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ALGEBRAIC RELATIONS BETWEEN PARTITION FUNCTIONS AND
THE j;-FUNCTION

ALICE LIN, ELEANOR MCSPIRIT, AND ADIT VISHNU

ABSTRACT. We obtain identities and relationships between the modular j-function, the
generating functions for the classical partition function and the Andrews spt-function,
and two functions related to unimodal sequences and a new partition statistic we call the
“signed triangular weight” of a partition. These results follow from the closed formula
we obtain for the Hecke action on a distinguished harmonic Maass form .# (1) defined by
Bringmann in her work on the Andrews spt-function. This formula involves a sequence of
polynomials in j(7), through which we ultimately arrive at expressions for the coefficients
of the j-function purely in terms of these combinatorial quantities.

1. INTRODUCTION AND STATEMENT OF RESULTS

Partitions, first and foremost combinatorial objects, permeate seemingly disparate areas
of mathematics. The partition function p(n) gives the number of ways to write n as the sum
of unordered positive integers. The generating function for p(n) is a weakly holomorphic
modular form of weight —1/2, namely

(1.1) P(q) =) pm" =g ] 5 _1q24n = ,7(2147)’

n>0 n>1

where 7(7) is Dedekind’s eta-function and we use the convention ¢ = €2™7. This is one
indication of partitions’ deep ties to number theory. Outside combinatorics and number
theory, perhaps the most prominent role for partitions is in representation theory, where
the theory of Young tableaux for partitions encodes the irreducible representations of all
symmetric groups [12, Theorem 2.1.11].

Other modular forms and functions that were first studied in number theory have likewise
appeared in the representation theory of finite groups. In particular, the modular j-function,
whose Fourier expansion is

(1.2) J(r) = e(n)q™ =g~ + 744 + 196884 + 21493760¢° + - -,
n>—1

is well-known in number theory because the j-invariants, i.e. the values of j(7) for 7 € H,
parametrize isomorphism classes of elliptic curves over C [17, Proposition 12.11].

McKay famously observed that the first few coefficients of j(7) satisfy striking relations
such as

c(1) = 196884 = 1 -+ 196883,

(1.3)
¢(2) = 21493760 = 1 + 196883 + 21296876,

where the right-hand sides are linear combinations of dimensions of irreducible represen-
tations of the monster group M. Such expressions inspired Thompson to conjecture [18]
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that there is a monstrous moonshine module, an infinite-dimensional graded M-module
Vi = @D, _1 Vi such that for n > —1, we have

c(n) = dim (V).

Thompson further conjectured that, since the graded dimension is the graded trace of the
identity element of M, the traces of other elements g may likewise be related to naturally-
occuring g-series. This was refined by Conway and Norton in [11], who conjectured that for
every element g € M, the McKay-Thompson series
o
Ty(r) = Tr(g|Va)q"

n=-—1

is the Hauptmodul which generates the function field for a genus 0 modular curve for
a particular congruence subgroup I'y C SLg(R). Borcherds proved the Conway-Norton
conjecture for the Monster Moonshine Module in [6], an impactful result which, in part,
solidifies the j-function’s connection to the representation theory of M.

Since the j-function and partitions appear in both number theory and representation
theory, one can ask if there is a relation between c(n) and p(n). In this paper, we dis-
cover that the coefficients of the Fourier expansion of both the j-function and a certain
sequence of polynomials in j have a combinatorial description in terms of partitions of inte-
gers and unimodal sequences. This suggests the possibility of deeper connections between
the representation theory of the symmetric group and the monster Lie algebra.

This research is inspired by recent work of Andrews [2] in which he defined spt(n) to
count the number of smallest parts among all integer partitions of n. For example, we
can determine that spt(4) = 10 by counting the following underlined parts across all five
partitions of 4:

4=3+1=2+2=2+1+1=1+1+1+1
Following the notation of [16], we define a renormalized generating function for spt(n) as
(1.4) S(q) = spt(n)g®" .
n>1
Paralleling Ramanujan’s notable congruences
p(bn+4) =0 (mod 5),
p(Tn+5)=0 (mod 7),
p(1ln+6) =0 (mod 11),
Andrews [2] showed that the spt function satisfies the congruences
spt(bn+4) =0 (mod 5),
spt(Tn+5) =0 (mod 7),
spt(13n +6) =0 (mod 13).

Of further interest are the spt-function’s rich families of congruences modulo all primes
¢ >5. As Ono proved in [16], if £ > 5 is prime, n > 1, and (=) = 1, then

(1.5) spt (EQT;; 1) =0 (mod ¢).
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Subsequent work by Ahlgren et al. in [1] extended these congruences to arbitrary powers
of £. If m > 1, then

2m
(1.6) spt <€;74+1> =0 (mod ™).

These congruences follow from studying a distinguished harmonic Maass form ./ (1)
defined by Bringmann in [7] (see (2.1)). For background on harmonic Maass forms, we
refer the reader to [8] and [15]. The function .#(7) is of particular interest because its
holomorphic part M (7) involves the generating functions for both p(n) and spt(n); namely
we have

1 d

(1.7) MH(r) = () + 7505

2(q).

For weight 3/2 harmonic Maass forms with Nebentypus yi2 := (2), we follow the
normalization given in [16] to define the Hecke operators T'(¢?) of index ¢* on a power
series f(7) = > s _oo a(n)q" by

(1.8) f(r) | T?) = Z [a(ﬁzn) + (%) <_sz> a(n) —I-Ea(n/ﬁz)} q".
n>=—oo
The congruences in (1.5) and (1.6) follow from the fact that

(1.9) M) | T(2) = (%) M) (mod £).

Ono asked whether there exist explicit identities which imply (1.9). We answer this
question. Using the standard notation (¢;¢)ec = [[,>1(1 — ¢"), we define a sequence of
monic integer polynomials B, (z) of degree (m — 1) by

1
B(z,q) = Bu(@)q™ = (¢ Q) =
(1.10) m>1 i) -z
=g+ (z — 745)¢% + (2 — 1489z + 357395)¢> + - - - .

In terms of the Eisenstein series Ey4(7) and Eg(7), as well as Ramanujan’s Delta function
A(T), we offer the following solution to Ono’s problem.

Theorem 1.1. If £ > 5 is a prime and ; := 622—21, then

3 ¢ E32(241)Eg(247)
Mt T = () A+0OM (1) — — - Bs, (j(247)) - =2 :
() by T = (3) (L4021 (0) - 5.20) - Blicaar) - ZLEEL
Remark. We note that the identity in the theorem immediately reduces to (1.9) modulo £.
Moreover, this result gives an expression for the Hecke action in terms of only the original
mock modular form and the coefficient of q_g2 produced by the Hecke operator. Therefore,
the resulting mock modular form is determined by a single term.

For notational clarity, we note that

d . Ei(1)Es(7) -1 -1 2
—q—jr)=————L=q " — ne(n)q" = q  — 196884q — 42987520¢“ + - - - .
w0 =R > el
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Thus, Bs,(j(247)) - %

convenience, we write

is completely determined by the coefficients of j. For

d
—qj(247) = g2 — 196884¢%* — 429875204 + - - - .
q

Example. Here we illustrate Theorem 1.1 for the primes 5, 7, and 11. In the notation
of [16], we define

3
(111) MZ(T) = M+(T) |3/2 T(£2) - <Z> (1 +£)M+(T)
For ¢ = 5, note that d5 = 1 and B;(z) = 1. Therefore, we find that
5 d . 5 o5 5y 492205 o4
Ms(r) = 52(0) - a5,3(247) = — 354 24 A

For ¢ =17, 07 = 2 and By(z) = x — 745. Therefore, we have

7 . d 7 o T . 149078125
Mr(t) = = P(q) - (j(247) = T45) - q——j(247) = ——=q ¥ — ¢ '+ ———¢" + -
12 dq 12 12 12

For ¢ = 11, 511 =5 and
Bs(x) =zt — 297723 4 273279522 — 812685832z + 4947668669.

Therefore, we have

11 . d . 11 1
M (1) = ﬁg’(q)'35(3(247))-qd—qy(247) =334 121 ¢ 4 Ty

In view of (1.11), the case £ = 5 gives an expression for M*(7) | T(25) in terms of the
coefficients ¢(n) of the j-function, thus deriving an unexpected relationship between these
coefficients and the values of p(n) and spt(n). Namely, we offer the following partition-
theoretic counterparts to (1.3):

c(1) = 196884 = 2 + 49 + 15708 + 181125,

|
¢(2) = 21493760 = - (1 49+ 182 — 15708 — 181125 + 2405844 + 40778375).

The two identities above are examples of a more general theorem. To make this precise,
it is important to illustrate how the summands above correspond to p(n) and spt(n). We
require the following notation. For n > 1, we define

12
h1(24n — 1) := Espt(25n —1)+5(24n — 1)p(25m — 1)

(1.12) + f, - (1—528pt(n) +5(24n — 1)29(”))7

ho(25(24n — 1)) := 12spt(n) + (24n — 1)p(n),

where i, = 6 — (12212). We define hi(m) = 0 if m # 23 mod 24 and ho(m) = 0 if
m Z 23 mod 24 or if m Z 0 mod 25. We will also need the following function. For n = 1,
we set s(n) = 2, and for n > 1, let

) {(—1)’”1 if 24n = (6k + 1) — 25 or 24n = (6k 4 1)* — 1 for some k € Z,
s(n) =

0 otherwise.

Remark. It is an easy exercise to confirm s(n) is well-defined.
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Then we have the following result.

Theorem 1.2. Ifn > 1, then

_sn) 1 k 2 k 2
e(n) = =2+ = 3 [(=1)4 A @40 — (6k + 1)) + (~1)*ha(24n — (6k + 1)
keZ
Remark. The formula in Theorem 1.2 bears a strong resemblance to another well-known

expression for the coefficients of j. Work of Kaneko [13] shows for n > 1 that

(1.13) c(n) = = Z [t(n —r?) — ﬂt(éln — )+ (_1)Tt(16n - 7’2)} ,
ne 4 4

where t are traces of singular moduli, i.e. the sums of the j-invariants of elliptic curves

with complex multiplication. In view of the similarity of these expressions, it is natural to

wonder whether Theorem 1.2 suggests a deep connection between partitions and traces of

singular moduli.

In [3], Andrews related spt(n) to a number of other combinatorial and number-theoretic
functions. One connection of particular interest is the relationship of spt to strongly uni-
modal sequences. We ask whether this relationship reveals deeper connections to the j-
function and representation theory.

A sequence of integers {ay}5_; is a strongly unimodal sequence of size n if >}, ax =n
and for some r it satisfies 0 < a1 < a9 < -+ < @y > Apy1 > Gpyo > -+ > ag > 0.
The rank of {ax};_; is s — 2r + 1, the number of terms after the maximal term minus
the number of terms preceding it. The function U(t;q) counts specific types of strongly
unimodal sequences [10]. For t = —1,

U(—l;q):Zu*(n)q":q+q2—q3—2q5+2q6+~',
n>1

where u*(n) is the difference of the number of even-rank strongly unimodal sequences of
size n and the number of odd-rank strongly unimodal sequences of size n. Andrews proved
in [3] that

(1.14) U(—1;q) = = spt(n)q” + 24A(q),
n>1
where
1 [o'e) ( 1) 1 7L2+n
n —1)— ng 2
Alg) =) _a(n)q" = > =g+ A+

= (@)oo 4 1—0¢"

It is natural to ask what A(q) is counting. We find that A(q) is the generating function
for a partition statistic that we call the “signed triangular weight” of a partition, a result
which is of independent interest. Given a partition A\ - N, where we write the size of the
partition as |\| := N, let n) be the maximal number such that A contains parts of size
1,2,...,ny. Letting m; denote the number of times that the part k appears in A\, we define
the signed triangular weight of A to be t5(A) := 332 (=1)¥"Tkmy. If A does not contain a
part of size 1, then let t5(A) = 0.

Example. Consider A = {1,2,2,3,4,5,5,8}. Then A+ 30, ny =5, and
ts(\)=1-1-2-24+3-1-4-1+5-2=6.
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We prove the following result relating ¢5(\) for all partitions A of all positive integers to the
series A(q).

Theorem 1.3. The following q-series identity is true:

Alg) = S t.(0a.
A

From this, we may conclude that a(n) = Z‘ A=n ts(A). Given this relationship, the spt
congruence given in (1.6) immediately implies the following result.

Corollary 1.4. If ¢ > 5 is prime, (_7") =1, and m > 1, then

L (0P -1 2mp -1 m

Combining our explicit expression for the action of the Hecke operator T'(25) in Theo-
rem 1.1 and our combinatorial expressions for ¢(n), we arrive at new expressions for the
coefficients of j(7) in terms of p(n) and the coefficients of a(n) and u*(n). For ease of
notation, we define the functions

12 24
91(24n — 1) := —Eu*(25n 1)+ ga(%n — 1)+ 5(24n — 1)p(25m — 1)

(1.15) + i - <—%u*(25n 1)+ %a(%n ~ 1)+ 5(24n — 1)p(n)> :
92(25(24n — 1)) := —12u™(n) + 24a(n) + (24n — 1)p(n),

where as in (1.12), g1(m) = 0 if m # 23 mod 24 and g2(m) = 0 if m # 23 mod 24 and
m Z 0 mod 25.

Corollary 1.5. Ifn > 1, then
elm) = 2004 LS (1)1 20 — (6 + 1)) + (1) ga(2n — (6 + 1))
keZ

Example. Using our result, we find the following identities:
168a(1) — 84u*(1) + 161p(1) 24 12

c(1) = 196884 = s(24) + - + Za(24) - ' (24) + 115p(24)
(2) — 21495760 — %<3(48) ~ 168a(1) — 84u5*(1) +161p(1) | 14a(2) - 7u*5(2) +329p(2)
- %4@(24) + 1—52u*(24)  115p(24) + 2—54a(49) _ 1—52u*(49) +235p(49) ).

Question. Are the combinatorial interpretations of the coefficients of the j-function in
Theorem 1.2 and Corollary 1.5 glimpses of hidden structure of the monster module? In
particular, do spt(n), u*(n), and a(n) play roles in representation theory?

Remark. After this paper was submitted, Toshiki Matsusaka informed the authors [14] that
he has obtained further similar results along these lines which frame the spt function in
terms of a weakly holomorphic Jacobi form. This structure also provides a connection
to the formulation by Kaneko [13] of the j-function’s coefficients using traces of singular
moduli.
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This paper is organized as follows. In Section 2, we investigate the specific harmonic
Maass form .#(7) and derive an expression for the action of the Hecke operator on its
holomorphic part. To do this, we study canonical families of polynomials in j(7) and
explore the relationship of modular forms to modular functions on SLy(Z). In Section 3,
we prove Theorem 1.3. In Section 4, we prove Theorem 1.2 and Corollary 1.5.

2. HARMONIC MAASS FORMS

2.1. Preliminaries. To motivate our study and to ground the methods used here, we
begin by introducing the harmonic Maass form of interest for this paper. Recall that a
weakly holomorphic modular form for a congruence subgroup I' of SLy(Z) is a function that
is holomorphic on H, whose poles, if any, are supported on the cusps of I'\H, and which
satisfies the corresponding modularity properties for its weight. If f is a weakly holomorphic
modular form of weight k for I' and Nebentypus x, we write f € M, ,'g (T, x).

Likewise, a smooth function f: H — C is a harmonic Maass form of weight k£ for I' and
x if it satisfies the standard modular transformation laws, is annihilated by the harmonic
Laplacian Ay, and has at most growth-order 1 exponential growth at each cusp on T'\'H.
We denote the vector space of harmonic Maass forms of weight k for I' and y as Hi (T, x).

Recalling the definitions of #?(¢) and S(¢) in (1.1) and (1.4), we define .# (1) following
[16] as
1 d i o n(24z2)
12979 s | Tt opr
By Theorem 2.1 of [16], .# (1) € Hyss (Do(576), x12), where x12 := (12). By M™T(q) we
denote the holomorphic part of .# (7). This may be expressed as

1 d 1 35 55 65 4
Eqd—qﬁz(Q)———q + S+

(2.1) A (1) :=S(q) + dz.

M*(q) = S(q) + +oe

12 12 6

2.2. The Hecke Action. To understand the action of the Hecke operator on M™, we
will need the following result that produces a weakly holomorphic modular form involving
M*(7) | T(¢%). We produce this modular form via the following result.

Lemma 2.1. If
Milr) = M) | T8 - (3) (4 001 0)
then My(r) € M} 12(Lo(576), x12)-

Proof. Up to a constant, the nonholomorphic part of .# (1) is the period integral for 77(247;).
Write 7 = x + iy for z,y € R. Under the action of the differential operator & := Ziyk%,
we have §3/9(A) = —==n(247). Note that n(247) is an eigenform for Hecke operators of

weight 1/2 with eigenvalue x12(£)(1+£71) = (2)(1 + £71). If we define
() i= () | T = (§) 1+ 000,

we observe that

(2.2) » [///(T) |T(2) — @) (1 +£)///(7)} ~0.
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Here we have used the commutativity relation

&e(f [k T(0%) = 252 (&f) |o—k T(£?)

for half-integral weight harmonic Maass forms given in Proposition 7.1 of [9]. Since the
Hecke algebra preserves modularity, .2 (1) | T(£%) € Hj5(To(576), x12)- By (2.2), #(7)
is in the kernel of {3/ and is therefore holomorphic on the upper half plane. Since the
action of the Hecke and £ operators are linear and thus split over the holomorphic and
nonholomorphic parts of .# (1), the same result holds for M ™ (7). In particular, My(7) €
Mj,,(To(576), x12)- O

2.3. Canonical polynomials in j(7). We show that the set of all B,,(j(7)) form a conve-
nient C-basis for the ring of weakly holomorphic modular functions on SLy(Z) as a C-vector
space. Recall that the ring of weakly holomorphic modular functions on SLg(Z) is precisely
the ring of complex polynomials in j(7), i.e. M}(SLa(Z)) = C[j(7)] [4, Theorem 2.8]. As
defined in (1.10), we have

Bl (33‘) = 1,

Bsy(x) = x — 745,

Bs(z) = x? — 1489z + 357395.

From these first few examples, the set of B, (z) appears to form a C-basis for the polynomial
ring Clz] as a C-vector space, and hence the set of B,,(j(7)) would form a C-basis for
M}(SLy(Z)). In the following lemma, we show that this is indeed the case. To do so, we
define the function

ala) e (G _ 2
(2.3) (q) : () q+0(q)

Lemma 2.2. If f(7) is a weakly holomorphic modular function on SLy(Z) and is of the
form

-1
(2.4) f(r) =alq) ( > t(ﬂ)Q") +0(q),

n>—oo
then
-1

n>=>—oo

Remark. The above lemma gives a clean formulation for modular functions f of the form
given in (2.4) when the principal part of f/« is known.

Proof of Lemma 2.2. For each m > 0, note that there exists a unique weakly holomorphic
modular function j,,(7) on SLa(Z) such that j,,(7) = ¢~™ + O(q). The Faber polynomials
Jn(x) are the coefficients of the generating function

o0 2
> Jnl(x)g” = E‘*(Z(f;”m : j(T)l_ — =L (- T+
n=0
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By Corollary 4 in [5], J,,(j(7)) = jn(7) for all n > 0. By comparing the generating functions
for J,(z) and By(x) and using the identity (1.10), we see that

0wy, PADE() 1 1 Ry
a(q) ) Ju(@)q" = alq) A0 -z (4590 CET: ;Z:IBn( )q".

n>0

Since a(q) = g + O(q?), we compare coefficients and deduce that for each n > 1,
a(q)Jn(§ (1)) = Bn(i(7)) = alq)g™" + O(q).

And hence we can conclude that
-1

~1
f(7) :a(Q)< > t(ﬂ)t]") +0(g) = Y tn)B_,(j(r)).

n>>>—oo n>>>—oo
O
2.4. Proof of Theorem 1.1. Note that we may write
E _32 3 E -1
(25) ) =57+ (3) g0+ el
n>23
n=23 mod 24

where we observe that, since 2 = 1 mod 24, the nonzero coefficients of M, are supported
on integral exponents that are 23 mod 24. Following this, we define

(2.6) Fy(247) = n® (247) M, (7).

By Lemma 2.1, it is immediate that Fy(247) is a weakly holomorphic modular form of
weight 5274'3 over I'g(576) with trivial Nebentypus. In fact, by Theorem 2.2 in [16], Fy(7) is

a weight ZQTJF?’ holomorphic modular form on SLy(Z). We recall that the proof makes use of
the observation that Fy € Z[[¢**]] by construction, and that the behavior of I, under the
matrix § = ((1] _01) can be determined using a result of Bringmann in [7] which gives that

A () is an eigenform of the Fricke involution.

2.4.1. Getting to Weight 0. Now that we have a holomorphic modular form of weight 527+3 on

all of SLo(Z), we will leverage this information, along with some properties of the Eisenstein
series F'14 and the j-function, to produce a closed formula for the Hecke action. We first note
that ZQT*?’ = 2 mod 12, and that likewise so is E3(7)Eg(7). To make use of this seemingly

innocuous fact, define §; := 622—21 and note that
(2.7) Gy(7) == E3(1)Ee(T)A% 7 (1) = ¢® 1 + ... € Mp,;5(SLa(Z)).
2

Since we now have another modular form of the same weight on SLy(Z), we would like
to prove that their quotient, Fy(7)/G¢(T), is a weakly holomorphic modular function on
SLs(Z), which, coupled with our preceding characterization of the Faber polynomials, will
allow for a unique expression of the quotient as a polynomial in j(7).

Lemma 2.3. The function Fy(1)/G(T) is a polynomial in j(T).

2mi/3 o simple zero at i, and no other

Proof. By construction, Gy has a zero of degree 2 at e
zeros in the fundamental domain F of SLy(Z).
Since the weight of I is k = (£2 + 3)/2 = 2 mod 12, we apply the transformation law

under S = (1) to get that Fy(—1/i) = i*Fy(i) = —F(i), hence Fy(i) = 0. Similarly,
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applying the transformation law under v = ((1) _11) yields Fg(e2”/ 3) = 0. Differentiating
both sides of Fy(y7) = (7 4+ 1)*Fy(7) and letting 7 = e>™/3 gives that %FZ(T)L_:ezm'm =0.
Hence F} vanishes at e2™/3 with order at least 2. Therefore the quotient F} /Gy has no poles
in F, and we may deduce that F;/G/ is a weakly holomorphic modular form of weight 0 on
SLy(Z). Since the modular functions on SLy(Z) are precisely the polynomials C[j(7)], we
may conclude that Fy/Gy is a polynomial in j(7). d

It remains to construct this polynomial in j(7). Using the modular functions Bs, (j(247)),
we arrive at the following conclusion:
Fu(r) _ n(r)" My(r/24)
Gu(r)  Ej(r)Eg(r)A%1(7)
_ (quQ).oo q1/24Mg(T/24)
—qd—q](T)

s L (o]

= o(q) [—%q“” + <%> % + O(q)}
= By, (i()
12 5,\I\T))s
where the last equality follows from Lemma 2.2. Hence we may rearrange to get the ex-

pression

Fo(r) 4 E2(1)Eg(1) _ )
1% (1) = —ﬁ%n 1(7)355(3(7)).

Sending 7 + 247 and using the fact that 2 (q) = n~!(247),

2 T T
Mir) = () (ALETLED) [ L g (a1

(2.8) My(7/24) =

12
We can finally conclude that the action of the Hecke operator T'(¢2) is

2 T .
M™*(7) l3/2 T(6*) = (%) 1+ 0)M* (1) - é@(q) - Bs, (j(247)) - E4(2i()2f76:§24 ),

concluding the proof of Theorem 1.1. O

3. THE SIGNED TRIANGULAR WEIGHT

In light of the connection between the generating functions of the Andrews spt-function
and a particular class of unimodal sequences given in (1.14) mediated by the series A(q),
we present the proof of Theorem 1.3.

3.1. Proof of Theorem 1.3. We begin by examining the summation
n(n+1)

(3.1) 3 (i _2qn :

n>1

n(n+1)

By considering each summand to be of the form ¢ 2 (1 + ¢™ + ¢*" + ¢*" + ---), note
that if we formally expand the above power series as ) -, a(m)q"™, then a(m) counts the
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number of ways to choose integers (n, k) with n > 1, £ > 0 such that m = T,, + kn, where
T, = n(n + 1)/2 denotes the nth triangular number. Similarly, the coefficient 3(m) of ¢™
in the formal expansion of

n(n+1)

o n—ln )
(3.2) > (=1 - qqn = B(m)q"

n>1 m>1

denotes a sum over all such pairs (n, k), weighted by the parity and size of n.
Multiplying the above series by the generating function 1/(g; ¢)o for partitions then gives
a formal power series
n(nt1)

_ n—ln 5
(3.3) _1) > (=1) - qqn =Y y(m)g"

(¢:9)0 = =

where v(m) runs over all partitions A - m such that A\ contains a subpartition consisting of
the parts {1,2,...,n} and also possibly k& more parts of size n, for n > 1 and k£ > 0, but
weighting this count by the parity and size of n. O

4. COMBINATORIAL INTERPRETATIONS OF THE COEFFICIENTS OF j(7)

As we have now developed a variety of both combinatorial and number-theoretic objects,
all of which are tied together by a class of polynomials in j(247), it is natural to ask if we
may formalize and explicate this connection. To do this, we make use of both the standard
definition of the Hecke operator on g-series expansions as well as the result of Theorem 1.1
in order to pull the functions spt(n) and p(n) through to the j-function. We restrict our
attention to the case where ¢ = 5 since dy = 1 and Bj(j(247)) = 1. While at first glance it
may seem as though we have removed j from our expressions by looking at this case, we
recall that

d . E4(247')E6(24T oy 24n

where c¢(n) is the nth coefficient of the j-function. Thus, we need only solve for the ¢(n)'s in
terms of the combinatorial information given by M (7) to arrive at our final conclusions.

4.1. Proof of Theorem 1.2. Writing the g-series expansion for M*(7) out in terms of
spt(n) and p(n), we arrive at

(24n —1)

M () = —— g1 24n—1_
(1) q +> [Spt g P(n)| 4
n>1
For n > 1, we then write for ease
24n — 1
(4.2) m(24n — 1) := spt(n) + 7;2 p(n).

Now we can describe the action of the Hecke operator T'(25) as follows:
5

1
25 1 25(24n—1)
+ + E m(24n — 1
124 12 n>15 ( )q

+> [ (25(24n — 1)) — (%) m(24n — 1)} gt

n>1

M*(7) | T(25) = —
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Since M5(7) = M™*(7) | T(25) + 6M ™ (7), we have

5 B -
Ms(7) == 50 % = —q PN 5 [m(24n — 1)) 5D
n>1
—24n + 1
2 [ (25(24n — 1)) + [6 - (%)] m(24n — 1)} ¢,
n>1

Thus, when £ = 5, the statement of Theorem 1.1 reduces to

5
Ms(T)Z—EW (247) [ ¢ ch >4
n>1

and we are able to rearrange as follows:

—q 2+ ne(n)g?*™ = n(247) [ —qg P —q!
n>1

12 [m(25(24n — 1)+ [6 - (1 _524”” m(24n — 1)] g1
n>1
+3 " 12m(24n — 1)q25(24”_1)} .
n>1

Recall the definitions of hj(m) and he(m) in (1.12). Using these, we define
d1(n) =Y (=1)fhy(n — (6k + 1)%),

keZ
8a(n) := Y (=1)Fha(n — (6k + 1)%).
keZ
Then we may write

—q 7+ ne(n)g?™ =) 61(24n)¢* " + > 62(24(25n — 1))g* 5

n>1 n>1 n>1
2 > 2
o Z (6n+1 —25 Z (_1)nq(6n+1) -1
n=—oo n=-—oo
We note that for n > 1,
[e.e] o0
2_ 2_
Zs(n)q24n _ Z (_1)nq(6n+1) 25 Z (_1)nq(6n+1) iy
n>1 n=-—oo n=—oo
Thus, Theorem 1.2 follows by solving for ¢(n). O

Proof of Corollary 1.5. This result follows immediately from Theorem 1.2 and the relation
spt(n) = —u*(n) + 2a(n).
Remark. While the results above use only the action of the specific Hecke operator 7'(25),

one should note that the entire sequence of operators T'(¢?) generate similar results for the
polynomials By, (j(247). We outline this process below. We define

qdij(247) - By, (j(247)) = ) re(n)g*".
q n>—oo



ALGEBRAIC RELATIONS BETWEEN PARTITION FUNCTIONS AND THE j-FUNCTION 13

Then likewise if

me(24n — 1) := m(£%(24n — 1)) + (%) [(W) -1 +£)] m(24n — 1)
+ 0m((24n — 1)/0%),

we may write

¢ _ 3\ ¢ _ n—
My(7) = 124 £+ <z> 129 t4+ ng(24n — 1)g*n L
n>1

Rewriting the result of Theorem 1.1, we have

(43) S relmi = Z(2an)Mi(r).

n>=—oo

Thus, expanding the right-hand side using the pentagonal number theorem allows one to
solve for ry(n). By Theorem 1.2 and Corollary 1.5, the coefficients of qd% j(247) are known

in terms of combinatorial quantities, and so the coefficients of Bj,(j(7)) themselves can
written as a sequence of combinatorial expressions as well.
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