 

program through intermittent power 

failures is a cognitive burden on the 

developer. Intermittent operation is 

not just difficult for the machine, the 

humans programming them also have 

to wrap their heads around complex 

bugs, stale data, and timing errors. 

Execution on a batteryless device con-

sists of harvesting energy for a rela-

tively long time, then a short execu-

tion, followed by a power failure once 

the supply falls below the processors’ 

operating voltage. Once this power 

failure happens, the clock is set back 

to zero, all the contents of RAM are 

lost, and registers and stack are reset. 

Eventually, once enough energy has 

been harvested, the program will re-

start back at main. The problem is this 

power failure could occur between any 

two lines of code. Despite advances in 

tooling and hardware, developers still 

find programming batteryless devices 

very challenging and nonintuitive. 

Composing programs for batteryless, 

intermittently powered devices still 

requires in-depth knowledge of hard-

ware and energy harvesting behaviors.

Checkpointing. We expect a pro-

gram to execute line by line, with in-

structions quickly following one after 

another. For batteryless sensors that 

fail 10 times a second, our execution 

will be hindered by numerous inter-

ruptions and restarts. The first ap-

proach we tried was to save the pro-

gram state right before a power failure, 

then restore that state once the device 

turns back on. Mementos [7],the first 

runtime checkpointing tool for bat-

teryless devices, used a compiler pass 

to insert energy checks and checkpoint 

logic throughout the program code. 

After a power failure, the most recent 

checkpoint was restored, and program 

execution continued on normally. 

Many researchers have since improved 

on Mementos, making checkpoints 

smaller, avoiding unnecessary check-

points, and saving program state more 

strategically—all statically or dynami-

cally checkpointing some subset of 

program state to make sure a program 

is always making forward progress.

Task-based languages. Checkpoint-

ing based approaches are not the only 

way to make intermittent program-

ming easier and more efficient. Check-

pointing approaches sacrifice over-

head (in terms of memory impact and 

speed) to simplify conversion of code to 

the intermittent application space. An 

alternative approach is to wrap func-

tionality into discrete “tasks” that are 

linked together to specify control flow 

and data flow. Instead of checkpoint-

ing, this model asks programmers to 

bear part of the work of controlling for 

intermittency by organizing or rewrit-

ing their program into atomic “tasks” 

and specifying how the “task graph” 

behaves. Task-based languages incur 

much lower overhead because they 

save less data. Data dependencies are 

explicit and defined at compile time, 

allowing a task-based system to focus 

more energy on scheduling high-prior-

ity tasks and maximizing useful work 

in spite of power failures.

Timing failures. No matter the ap-

proach, fixating only on forward prog-

ress can be a mistake. Continuing 

where you left off after a power failure 

is not always the best thing for an ap-

plication. After a long power failure, 

old sensor data may no longer be rel-

evant (for example, motion readings 

in an activity detection application). 

Computing on stale data is a waste of 

computing time and precious energy. 

The task-based language Mayfly [8] 

is a response to this. Mayfly asks pro-

grammers to define a task graph, link-

ing tasks such as “sense temperature” 

with “compute average” and “send 

data.” These links are then annotated 

with soft timing requirements, for ex-

ample, requiring that any data from 

the sensor must be less than 10 sec-

onds old to send over the radio. May-

fly captures the relationship between 

time and data that checkpointing and 

forward-progress focused systems do 

not; sometimes forward progress is 

not enough, because time passes dur-

ing power failures.

INTERMITTENT NETWORKS

Today batteryless networks don’t ex-

ist, because we don’t know how to ef-

fectively coordinate and synchronize 

multiple intermittently-powered de-

vices. Batteryless devices may have 

only enough energy stored up to send 

or receive a few packets, long net-

work conversations and long-distance 

transmissions may be infeasible. A 

node may not have the energy to com-

municate at a particular time, and a 

node’s sense of time will also often be 

too inaccurate for low-power proto-

cols, like Bluetooth low energy (BLE), 

that rely on tight time synchroniza-

tion. 

The future of intermittent devices 

hinges on how well they can com-

municate, and in order to teach them 

to communicate we need to rethink 

some fundamental assumptions 

about how low-power networks work.

Listening is expensive, so low-pow-

er networks listen periodically or on 

a set schedule (TDMA) to avoid listen-

Today batteryless 
networks don’t 
exist, because 
we don’t know 
how to effectively 
coordinate and 
synchronize multiple 
intermittently-
powered devices. 



27XRDS  •  F A L L 2 0 1 9 •  V O L . 2 6 •  N O . 1

in building secure clocks, attestation 

protocols, sensor spoofing resilience, 

and defense against energy-based de-

nial of service attacks. Providing se-

curity through intermittent execution, 

however, will enable scale-up into the 

most impactful applications and re-

search domains.

So, welcome to 2019. There’s work 

to be done. We hope you’ll help us 

solve some of these issues on our way 

to the next trillion devices.

Reference s

[1] A. N. Parks, A. P. Sample, Y. Zhao, and J. R. Smith. 

A wireless sensing platform utilizing ambient RF 

energy. In Proceedings of the 2013 IEEE Radio and 

Wireless Symposium. IEEE, 2013, 331–333.

[2] Hester J., Sitanayah L., and Sorber J. Tragedy of 

the coulombs: Federating energy storage for tiny, 

intermittently-powered sensors. In Proceedings of 

the 13th ACM Conference on Embedded Networked 

Sensor Systems (SenSys ‘15). ACM, 2015, 5–16.

[3] Hester J. and Sorber J. Flicker: Rapid prototyping for 

the batteryless internet-of-things. In Proceedings 

of the 15th ACM Conference on Embedded Network 

Sensor Systems (SenSys ‘17). ACM, 2017, 1–13.

[4] Colin A., Ruppel E., and Lucia B. A reconfigurable 

energy storage architecture for energy-harvesting 

devices. In Proceedings of the 23rd International 

Conference on Architectural Support for 

Programming Languages and Operating Systems 

(ASPLOS ‘18). ACM, 2018, 767–781.

[5] Hester J, Tobias N., Rahmati A., Sitanayah L., 

Holcomb D., Fu K., Burleson W.P., and Sorber J. 

Persistent clocks for batteryless sensing devices. 

ACM Trans. Embed. Comput. Syst. 15, 4 (2016). 

[6 Hester J., Scott T., and Sorber J. Ekho: realistic 

and repeatable experimentation for tiny energy-

harvesting sensors. In Proceedings of the 12th ACM 

Conference on Embedded Network Sensor Systems 

(SenSys ‘14). ACM, 2014, 330–331.

[7] Ransford B., Sorber J., and Fu K. Mementos: 

System support for long-running computation 

on RFID-scale devices. In Proceedings of the 16th 

International Conference on Architectural Support 

for Programming Languages and Operating Systems 

(ASPLOS XVI). ACM, 2011, 159–170.

[8] Hester J., Storer K., and Sorber J. Timely execution 

on intermittently powered batteryless sensors. 

In Proceedings of the 15th ACM Conference on 

Embedded Network Sensor Systems (SenSys ‘17). 

ACM, New York, 2017. 

 [9] Varshney A., Harms O., Pérez-Penichet C., Rohner 

C., Hermans F., and Voigt T. LoRea: A backscatter 

architecture that achieves a long communication 

range. In Proceedings of the 15th ACM Conference on 

Embedded Network Sensor Systems (SenSys ‘17). 

ACM, New York, 2017.

Biographies

Josiah Hester is an assistant professor of computer 

engineering at Northwestern University and director of 

Ka Moamoa, a mobile computing lab. Hester is passionate 

about involving Native and Indigenous people in STEM. 

Follow him at josiahhester.com and @ProfJosiah on 

Twitter. 

Jacob Sorber is an associate professor of computer 

science at Clemson University, a batteryless computing 

evangelist, and leader of the PERSIST lab, working for a 

world with fewer wires and fewer battery changes. Follow 

him online at www.jacobsorber.com.

© 2019 Copyright held by author.  
Publication rights licensed to ACM  

1528-4972/19/09 $15.00

ing to the channel as much as pos-

sible. With frequent power outages 

and imprecise timekeeping, intermit-

tent devices have trouble sticking to a 

precise schedule, and they can’t afford 

the energy that BLE spends on neigh-

bor discovery. When batteryless de-

vices communicate with active radios, 

they simply transmit packets blindly, 

hoping that an always-listening base 

station will receive them. Spray-and-

pray networking is simple but under-

whelming, limiting us to one-hop to-

pologies, power-hungry base stations, 

and possible collision problems as the 

number of transmitting nodes grows. 

On the other hand, with low-power 

signal-detection circuits and wake-up 

radios, best-effort synchronization, 

and protocols that tolerate and adapt 

to timing errors we hope for more flex-

ible and efficient batteryless networks.

Backscatter-based communication 

[9], used by RFID tags, is a promising 

alternative—using a radio frequency 

source to provide both power and 

communication (and synchroniza-

tion). Communication requires less 

power and synchronization is straight-

forward, but backscatter requires in-

stalled infrastructure that may not be 

universally available. Also communi-

cation range is limited and the device 

needs to be close to a transmitter (es-

pecially if we want the radio frequency 

signal to power the device). It is also 

unclear how backscatter techniques 

will scale to large numbers of devices 

as communication ranges increase.

WHAT’S NEXT?

Hopefully, you’re now excited about 

batteryless intermittent computing. 

We hope you’re wondering how you 

can get involved. We’ve already men-

tioned several key research areas, but 

let’s finish with a few of the open re-

search topics that we’re excited about.

Reprogramming. While we’re de-

signing technologies that can be de-

ployed for decades, we would be naive 

to think these devices won’t, at times, 

need a software update. Reprogram-

ming and retasking devices in the 

field is challenging even with reliable 

power, and none of the solutions that 

exist are suitable for the energy and 

network constraints that are typical of 

batteryless devices.

Learning, inference, and adapta-
tion. Batteryless devices will experi-

ence a wide range of energy and envi-

ronmental conditions, and they will 

be tasked with interpreting complicat-

ed signals and making sense out of the 

world around them. Will batteryless 

intermittent devices take advantage 

of the recent machine learning wave? 

The standard approach of sending 

large amounts of raw data to the cloud 

for processing will likely not be practi-

cal. How much can we learn and infer 

on such scant resources? It’s difficult 

for developers to predict what con-

ditions their applications will meet 

when deployed. Can our devices learn 

from their mistakes in the field, and 

learn how to effectively adapt to meet 

their changing constraints?

Sharing the load. Leaving batteries 

behind significantly lowers the cost 

of individual devices, leading to more 

dense deployment, and potentially 

leading to the trillion device Internet-

of-Things. As these devices become 

ever more closely integrated into the 

physical world, and networked with 

each other, opportunities for these de-

vices to work together become more 

apparent. Challenges remain in devel-

oping new programming models that 

share the computational load across 

this sensing fabric This becomes even 

more difficult as the heterogeneity of 

devices and applications increases. Ab-

stractions that gracefully share hard-

ware and software resources across 

the swarm, but do not overburden the 

developer will need to be created.

Securing a trillion devices. Battery-

free devices open up exciting new appli-

cation domains in health, space, and 

infrastructure monitoring because of 

the promise of long maintenance free 

lifetimes. However, these applications 

are sensitive in terms of privacy and 

security. Wearable body health net-

works must safeguard a patient’s data 

at all times, but with limited energy. 

Infrastructure monitoring provides 

the sensor data that helps building 

managers make decisions; if these sen-

sors are wrong or compromised, poor 

decision-making follows. It is not clear 

what are the best strategies for secur-

ing the smallest and most energy-poor 

computational devices that are easily 

physically accessed. Challenges exist 


