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Abstract— On-demand deployment of small cells plays a key
role in augmenting macro-cell coverage for outdoor hotspots,
where user devices are brought together and intensively upload
self-generated data. In this paper, we study spectrum sharing
among rapidly deployable small cells in the uplink, even without
a priori global knowledge. We propose a hybrid multi-agent
approach, which allows a leading macro-cell base station (MBS)
and multiple following small base stations (SBSs) to take part in
a user-centric, online joint optimization of small cell deployment
and uplink resource allocation. Specifically, we propose a cen-
tralized mechanism for the MBS to solve the first subproblem
of small cell deployment stage by stage, based on an adversarial
bandit model. Furthermore, we propose a distributed mechanism
for the group of SBSs to collectively solve the second subproblem
of uplink resource allocation stage by stage, based on a stochastic
game model. We prove that our approach is guaranteed to
produce a joint strategy, which is built upon a mixed strategy
with bounded regret on the first tier and an equilibrium solution
on the second tier. Our approach is validated by simulations on
the aspects of convergence behavior, strategy correctness, power
consumption, and spectral efficiency.

Index Terms—Mobile communication systems, distributed
networks, algorithm/protocol design and analysis.

I. INTRODUCTION

N THE era of 5G mobile communications and Internet
of Things (IoT), each macro-cell can be densely overlaid
with small cells, so that mobile users or connected things are
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served by a heterogeneous network (HetNet) [1], [2]. It is
straightforward to deploy small cells for indoor hotspots such
as homes or offices, but usually not for outdoor hotspots to
support, e.g., public gatherings or sporting events. As the use
of wireless devices outdoors is becoming a daily necessity,
it has received a growing interest in augmenting macro-cell
coverage for target spots that are wide-open yet short-lived
[3], [4]. A further improvement of outdoor coverage is nec-
essary when user devices are brought together in a short time
and cause a burst increase in macro-cell traffic, thus leading
to a supply-demand mismatch. It commonly occurs that lots
of user devices are temporarily gathered for broadband or IoT
services. However, it can be very costly or even impossible
to fully and persistently cover an outdoor hotspot with small
cells.

Recent efforts have been made to find solutions towards
fast, cost-effective, and on-demand deployment of small cells
outdoors. A promising innovation is to mount small base
stations (SBSs) on movable and controllable platforms, such
as unmanned aerial vehicles (UAVs) or unmanned ground
vehicles (UGVs) [5]-[8]. Under vehicular mobility, UAV/
UGV-mounted small cells are rapidly deployable in case
macro-cell base stations (MBSs) are overloaded, or even dam-
aged or destroyed. Lately, research groups from Google, Face-
book, Nokia, and academic institutions have made progress in
prototyping UAV/UGV-mounted small cells [9]. The notion of
rapidly deployable small cells has now become feasible.

In this paper, we focus on spectrum sharing among rapidly
deployable small cells particularly for outdoor coverage in the
uplink, which is emphasized when user devices intensively
upload their self-generated data [3], [5]-[7]. A large volume
of uplink traffic can be locally generated in an outdoor
hotspot due to the proliferation of sensing-capable devices.
For example, a typical downlink-to-uplink ratio of mobile
devices is 10:1, but it can become 1:3 during mass events
along with a tenfold increase in uplink traffic [3]. This is
because of the uploading of pictures and videos to social
media. Likewise, collecting raw data from sensor nodes or [oT
devices can lead to very heavy uplink traffic [5], [6]. To handle
intensive uploading of user/machine-generated data, limited
wireless spectrum has to be shared and reused by small
cells efficiently and effectively. Therefore, organizing a two-
tier HetNet outdoors necessitates inter-cell spectrum sharing,
and we mainly focus on co-tier spectrum sharing among
small cells. This is different from a typical scenario in that
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network performance is valued more in the uplink than in the
downlink.

However, we have to address the following challenges. First,
our approach has to jointly optimize small cell deployment
and uplink resource allocation. In addition to the 3D place-
ment of movable small cells to cover an outdoor hotspot,
it is also necessary to study the establishment of uplink
transmissions to meet user needs. Specifically, the problem
of inter-cell spectrum sharing involves decision making on
four aspects, including small cell placement (SCP), user-cell
association (UCA), channel resource allocation (CRA), and
transmit power control (TPC). Second, our approach has to
be responsive to initially unknown and varying demands of
user devices for uplink transmissions. It is common in an
outdoor hotspot that movable small cells can only selectively
fulfill a part of user demands for a limited period of time, but
the distribution of user demands is not known a priori and
is even ever-changing. Thus, the joint optimization problem
has to be solved in a user-centric, online manner. Third,
our approach has to be applicable to a resource-constrained
cellular system. Although the base stations in two tiers of a
HetNet can work as decision-making entities, the user-centric,
online joint optimization to be performed can be too complex
for either a MBS or a SBS. Any entity can suffer from limited
computing, energy, and storage resources. Besides, it is already
hard to derive a real-time solution to such a complex problem
even given sufficient resources.

In this paper, we overcome the above challenges and make
the contributions as follows.

e We propose a hybrid multi-agent approach, which operates
with two tiers of sequential decision making under user
uncertainty. It allows a leading MBS and multiple following
SBSs to take part in a multi-stage joint optimization of small
cell deployment and uplink resource allocation.

e We propose a centralized mechanism for the MBS to solve
the subproblem of small cell deployment (including SCP
and UCA) stage by stage, based on an adversarial bandit
model. The MBS refines its strategy and updates user
knowledge through reinforcement learning.

e We propose a distributed mechanism for the group of SBSs
to collectively solve the subproblem of uplink resource
allocation (including CRA and TPC) stage by stage, based
on a stochastic game model. Under the guidance of the
MBS, all the SBSs refine their strategies through multi-agent
reinforcement learning.

e We prove that our approach produces a joint strategy, which
is built upon a mixed strategy with bounded regret on the
first tier and an equilibrium solution on the second tier.
Our approach is further validated by simulations on the
aspects of convergence behavior, strategy correctness, power
consumption, and spectral efficiency.

The remainder of this paper is organized as follows. Related
work is discussed in section II. System model is presented in
section III, where the original problem is formulated assuming
centralized control. Based on problem decoupling, our hybrid
multi-agent approach is outlined in section IV, and is further
elaborated in sections V and VI. Performance evaluation is

conducted in section VII. Finally, our conclusion is summa-
rized in section VIII.

II. RELATED WORK

Ever since the advent of rapidly deployable solutions, there
have been recent studies that investigate the placement of
either a single or multiple UAV/UGV-mounted small cells.
It is assumed that each mobile platform hovers or remains
still in one spot for the optimal small cell coverage. For
single-cell scenarios, on the one hand, the altitude [10]-[12]
or target position [13]-[15] of a SBS is determined based
on certain user demands. As for multi-cell scenarios, on the
other hand, the target positions of SBSs are determined either
when small cells occupy separate spectrum segments [16]—[18]
or when small cells (and sometimes macro-cells) share same
spectrum band so that co-tier (and cross-tier) interference
is not negligible [19]-[23]. However, none of the above
has paid attention to spectrum sharing among small cells in
the uplink, which is particularly emphasized for uploading-
intensive outdoor hotspots.

There have been other studies that focus on regulating the
movement of either a single or multiple UAV/UGV-mounted
small cells. It is then assumed that each mobile platform
keeps moving constantly for the optimal small cell coverage
along a trajectory. For single-cell scenarios, on the one hand,
the moving trajectory of a SBS is determined to comply with
certain user demands [24]-[28]. As for multi-cell scenarios,
on the other hand, the moving trajectories of SBSs are deter-
mined either when small cells do not share same spectrum
band [29] or when small cells coexist thus co-tier interference
affects decision-making processes [30]—[33]. However, these
literatures study spectrum sharing among small cells only in
the downlink as well. Moreover, existing work has to assume
perfect global knowledge to optimize spectrum sharing under
the mobility of small cells, but in fact, a priori user knowledge
is difficult to obtain for transient outdoor hotspots.

One latest trend is to characterize or predict user demands
before carrying out on-demand deployment of UAV/UGV-
mounted small cells. It is assumed in this case that user
demands are ever-changing and are not known a priori.
According to the estimation of user patterns through machine
learning, multiple SBSs can be appropriately placed either
when small cells do not share same spectrum band [34]-[36]
or when small cells coexist [37]. However, none of the above
can handle our particular challenges, i.e., user-centric, online
joint optimization in support of spectrum sharing among small
cells in the uplink.

III. SYSTEM MODEL

In this section, we describe the system model that underpins
our hybrid multi-agent approach.

A. Basic Assumptions

During the lifetime of an outdoor hotspot, user devices
are temporarily brought together and settled down for broad-
band or IoT services. They are eager to upload locally gen-
erated data. We consider common wireless devices in this
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Fig. 1. Basic idea of the hybrid multi-agent approach for spectrum sharing
among rapidly deployable small cells in the uplink.

scenario, e.g., event spectators’ mobile devices or regular
sensor nodes, whose locations and demands are slowly chang-
ing. The area of interest is covered by a two-tier HetNet,
which consists of one fixed macro-cell and multiple UAV/
UGV-mounted (hovering) small cells. An example of such a
cellular system is illustrated in Fig. 1.

The establishment of data transmissions in the uplink relies
on the allocation of certain dedicated portions of wireless
spectrum. We assume that the first tier of macro-cell and
the second tier of small cells operate on different spectrum
bands to avoid cross-tier mutual interference. This is consistent
with the regulation of 5G spectrum, in which macro-cells
and small cells utilize lower and higher frequency bands,
respectively [38]. Then, our primary focus can be on the tier
of small cells. We assume that all the small cells operate on
the same spectrum band, so that inter-cell spectrum sharing
is necessary to accommodate a large volume of uplink traffic.
To enable an uplink transmission, each user device can be
associated with a certain home small cell and can occupy a
certain fraction of shared spectrum by generating a certain
level of transmit power. Isotropic antennas of user devices
are assumed, which generate the worst-case co-tier mutual
interference. In general, the problem of spectrum sharing
involves small cell deployment and uplink resource allocation.
More specifically, it involves small cell placement (SCP), user-
cell association (UCA), channel resource allocation (CRA),
and transmit power control (TPC).

The cellular system aims to mitigate mutual interference
among rapidly deployable small cells in the uplink. We assume
that user demands for uplink transmissions are not known
a priori due to the temporary nature of outdoor applications.
Therefore, such a situation calls for the use of sequential
decision making under user uncertainty. The outdoor hotspot
lasts only for a finite time horizon, which can further be
divided into short stages or time periods. Then, a joint opti-
mization problem needs to be solved sequentially in a multi-
stage manner. As user knowledge is updated stage by stage,
the four aspects related to spectrum sharing, i.e., SCP, UCA,
CRA, TPC, should be jointly optimized. We initially assume
that the above operations are fully under control of the MBS,
and this assumption will be relaxed in the next section.

B. Problem Formulation

Now we formulate the joint optimization problem per stage
if given user knowledge. Our mathematical notation is sum-
marized in Table I.

TABLE I

SUMMARY OF MATHEMATICAL NOTATION
M set of small cells
N set of user devices
K set of available channels
T time span of outdoor hotspot
1’ location point of SBS m
almm™ association of user n with SBS m
p{mamok) allocation of channel k to user n
p{™ ™" transmit power of user n on channel k
U weighted sum of power consumption
Al demand of user n
w!™™ weight of user n
Hm™) propagation gain from user n to SBS m
'y(") SINR requirement of user n
]t(m’k) interference power at SBS m on channel k
6}") capacity requirement of user n
Re(+) feedback cost for the MBS’s action
T mixed strategy of the MBS
G™IG™ expected/pseudo- regret under strategy
n control factor in Algorithm 1
J size of action space for UCA
R,S’”)(., -)  feedback cost for SBS m’s action
) pure strategy of SBS m
G {60} discounted cost under strategy ("™
™ price factor in Algorithm 2

Suppose that within the macro-cell, there are a set of small
cells, say M = {1,2,..., M}, to be deployed and a set of user
devices, say N' = {1,2,..., N}, to be served. Furthermore,
there are a set of available channels, say K = {1,2,..., K},
to be shared by small cells. Enabling M to serve A/ by sharing
IC involves the issues of SCP, UCA, CRA, TPC. Hence,
the MBS has to determine four sets of decision variables in
every stage t = 1,2,...,T for a time horizon 7.

e First for SCP, the coordinates of a SBS are selected from
a 3D location space, say £ C R3. To always keep up
with ever-changing user needs, the MBS dynamically places
each SBS m € M at a certain location point l§’”> =
(™, y{™ 2{™) € L. Thus, let the first variable set be
L= {zf"”) |m e M}.

e Second for UCA, each user can be associated with one
nearby SBS as its home base station. The MBS determines
a binary indicator, agm’") € A = {0,1}, for each pair of
SBS m € M and user n € N, which is equal to 1 (or 0)
when user n is (or is not) associated with SBS m. Thus, let
the second variable set be 4, = {a{™"™ |m € M,n € N},
and the set of user devices being associated with each SBS
me Mbe N™ = {n|a{™™ =1 forn e N}

e Third for CRA, all the small cells share the same channel
set, i.e., KC, so co-channel uplink transmissions may inter-
fere with each other. The MBS determines another binary
indicator, b\"™""* € B = {0,1}, for each combination
of SBS m € M, user n € ./\/t(m), and channel £ € IC,
which is equal to 1 (or 0) when channel k is (or is not)
allocated to user n being associated with SBS m. Thus,
let the third variable set be B; = {bgm’"’k) |me M,n €
N ke K} or BI™ = {b{™™" | n e N™ k€ K} for
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each SBS m € M, and the set of available channels bein
allocated to each pair of SBS m € M and user n € j\/t(m
be K™ = (k| ™™ =1 for k € K}

e Fourth for TPC, the transmit power of each user device is
adjustable within a power space, say P C R,. To support
spectrum reuse in the uplink, for each combination of SBS
m € M, usern € ./\/t(m), and channel k € ICEm’"), the MBS
makes user n being served by SBS m transmit data on
channel k with a certain power level pgm’n’k) € P. Thus,
let the fourth variable set be P; = {pgm’n’k) |me M,n e
j\/t(m}; k€ K§m77z)} or Pt(m) _ {pgm,Tl,,k) |7”L c ./vt(m),
ke Kﬁm’”)} for each SBS m € M.

In general, small cell deployment involves SCP and UCA,
while uplink resource allocation involves CRA and TPC.

For each stage ¢t = 1,2,...,T, the four sets of decision
variables are determined to optimize the objective of spectrum
sharing among movable small cells in the uplink. Because
each user device generates not only transmit power, but also
interference power in the eyes of others, it is reasonable to
minimize user devices’ power consumption (transmit power
levels) in every small cell. The benefits are twofold: transmit
power saving and mutual interference mitigation. Then, for
each SBS m € M, the objective function to be minimized
can be defined by

Uf(m) _ Z )\En)wém,n) Z pgm,n,k’)7 (1)
nenN™ kerimm

where each )\En) denotes user n’s demand (i.e., probability)
for channel access, which is assumed to be uncertain and
has to be learnt stage by stage; each wt(m’”) denotes user
n’s weight (or priority) for resource allocation, if n € ./\/t(m),
which characterizes the impact of the user’s transmit power on
spectrum sharing. To estimate user demand A§">, or user n’s
probability of uplink transmissions in stage ¢, traffic patterns
of user n over past stages can be utilized to compute user
n’s frequency of uplink transmissions by stage t. To define
user weight wgm’n), interference potentials of user n can be
evaluated. Some cell-edge users may generate stronger levels
of interference power to others, so they should be prioritized to
emit lower levels of transmit power. To achieve soft frequency
reuse in the uplink [39], one possible definition of wf”“”’, for

each pair of SBS m € M and user n € ./\/t(m), can be

>

(n,m)
m’eM,m’#m Ht

Ht(n,m/)

(mn) _
wt =

; )

where each H{™™ denotes propagation gain in the uplink
from user n to SBS m. If assuming the basic ground-to-air
path loss model [34], to be discussed later, this definition of
user weights can be distance-dependent and can be helpful
to optimize transmission/interference distances while placing
small cells. In the weighted sum of transmit power levels as
in (1) and (2), the values of ./\ft(m) and wgm’") for m € M,
n e ./\/t(m) are related to SCP and UCA, while the values of
K™ and p{™™ " form € M, n e N{™, ke KI™™ are
related to CRA and TPC.

There are a number of constraints for the minimization of
objective function. First, each user should be associated with
no more than one small cell in a certain stage. Note that each
small cell can still accommodate multiple users at a time. Thus,
UCA needs to satisfy

Z aﬁm’n) <1, forneN. 3)

meM

Second, within a certain small cell, each channel should be
allocated to no more than one user in a certain stage, to avoid
intra-cell interference in the uplink. Note that each user can
still take multiple channels at a time, and each channel can
still be shared among multiple users in different cells. Thus,
CRA needs to satisfy

ST o™t <1, forme M, kek. ()
”ENt(m)

Third, for a certain user in a certain small cell, transmit power
over each channel being taken should ensure required signal-
to-interference-plus-noise ratio (SINR). Thus, TPC needs to
satisfy
m,n,k n,m
P ‘aimm )
It(m’k) —I—Zék)

)

form e M,ne N™ ke k™, (5)

where each 7(") denotes user n’s requirement of SINR for
successful uplink transmissions; each Itm’k) denotes aggregate
interference power on channel & locally observed at SBS
m in stage ¢, which is generated from co-channel users in
neighboring cells; each Z(()k) denotes average noise power on
channel k. Fourth, when CRA and TPC are jointly considered,
each user within a certain small cell should take sufficient
number of channels to achieve required aggregate capacity
(per unit bandwidth). Thus, CRA and TPC need to satisfy

(mm,k)H(n,m)
> log <1+p—t : ) > 5,

(m,k) (k)
ke’C$7rt,7L) It 1 + ZO

form e M,n E./\/t(m), 6)

where each () denotes user n’s requirement of capacity for
satisfactory uplink transmissions, which can be collected as
user n requests channel access for an application.

In summary, the problem per stage for t = 1,2,...,T that
corresponds to each stage of the joint optimization of small
cell deployment and uplink resource allocation is defined as

P()I ﬁl’ldi Lt,At,Bt;Pf/;
minimize : U; = Z Ut(m)§
meM

st: (3),(4),(5), (6).

The formulated problem is a mixed-integer non-linear program
(MINLP), which is NP-hard in general [39]. There are four
sets of decision variables to determine, so the solution space
can be prohibitively large. The problem per stage is complex to
solve even assuming perfect global knowledge. Furthermore,
it is especially challenging to keep refining the solution to
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this problem stage by stage under user uncertainty. Instead
of solving it in a centralized way, we can decouple its two
subproblems—small cell deployment and uplink resource allo-
cation, and let both tiers of macro- and small cells alternately
contribute to problem solving.

IV. HYBRID MULTI-AGENT APPROACH

In this section, we introduce the basic idea of our solution
approach, and its two tiers of decision making will be elabo-
rated in the next two sections.

To make the original problem tractable, we propose a
hybrid multi-agent approach that follows a principal-agent
model [40], in which the MBS (as principal) learns user
demands from past stages and guides the SBSs (as agents) to
take their part of responsibility for problem solving. Specifi-
cally, our approach takes advantage of both the MBS’s capabil-
ity of online learning and each SBS’s potential of autonomous
governance. Once small cell deployment and uplink resource
allocation are decoupled, the first-tier MBS and the second-
tier SBSs can undertake these two subproblems, respectively.
On the one hand, the MBS should be in charge of the first
subproblem. It is important to solve SCP and UCA based on
a global picture of all small cells. On the other hand, given a
solution to small cell deployment, each SBS can be responsible
for its own part of the second subproblem. Within each small
cell, it is possible to solve CRA and TPC only based on local
knowledge of other small cells [39].

Our proposed approach operates with two tiers of sequential
decision making under user uncertainty, requiring the leading
MBS and the following SBSs to act alternately and evolve in
response to each other. In absence of a priori user knowledge,
reinforcement-learning-based models can be useful. On the
first tier, the MBS interacts with its environment (including the
SBSs), and refines its global decision according to the envi-
ronment’s feedback rewards. Similarly on the second tier, each
SBS interacts with its environment (including the MBS), and
refines its local decision according to the environment’s state
changes. The basic idea of our approach is illustrated in Fig. 1.
More specifically, according to the decision feedbacks in past
stages, the MBS refines its strategy for (multi-cell) SCP and
UCA to optimize the global objective. Meanwhile, the MBS
updates user knowledge through stage-by-stage reinforcement
learning. We consider an adversarial bandit model to derive a
mixed strategy that allows online exploration and exploitation.
In response, each SBS adapts its strategy for (single-cell)
CRA and TPC to optimize its local utility, a component of
the global objective. Under the guidance of the MBS, all the
SBSs participate in spectrum sharing through stage-by-stage
multi-agent reinforcement learning. Because of the conflict of
interest among coexisting small cells, we frame a stochastic
game model to obtain an equilibrium solution. Generally in
our hybrid approach, the first-tier MBS makes a sequence
of coarse-grained global decisions and leads the group of
all the second-tier SBSs, each of which makes a sequence
of fine-grained local decisions. As a result, all the entities
make their own contributions to solving the original problem.
Our approach can be responsive to initially unknown and

varying demands of user devices, and can be applicable to
a resource-constrained cellular system, despite a modest loss
of optimality.

V. SMALL CELL DEPLOYMENT

In this section, we focus on the refinement of the MBS’s
strategy for SCP and UCA. If considering the SBSs as part
of the environment, the MBS can learn user demands and
refine small cell deployment every time receiving a decision
feedback from such an environment. The feedback for a
MBS’s decision is actually concluded by its subsequent SBSs’
decisions thus is non-stochastic. Then, solving the subproblem
of small cell deployment stage by stage can be viewed as
playing with an adversarial or non-stochastic bandit [41].
In this model, one “arm” corresponds to one of the MBS’s
possible actions, but its reward distribution depends on the
SBSs’ responding actions and is thus not specifically known.
After certain stages of trying (i.e., pulling arms), learning
(i.e., updating reward beliefs), and adapting, the best global
strategy of the MBS is attainable, which is capable of address-
ing the exploration-exploitation trade-off.

A. Adversarial Bandit

For a finite time horizon, i.e., fort =1,2,...,T, the MBS
makes sequential decisions on small cell deployment by deal-
ing with an adversarial bandit problem, which can be defined
by a 2-tuple < LM x AMXN R () >: LM x AMXN g
a set of possible actions for the MBS, who takes an action
(L¢, Ay) € LM x AMXN in stage t; Ry(Ly, Ay) is a feedback
reward/cost for the MBS, which evaluates the applied action
(L, Ay) in stage t.

In each stage ¢, the MBS selects an action (L, A;) =
(L7, A7) from a probability distribution m over £M x
AMXN = (L1, AT)| = 1,2,...,|CM
each possible action (L7, A7) is assigned with a probability
mi (L7, A7). Tt is required to ensure that > m (L7, AV) = 1.
The reward/cost function R; needs to be deﬁned to favor the
strategy m; that minimizes the objective Uy in the problem Pg
on average. Hence, we can have

Ry(Ly, Ay) = Uy(Ly, Ay, Bf, PY), (7

which is an evaluation of not only the MBS’s applied action
(L¢, Ar) but also the SBSs’ best joint action (B, P/) in
response (hidden by the environment for the MBS). In this
way, minimizing the reward or actually the cost for spectrum
sharing is equivalent to optimizing the global objective.

In the finite time horizon, a mixed strategy of the MBS,
say m = {m |t =1,2,...,T}, is able to generate a sequence
of applied actions (L1, A1),..., (L7, Ar). Comparing those
m-chosen actions with the cost-minimizing one, the optimality
of 7 is evaluated with respect to the criterion of either expected
regret G™ or pseudo-regret G, which can be defined by

T T

= ZRt(Lt,At)—mjinZRt(Lj,Aj) ®)
t=1
T T
E > Ri(Li, Ar) —minE Z (L7, A%)| . (9)
t=1 t=1
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The final goal of the MBS is to derive a mixed strategy 7*
for small cell deployment such that

7 = argmin G™ or arg min G™,
s s

(10)

supposing the best responses of the SBSs behind the environ-
ment for uplink resource allocation.

B. Subproblem Solution

It is still challenging to solve the adversarial bandit problem
due to the huge size of the MBS’s action space LM x AMXN,
Fortunately, the two issues of SCP and UCA for small cell
deployment can further be decoupled. Particularly, the MBS
takes a primary action A4; € AM*N for UCA in every stage
t, i.e., to group N users into M clusters and associate each
user cluster with a small cell. Based on A;, the MBS takes a
secondary action L; € LM for SCP, i.e., to place each small
cell above its associated user cluster. It is beneficial to address
UCA before SCP (and subsequent CRA and TPC), because the
involvement of binary variables for UCA gives a finite number
of possible actions (arms) for the MBS’s sequential decision
making. Furthermore, each possible action A; leads the other
subsequent decisions within a stage, and can be evaluated
by a feedback cost R;(A;). Then, the action space can be
downsized to AM*N,

Before getting to find the optimal strategy or action of A, for
UCA in stage t, we put initial focus on deriving the optimal
action of L; for SCP assuming that A; is given. Note that
while handling the issue of SCP, the MBS does not directly
manage the subsequent issues of CRA and TPC, which have
become local to the SBSs after problem decoupling. In the
phase of SCP without knowing next decisions on CRA and
TPC, the MBS has to coarsely optimize the coverage of every
small cell, i.e., to optimize a part of the objective function in
(1), and help the SBSs further optimize the other part of it. The
idea here is that the transmission and interference distances
in the uplink can be minimized and maximized, respectively,
through the optimal placement of small cells. This can be an
indirect way of improving soft frequency reuse in the uplink.
Thus for SCP, the objective function in (1) is truncated to

Z )\g7z)w§m,7z)7 (11)

neN{™

V;(m) _

in which the values of )\( ") for n € N can be estimated
stage by stage the values of N, (™) and w(m ™) for m € M,
n e N™ (m)"are determined by A; and L, respectively.
The optimization of transmission/interference distances can
be achieved by properly defining w§’" ") for each pair of
SBS m and user n. If assuming the basic ground-to-air path
loss model [34], each value of propagation gain Ht("’m in
(2) is still inversely proportional to the Euclidean distance
dim’") = ||l§m) —1(m)] L (to the power of path loss exponent «),
between SBS m at ng € L and user n at (™ € L. Then, each
user weight can become a ratio of transmission/interference
distances. Alternatively, each user weight can be directly
defined like this, instead of following (2). Hence, we can

rewrite the above V™ as
v = ST @ S @t ()
nenN{™ m’eM,m’F#m

Then, according to the original problem Py of joint optimiza-
tion, the subsubproblem of SCP per stage can be defined as

Pscop: given: Ay

find : Ly;

minimize : V= > V"

meM
s.t.: z§m) e £ form e M.

Each SBS m only searches a location space £("™) C L that is
local to its associated users j\/t(m). According to optimization
theory, we can show that such a subsubproblem is directly
solvable.

Lemma 1: Given that in each stage t = 1,2,...,7,
the values of ./\ft(m) for m € M are fixed by a certain Ay,
and the values of w§"“”> for m € M, n € N\™ are defined
by (2), and each £ (m) for m € M is closed and convex, then
there exists the optimal solutlon L} to Pscp.

Proof: The distance d ) between any SBS m € M
and any user 1 € N only appears once in V;. Specifically,
if user n is associated with SBS m, their distance is considered
as a transmission distance in the part of (d(m n)) . if not,
it 1s,con51dered as an interference distance in the part of
(d™"™)=2 We can see that the minimization of V; for
SCP contributes to the maximization of inter-cell interference
distances as well as the minimization of intra-cell transmission
distances. If considering V; as a function of any l§"”> =

(xgm), t(m),zt(m)) e L™ the objective function becomes
the following form:
Vo= > @)
nEJ\/(m)
+ > @)+ (13)
nQNt("L)

where each /@ﬁ") or k¢ is a positive constant. The first part is

to minimize transmission distances in cell m, and the second
part is to maximize interference distances from the other cells.
In a small enough search space £(™), the minimization of
V; is dominated by the minimization of the first part, which
is a convex function of l(m) A typlcal contour plot of V;
with respect to (x§ ,yt ) (= t = 10 [32]) is illustrated
in Fig. 2, when associated users n € A" are generated
near this region’s center and interfering users n ¢ j\/t(m) are
distributed outside the local search space. Hence, any SBS
m can find its own optimal Z*(m) that helps minimize V;
while temporarily fixing the other SBSs. Through alternating
minimization, the optimal solution Lj that minimizes V; is
achievable for a given A;. 0

Existing non-linear optimization solvers, such as “fmincon”
in MATLAB, can be applied to optimize SCP subject to UCA.
For the reason that L} (and subsequent (B}, P;") for CRA
and TPC) always follows A;, the MBS’s sequential decision
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Fig. 2. An example of V; as a function of (mim),yt(m)) (in meters).

making can only involve finding A; stage by stage. To make
such decisions, the subsubproblem of UCA per stage can be
defined as

PUCA: find : At;
minimize : Uy = Z Ut(m);
meM
s.t.: (3).

This subsubproblem is the one to be addressed as an adversar-
ial bandit problem, in which the MBS’s action space is revised
to AM*N_ Because multiple users close to each other will
probably be associated with the same small cell nearby, these
users can be tied together for UCA and the action space can
further be replaced with a (small) subset of it. Alternatively,
the action space can be constructed based on the possibilities
of grouping N users into M clusters.

Consider a finite action space for UCA, say A7 = {A7|j =
1,2,...,J} € AMXN In each stage t, the MBS selects an
action A; = A7 from a probability distribution 7, over A7,
in which each possible action A7 is assigned with a probability
m(A7). It is also required to ensure that -, m (A7) = 1.
In bandit theory, the strategy 7, can be updated by applying
the exponential-weight algorithm [42]. Specifically, if the MBS
observes a cost R;(A;) after taking Ay, let

Re(A) ) i 4 — .
ﬂt(Aj)) lfAt—A,

wi (A7) exp(—n

wt+1(Aj) = (14)

otherwise,

where 7 is a control factor, which will be discussed later;
each w;;1(A7) denotes action A7’s weight for probabilistic
selection in stage ¢ 4 1, and is then normalized to
, Wit (A
Ta1 (A7) = #
Ej:l wit1(A7)

In this way, the strategy ;4 to be utilized in stage ¢t+1 can be
derived based on only the currently observed cost R;(A;) by
the end of stage t. Generally speaking, if the applied action
Ay = AJ returns a higher cost R;(A7), then this action A’
will be less preferred in the future and will be assigned with a
lower probability m;41(A’). The main steps are summarized
in Algorithm 1. In the finite time horizon, we are able to show

15)

Algorithm 1 Small Cell Deployment at the MBS
Lfort=1,2,...,7 do
2. if t == 1 then

for j=1,2,...,J do
initialize w; (A7) = 1 and m (A7) = %
end for
end if

select A7 = A’ from m; probabilistically

obtain L} according to A} via an optimization solver

send (L}, A}) to the SBSs, and wait for their responding

actions for uplink resource allocation

10: receive (B}, P;") from the SBSs, which can be obtained
according to (L}, AY) via locally running Algorithm 2

11:  compute R, (A} = A7) according to (L}, A}, B}, P})

12 if ¢ <T then

13: for j=1,2,...,J do

R A

14: update w;1(A’) and 741 (A7) via (14) and (15)
15: end for

16: end if

17: end for

that this algorithm provides regret guarantees for UCA, but it
is still heuristic due to the involvement of user uncertainty.

Theorem 1: Given that in a period of T stages, the MBS
runs Algorithm 1 to refine the probability distributions 7; over
A’ fort = 1,2,...,T, and generates a sequence of applied
actions Aj,..., A% accordingly, then there exists an upper
bound on expected regret G or pseudo-regret G™ in the finite-
horizon adversarial bandit defined by Pyc4.

Proof: It has been proven in [43] that the pseudo-
regret achieved by the exponential-weight algorithm is upper
bounded, and G™ < +v/2 TJ1InJ holds for a certain setting of
control factor 7 in (14). Moreover, the environment responds to
the MBS’s current action A} with a cost R;(Aj), which does
not depend on the MBS’s past actions A7, ..., Af_;, so the
environment is oblivious. In this case, the pseudo-regret equals
to the expected regret, which is thus also upper bounded, and
G™ < V2 TJInJ also holds. 0

In summary, the first subproblem can be solved by running
Algorithm 1 at the MBS, which interacts with Algorithm 2
locally run at each SBS, to be discussed in the next section.
The output of Algorithm 1 includes the MBS’s strategy for
(optimal) SCP and (heuristic) UCA along with a sequence of
corresponding actions.

VI. UPLINK RESOURCE ALLOCATION

In this section, we study the refinement of each SBS’s
local strategy for CRA and TPC under the guidance of the
MBS. If considering the MBS as part of the environment,
each SBS makes a contribution to uplink resource allocation
every time receiving a solution to small cell deployment from
such an environment. Because of potential mutual interference
among coexisting small cells, solving the subproblem of uplink
resource allocation stage by stage can be viewed as playing
with a stochastic or Markov game [40], [44]. In this model,
each SBS acts as a “player” on behalf of its entire small
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cell and may compete with others for spectrum sharing. The
MBS’s current action can be viewed as a system state that
guides the SBSs’ responding actions, which in return trigger
the transition to a new state (determined by the MBS’s next
action). After certain stages of refinement, the local strategies
of all the SBSs are expected to constitute an equilibrium in
the stochastic game for uplink resource allocation.

A. Stochastic Game

For a finite time horizon, i.e., for t = 1,2, ..., T, the group
of all the SBSs makes sequential joint decisions on uplink
resource allocation by being involved in a stochastic game
problem, which can be defined by a 5-tuple < M, LM x
AMXN BNXE o PNXEK 0 (.. ) R:(+,) >: M is a set
of game players, and each SBS m & M plays for its
own small cell; £M x AM*N {5 a get of system states,
and the leading action (L}, A) € LM x AMXN gives
the state in stage t; BY*K x PNXK is a set of possible
actions for each SBS m, who takes an action (Bt(m), Pt(m)) €
BNXE x pNXK in stage t, and equivalently the group of
SBSs takes a joint action (By, P;) € BMXNXEK  pMxNxK
in stage 1; Qt((Lra A?)v (Btv Pt)a (Lz+1v A:—l—l)) is a state
transition probability, which characterizes the likelihood that
the state moves from (L;, Af) in stage ¢ to (Lj,;, A, ) in
stage ¢t + 1 under the joint action (B, P;) taken in stage t;
Rﬁm)((Lz,A;‘), (B, P;)) is a feedback payoff/cost for each
SBS m, which evaluates the applied action (Bém),Pt(m))
taken at the state (L;, A}) in stage t.

In each stage t, each SBS m observes the state (L, A;)
and takes an action (B\™, P{"™). The resulting joint action
(Bg, P;) triggers the move to stage ¢ + 1 and the transition to
state (L, A7, ;). The function Q; can be estimated based
on the MBS’s mixed strategy. Let each

Qi((Ly, A7), (B, Pr), (Ligqs Afya))
= Pr{(L:-i-lv A:—l—l)'(L;ﬁka A:)v (Bt7 Pt)}
= Pr{A;karl (L:a A:)a (Bt7 Pt)} : Pr{L:Jrl'A:Jrl}v (16)

where the probability Pr{ A}, ,[(L}, A}), (B, P;)} is given by
741 for UCA, and the probability Pr{L; ,|Af, } depends
on how the non-linear optimization for SCP is solved and
can be estimated empirically if L}, is not unique to Ay, .
The payoff/cost function Rﬁm) for each SBS m should be
consistent with the reward/cost function R; for the MBS and
be a component of the global objective. Hence, let each

Rl(fm)((Lr’A;;s)7 (Btapt)) — Ut(m)(L:, A; Bt(M)’ Pt(m))’ (17)

which is a measure of SBS m’s applied action (Bém), Pt(m))
in response to the MBS’s leading action (L}, A}).

In the finite time horizon, a pure strategy of each SBS m,
say 60" = {95/””) [t = 1,2,...,T}, needs to be refined,
in which let each 6™ (L¥, A¥) = (B{™, P{"™). Given the
joint strategy of all the SBSs except SBS m, say 0™,
the optimality of #(™ can be evaluated with respect to
expected total discounted payoff/cost, which is defined by

T
GUTOT S g | N g R (B B)) |, (18)

t=1

where 5 € (0,1) is a discount factor used to put more focus on
more recent stages. The goal of SBS m is to derive a greedy
strategy 6*("™) for (local) uplink resource allocation such that

. (m) g(=m)
0*(™) = argmin G100}
g(m)

19)

More importantly, the set of all the SBSs’ greedy strategies,
0" = {60*("™)|m € M]}, should be able to establish an
equilibrium in the stochastic game.

B. Subproblem Solution

It is still challenging to guarantee that the SBSs can agree on
a common set of greedy strategies as an equilibrium solution
to the stochastic game problem. Due to the involvement of
binary variables for CRA like those for UCA, the two issues
of CRA and TPC for uplink resource allocation can further be
decoupled as well. Particularly, each SBS m takes a primary
action Bt(m) € BNXK for CRA in every stage t. Based
on the resulting B;, each SBS m takes a secondary action
P™ ¢ PNXK for TPC. Hence, each stage game that is a non-
cooperative game to be played repeatedly can be decoupled
into two subgames, for CRA and TPC respectively.

We first study one stage game in ¢. Before getting to find the
equilibrium solution of B, to the subgame for CRA in stage ,
we initially focus on deriving the optimal joint solution of P,
to the subgame for TPC assuming that B, is given. According
to the original problem Py, the subsubproblem of TPC per
stage to be locally solved by each SBS m can be defined as

Prpc: given: LF, Af By, P\
find: P™;
minimize : Ut(m);
st.: (5),(6).

Each SBS m may solve this subsubproblem multiple times
before its Pt(m) and others’ Pt(_m) establish an equilibrium.
According to the fixed point theorem in game theory [39],
we can show that the subgame problem defined by such a
subsubproblem is uniquely solvable.

Lemma 2: Given that in each stage t = 1,2,...,7,
the values of V™ for m € M and w!™™ for m € M,
n € ./\/t(m) are determined by (L}, A;), and the values of
lC,E"’””’ forme M, n ¢ ./\ft(m) are fixed by a certain B, and
P is closed and convex, then there exists the (unique) Nash
equilibrium P} in the subgame defined by Prpc.

Proof: The global objective is the weighted sum of
transmit power levels. If every user lowers down its transmit
power (also interference power to others) on each channel, all
the co-channel users would experience the minimum levels of
interference power and finally achieve their minimum levels
of transmit power when the equalities in (5) hold for basic
SINR guarantees. According to [39], the resulting set of all
users’” minimum power levels gives the optimal joint solution
P}, in which each Pt*(m) solves Prpc for one SBS m.
Furthermore, the solution P} to the system of equations
from (5) is shown to be unique. Following the same logic
as the proof for Theorem 1 in [39], we can prove that the
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fixed point theorem holds for the subgame for TPC. Hence,
the Nash equilibrium can be established by the unique P/ for
a given B;. (]

Some existing distributed algorithms can optimize TPC
subject to CRA, such as iterative water-filling algorithm.
Because P, always follows B;, we now focus on the subgame
for CRA. Each SBS m locally solves the subsubproblem of
CRA per stage, which can be defined as

Pcgra: given: Lf,A:,Bgim);
find: B™;

minimize : Ut(m);

st (4),(5), (6).

Each SBS m may solve this subsubproblem multiple times
before its B™ and others’ B{"™ are commonly agreed
upon. If the subgame problem defined by such a subsubprob-
lem can be solved in a distributed manner, we can show that
the stage game in ¢ converges to a Nash equilibrium.

In each stage t, each SBS m should locally make a
binary decision b\™"™*) for each pair of user n € N™
and channel £ € K. The greedy SBSs may not reach a
commonly agreed solution of B, due to potential mutual
interference. Even without timely coordination among the
SBSs, however, we can still guarantee the convergence of
the subgame for CRA through a distributed algorithm for
uplink spectrum reuse [39]. Specifically in each small cell
m, channel allocation for each user n depends on its weight
wt(m’"). According to the definition of user weights in (2),
the users with larger weights are either more likely to cause
interference to others or more vulnerable to interference from
others. Hence, such users should be prioritized to get high-
quality channels. For channel quality evaluation, each SBS m
can locally observe the aggregate interference power I, (m.k)
on each channel k, so the good channels can be dedicated
ones or shared ones with low interference levels. Then based
on both user weights and interference measurements, each SBS
can take its associated users in turns, each of which should
be allocated with certain channels subject to the constraints
4), (5), (6). Every user needs to emit sufficiently high (but
not so high) level of transmit power on each taken channel
for acceptable SINR, and also needs to get sufficient number
of channels for desired aggregate capacity. Given that the
equalities in (5) hold after the adaptation of power levels, then
to further ensure (6), the number of channels to be allocated
to each user n € A/ can be computed by

KM = { (20)

5
log(1 + 7‘"% '
As summarized in Algorithm 2, each SBS m obtains a solution
(m) L .
of B, heuristically, and may further refine it in response to
the joint solution of Bé_m) from other SBSs.
To guarantee the convergence of the subgame for CRA,
we rewrite each local objective Ut(m) by adding a cost function

DI

keK

(m)It(m) _

o™ = @1

Algorithm 2 Uplink Resource Allocation at Each SBS m

Lfort=1,2,...,7 do

2:  wait for the leading action for small cell deployment

3. receive (L, AY) from the MBS, which can be obtained
via running Algorithm 1

4: initialize Bém to a certain solution and (™ to a

positive constant goém), and play the subgame for CRA

5. repeat

6: wait for the next turn to refine Bt(m), while others are
taking turns to refine B\ "™

7: obtain Pt(m) according to the current Bt(m) in the

subgame for TPC and measure [, (k) for k € K

8: compute R ) ace. to the current (L;", A;", B(m) P(m))

o,  set U™ = R, 1™ = S 0] Uom) =
U(m) + (m)Ié ™) accordingly, and set B(()m) B(m)

10: sort the sequence of users n € N, (m) by their values of

wt(m ™) in descending order, and let the sorted sequence

of users be N' = {ny,ng,... N(m)}

11: reset Bé ™) — 0, and measure I(m’ ) for k € K
12: sort the sequence of channels k£ € /C by their values of

It(m’k) in ascending order, and let the sorted sequence
of channels be K = {ky,ko,..., kx}
13: fori—1,2,...,Nt(m) do
14: for]_l,?,.. K do
(m
15: it S0 p{™ ") —— 0 then
" n;.k (n) _
16: set by ki) _ 1,... bk HEEESL g
17: end if
18: end for

19: end for

20: obtain Pt(m) according to the updated Bt(m) in the
subgame for TPC, and measure It(m’k) for ke C

21:  compute R\™ acc. to the updated (L;,A;,B"™.P\™)

2 set UM = R™ [m) — >rerc L 1R - grm)
um 4 ga(m)l(m) accordingly

23: it U0 > U ) then

24: set B(m) B( ™) (give up this updated B(m))
25: end if

26 if (U™ < U™ && 10 < I§™) then

27: increase go(m) by a positive constant ga( ™)

28: end if

29: until the end of stage ¢

30: end for

where (") is a positive price factor used to “punish” SBS m
if its strategy Bt(m) does not contribute to the desired equilib-
rium. More details are described in Algorithm 2. According to
the Lyapunov’s direct stability theorem in non-linear control
theory [40], [45], we can show that the convergence of the
stage game in t for CRA and TPC to an equilibrium can be
guaranteed.

Lemma 3: Given that in each stage t = 1,2,...,T, all the
SBSs run Algorithm 2 independently to act in response to
(Ly, Af), then there exists a Nash equilibrium (B, P)) in
the stage game defined by Pora and Prpc.
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200

Fig. 3. An example of simulation scenario (in meters): triangles represent
UAV-mounted SBSs; circles and squares represent user devices; and colors
represent user-cell associations.

Proof: The adaptation of price factor in Algorithm 2
makes ¢(™) be non-decreasing and Uém) be decreasing. Once
©(™) has been increased to always make um > Uém)
hold, SBS m no longer changes its strategy B, (™) in the
subgame for CRA, which then gives the minimum U (m),
Once all the SBSs give up acting in the subgame for CRA,
a certain common B; is agreed upon. After that, the unique
Py is obtained in the subgame for TPC under the fixed B;.
Following the same logic as the proof for Theorem 2 in [39],
we can prove that the converged solution (B;, P is a critical
point and Y\ ( Aém) — Ug(m)) is a Lyapunov function,
so the Lyapunov’s direct stability theorem holds for the stage
game. Therefore, a Nash equilibrium can be established by the
stable (B}, P;) for a given (L}, A}). O

After the analysis of one stage game in ¢, we study the
multi-stage stochastic game that includes a sequence of such
stage games for ¢ = 1,2,...,T. In the finite time horizon,
we are able to prove the existence of an equilibrium solution.

Theorem 2: Given that in a period of T stages, the MBS
runs Algorithm 1 to control the state transitions from (L;, A})
to (Lj ,A;y) for t = 1,2,...,7 — 1, and all the
SBSs run Algorithm 2 independently to generate a sequence
of Nash equilibria (B}, P;"),..., (B}, P;) accordingly, then
there exists a Markov-perfect equilibrium @ in the finite-
horizon stochastic game defined by Pcr4 and Prpe.

Proof: According to game theory, a finite-horizon multi-
stage game always has a subgame-perfect equilibrium as
long as each of its stage games has a Nash equilibrium.
Therefore, a Markov-perfect equilibrium 6%, i.e., a subgame-
perfect equilibrium in Markov strategies, can be established
by (B}, Py),..., (B}, P;) in this stochastic game [40]. O

In summary, the second subproblem can be solved by
running Algorithm 2 locally at each SBS, which interacts with
Algorithm 1 run at the MBS. The output of Algorithm 2 is the
SBS’s local strategy for (heuristic) CRA and (optimal) TPC
as part of an equilibrium solution.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our hybrid multi-agent approach
by simulations in MATLAB. Specifically, we consider an out-
door hotspot with the size of 200 x 200 in meters, in which M
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Fig. 4. Convergence behavior of our approach (T = 2500, 1o = 1 x 10%).

UAV-mounted small cells are deployed to serve N randomly
distributed user devices by sharing K available channels.
An example of it is shown in Fig. 3, where M = 5 and
N = 40. In each stage t = 1,2,...,T, each user n € N/
transmits uplink data with a constant yet hidden probability
A" which can be estimated based on user n’s frequency of
uplink transmissions by stage ¢. In Algorithm 1, the action
space for UCA, A”, should not be too large due to the online
feature of our approach. To get a tractable value of .J, for
example in Fig. 3, the potentially “inner” users for a cell
(circles with the same color) can be associated with the same
SBS, and each of the potentially “edge” users for any cell
(squares with changeable colors) can be associated with one
of the nearest SBSs. Using such a heuristic, we can make
J = 256 for this example with a modest loss of optimality. For
each SBS m € M, its local search space for SCP, Lm c L,
is limited to a convex 3D space above its associated user
cluster j\/t(m) on the ground, and is lower bounded by the

minimum altitude of 10 meters [32]. We set the control factor

7= oy

factor for R; in (14). In Algorithm 2, the search space for
TPC, P, is a convex space that is upper bounded by the
maximum transmit power of 23 dBm. We set other parameters
in Algorithm 2 as follows: the threshold of SINR for each user
n, 'y(”) = 15 dB; the number of channels for each user n,
K™ = 1; the path loss exg)onent « = 3; the average noise
power on each channel &, Zok) = —104 dBm; the price factor
go(()m) = gogm) = 1. Now we evaluate our approach on four
aspects.

in Algorithm 1 [43], where 7y is a scale

A. Convergence Behavior

Our approach involves two tiers of decision-making entities,
so Algorithms 1 and 2 need to coordinate efficiently and
converge eventually to a final joint strategy. To clearly show
convergence behavior, we can keep track of the objective
value achieved by our approach. In each stage ¢, a leading
action A; = AJ is chosen from a probability distribution
m over A7, and a feedback cost Ry = U, is received
thereafter. Hence, we can compute the expected cost value,
say Uy = ), Up(A7)m (A7), where each Uz(A7) records the
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Fig. 5. Impact of 17 on convergence behavior (7" = 2500, K = 24).

minimum cost for a possible action A7 € A’ by stage T.
Given a sufficiently large value of 7', the typical changing
process of Uy is exemplified in Fig. 4. We set T = 2500,
but our approach runs fast in each stage thanks to its low
complexity. We can see that as user knowledge is accumulated
after an initial evaluation of all possible actions, the refinement
of 7 gradually stabilizes U; given a value of K. Despite
minor probabilistic fluctuations, our approach can steadily
converge to a certain level of objective value. The online
capability of our approach allows it to be terminated anytime.
Furthermore, we adjust the value of n or 1y to analyze its
impact on convergence progress, which is shown in Fig. 5.
We can see that a larger 7 gives a faster convergence process,
while a smaller 7 gives a slower convergence process. In the
following, we set g = 1 x 108. Overall, it is suggested that
the convergence behavior of our approach is satisfactory.

Even though common wireless devices in an outdoor
hotspot, e.g., event spectators’ mobile devices or regular
sensor nodes, do not change their locations significantly while
being served, we still evaluate the impact of low-level user
mobility on the convergence of our approach. A random
waypoint model is used to generate user mobility patterns.
Each user occasionally moves towards a random destination
with a random walking-level speed from 0 to 3 meters/stage.
The pause time of a user is randomly chosen from
300 to 500 stages. Like above, the convergence process in
terms of U, is exemplified in Fig. 6. We can see that while
the action space for UCA keeps temporarily unchanged, our
approach converges as usual despite small user movements in
nearly every stage. Once the action space has to change, our
approach needs to redo its strategy refinement. Here the best
actions in the past are recorded, so that they can be assigned
with high selection probabilities (if still in the action space)
to accelerate the convergence process. Therefore, our approach
can support a certain level of user mobility.

B. Strategy Correctness

Our approach is driven by the MBS’s sequential decision
making under user uncertainty. To verify the correctness of
probabilistic action taking at the MBS, we can find out
the correlation between each action’s selection probability
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and its feedback cost. For each possible action A7 € A7,
we can obtain its selection probability 7;(A7) and its current
minimum cost U; (A7) in a certain stage ¢. The distribution
of 7, and that of U; can be illustrated together as in Fig. 7.
We can see that the high-probability actions match exactly
with the low-cost ones given a value of K, and the selection
probability peaks at the least costly action if ¢ is large enough.
The best action stands out more easily for a smaller K
in Fig. 7a, since there are more alternative options available
for a larger K in Fig. 7b. Note that when K is fairly small, not
all the possible actions ensure a feasible solution to our joint
optimization problem due to overcrowding in shared spectrum.
If an infeasible action is taken, our approach returns a huge
cost that exceeds the normal range, as in Fig. 7a, so that this
action will no longer be considered in the following stages.
Furthermore, the refinement of 7, with ¢ is explained in Fig. 8.
We can see that a few “good” actions in Fig. 8a are eventually
narrowed down to the “best” one in Fig. 8b. This indeed helps
our approach converge to a final joint strategy. Therefore,
the strategy correctness of our approach can be guaranteed,
especially after a sufficient number of stages.

C. Power Consumption

Our approach aims to minimize the weighted sum of all
users’ power consumption (transmit power levels). To evaluate
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the gain in transmit power saving, we compare our hybrid
multi-agent approach with a fully centralized counterpart. This
benchmark approach operates with perfect global knowledge,
including hidden user demands, and centrally manages all
the issues of SCP, UCA, CRA, TPC. Hence, it derives the
optimal solution to our joint optimization problem iteratively,
instead of operating in a multi-stage manner. Due to the
intractability of the original problem, this centralized approach
still follows our logic of problem decoupling. It addresses
the two subproblems through a clustering-based revision of
Algorithm 1 [16], [34] and a cooperative-game-based revision
of Algorithm 2, respectively. After a number of random
runs, we can work out the empirical cumulative distribution
function (ECDF) of the ratio of the hybrid’s objective val-
ues Uy for t = tp,...,to + 7 to the centralized’s optimal
objective value U*, as shown in Fig. 9. We can see that
our hybrid approach achieves nearly as good performance
as the centralized counterpart most of the time, even though
our approach makes decisions probabilistically. Moreover, our
approach allows online decision making without a priori global
knowledge and supports computational workload offloading.
Furthermore, the refinement of 7; for t = tg,...,ty + 7 has
its impact on the ECDF of U;, which is shown in Fig. 10.
We can see that as our hybrid approach evolves with richer
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Fig. 10. Impact of to on ECDF of power consumption (K = 24, 7 = 300):
(a) to = 300 (top-left); (b) to = 600 (top-right); (c) to = 900 (bottom-left);
(d) to = 1200 (bottom-right).

TABLE 11
SPECTRAL EFFICIENCY OF OUR APPROACH

| N=20 N=40 N=60 N =80
9.8 194 28.6 37.3
9.3 18.3 27.0 35.1

user knowledge and wiser action taking, its performance gap
with the centralized counterpart becomes narrower. Therefore,
our approach can operate efficiently and effectively with a
modest loss of optimality in power consumption.

D. Spectral Efficiency

Our approach minimizes the users’ levels of interference
power as well as their levels of transmit power, so it is expected
to bring a further advantage in spectrum sharing in the uplink.
To evaluate the gain in mutual interference mitigation while
enabling spectrum reuse among co-located small cells, we can
examine the feasibility of accommodating all the users under
limited spectrum availability. If K is too small, as mentioned
above, it is likely that none of the possible actions achieves
a feasible solution to our joint optimization problem. Hence,
we can find out the minimum K, say K*, that ensures at least
one feasible solution. After multiple runs for a combination
of M and N, the average value of K* is computed and is
presented in Table II. Here we assume that each user takes one
channel at a time. We can see that our approach supports the
sharing of one channel among more than two users on average,
ie., Ki > 2, so such spectral efficiency is as good as that
n [39]. Generally, a smaller K* can be achieved for a certain
N if given a larger M thanks to greater spectrum reuse. In fact,
the mobility of small cells can bring extra benefits to spectrum
sharing, such as keeping inter-cell interference distances long
enough and making intra-cell transmission distances as short
as possible. The deployment of stationary small cells, however,
can only be viewed as a feasible solution and cannot be
further optimized. Therefore, the spectral efficiency of our
approach can be favorable while jointly optimizing small cell
deployment and uplink resource allocation.
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E. Implementation Considerations

For practical applications, our approach should be imple-
mented in a plug-and-play fashion. As user devices are tem-
porarily gathered outdoors, the MBS’s global decisions have
to rely on minimum priori user knowledge. Serving as a
prerequisite for on-demand deployment of small cells, user
demands need to be learnt first and are generalized here for
regular uplink transmissions. If data usage patterns of user
devices can be obtained in detail, small cell services can be
further customized, such as collecting different types of data
in different ways. In addition, user locations need to be known
to enable on-demand, location-based services. As each small
cell moves to cover its target spot, the SBS’s local decisions do
not have to require timely inter-cell coordination. To support
soft frequency reuse in the uplink, user weights can be defined
based on transmission/interference distances (instead of prop-
agation gains), and channel quality can be evaluated only
based on local interference measurements. Once such system
knowledge has been gradually accumulated, our approach can
adapt its global and local strategies accordingly.

Even if given perfect global knowledge, a hybrid approach
should still be preferred to a completely centralized approach,
in consideration of the need for online decision making.
Most outdoor hotspots only last for several hours, so the
optimal but computationally infeasible solution is not useful.
Instead, our approach adopts some heuristics. The complexity
of Algorithm 1 is mainly determined by that of centralized
optimization for SCP (Lemma 1), which can be approxi-
mated as alternating minimization of intra-cell transmission
distances. This results in multiple tractable iterations. Given
user clusters for UCA, this approximation can be achieved
by initially placing each SBS above, e.g., the centroid of
its associated user cluster. The complexity of Algorithm 2 is
mainly contributed by that of sorting operations for CRA and
that of distributed optimization for TPC (Lemma 2). These
do not involve sophisticated computations. If there are too
many users making the system overly complex, the most
demanding ones can be selected to enjoy small cell services
while the other ones still receive macro-cell services. As a
result, the original problem can be heuristically solved in each
stage. The duration of a stage should be short to help capture
user dynamics and take prompt actions, while it should not be
too short to give sufficient set-up time. Although small cells
can hover or remain still to offer reliable outdoor coverage,
they may change their hovering points during convergence
process. Long-distance movement of a SBS can be avoided by
restricting its candidate user clusters for UCA within a certain
vicinity. Ideally, each stage can take two or three seconds,
which allow small cells to be rapidly deployable in a few
minutes and enable a typical UAV to move at least ten meters.
In summary, our approach can be implemented in practical
situations.

VIII. CONCLUSION

In this paper, we focus on spectrum sharing among rapidly
deployable small cells in the uplink, which is emphasized for
uploading-intensive outdoor hotspots. This requires to deal

with a user-centric, online joint optimization of small cell
deployment and uplink resource allocation, and requires a
low-complexity solution. We have proposed a hybrid multi-
agent approach, which operates with two tiers of sequential
decision making under user uncertainty. The leading MBS runs
Algorithm 1 to derive a mixed strategy for SCP and UCA,
based on which the following SBSs run Algorithm 2 inde-
pendently to construct an equilibrium solution for CRA and
TPC. We have proved that the convergence of our approach
to a joint strategy is guaranteed for each stage and for a finite
time horizon. Our approach is further validated by simulations
on the aspects of convergence behavior, strategy correctness,
power consumption, and spectral efficiency. We have shown
that our hybrid approach achieves nearly as good performance
as its centralized counterpart, but our approach is advantageous
in that it allows online decision making without a priori global
knowledge and supports computational workload offloading.
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