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Abstract
We propose a near-optimal method for highly smooth convex optimization. More precisely, in the
oracle model where one obtains the pth order Taylor expansion of a function at the query point, we
propose a method with rate of convergence Õ(1/k

3p+1
2 ) after k queries to the oracle for any convex

function whose pth order derivative is Lipschitz.
Keywords: Convex optimization, unconstrained minimization, tensor methods, oracle complexity,
smoothness

1. Introduction

In this paper we generalize the important phenomenon of acceleration in smooth convex optimiza-
tion Nemirovski and Yudin (1983); Nemirovski (1982); Nesterov (1983) to higher orders of smooth-
ness. We consider a pth-order Taylor expansion oracle, that is given a query point x ∈ Rd it returns
a pth order Taylor expansion of the objective function f at the point x:

fp(y, x) = f(x) +

p∑
i=1

1

i!
∇if(x)[y − x]i.

We propose a new optimization method based on such oracle, see Algorithm 1, which we term ac-
celerated Taylor descent (ATD). We prove that it attains a nearly optimal rate of convergence under
higher order smoothness (the matching lower bounds were recently proven in Agarwal and Hazan
(2018); Arjevani et al. (2018)), namely after Õ(k) calls to the oracle it achieves error O(1/k

3p+1
2 ).

This improves upon the O(1/kp+1) derived in Y. (2018) (both rates match for p = 1, i.e., the clas-
sical acceleration setting), and it matches the rate given in Monteiro and Svaiter (2013) for p = 2.
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Theorem 1 Let f denote a convex function whose pth derivative is Lp-Lipschitz and let x∗ denote
a minimizer of f . Then ATD satisfies, with cp = 2p−1(p+ 1)

3p+1
2 /(p− 1)!,

f(yk)− f(x∗) ≤ cp · Lp · ‖x∗‖p+1

k
3p+1

2

. (1)

Furthermore each iteration of ATD can be implemented in Õ(1) calls to a pth-order Taylor expan-
sion oracle. More precisely, given a precision ε > 0, at each iteration k, using at most

30p log2 p+ log2

⌈
Lp‖x∗‖p+1

ε

⌉
calls to the pth-order Taylor expansion oracle we find either a point y such that f(y)− f(x∗) ≤ ε,
or we find yk.

Our method is largely inspired by Monteiro and Svaiter (2013), which focuses on p = 2 , and we
recall their framework in Section 2. We then specialize this framework to higher order smoothness
in Section 3, where we derive and analyze ATD. A subtle point of ATD is that an iteration requires
more than one call to the oracle due to the “line-search” [line 4, Algorithm 1]. We prove that Õ(1)
calls suffice to implement an iteration in Section 4.

We note that the independent work Gasnikov et al. (2018), currently only available in Russian,
derive a similar result to (1). From our understanding of their work it seems however that they do not
work out the precise complexity of the binary search step (second part of the statement in Theorem
1, see also Section 4). Finally we note that yet another independent work Jiang et al. (2018) was
posted on the arxiv a couple of days prior to us, with a similar result to Theorem 1. Interestingly it
seems that their argument to control the complexity of the binary search is different (at least on the
surface) from ours.

Remark 2 The definition of ak+1 was chosen such that λk+1Ak+1 = a2k+1. To see this, note that
ak+1 is a solution to a2k+1 − λk+1ak+1 − λk+1Ak = 0, which is equivalent as Ak+1 = Ak + ak.

2. Monteiro-Svaiter acceleration framework

Recall that Nesterov’s accelerated gradient descent Nesterov (1983, 2004) produces a sequence of
the form:

yk+1 = x̃k − λk+1∇f(x̃k) , (2)

for some step size λk+1 and “momentum” point x̃k. In this section we consider a variant proposed
by Monteiro and Svaiter which replaces the gradient step by a form of “implicit gradient step”,
namely:

yk+1 ' x̃k − λk+1∇f(yk+1) .

The rest of the section is merely a rewriting of Monteiro and Svaiter (2013), with the objective to
motivate and prove the following result:

Theorem 3 Let (yk)k≥1 be a sequence of points in Rd and (λk)k≥1 a sequence in R+. De-
fine (ak)k≥1 such that λkAk = a2k where Ak =

∑k
i=1 ai. Define also for any k ≥ 0, xk =

−
∑k

i=1 ai∇f(yi) (in particular x0 = 0) and x̃k :=
ak+1

Ak+1
xk +

Ak
Ak+1

yk. Finally assume that

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ ≤ ‖yk+1 − x̃k‖ . (3)

2
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Algorithm 1 Accelerated Taylor Descent
1: Input: convex function f : Rd → R such that ∇pf is Lp-Lipschitz.
2: Set A0 = 0, x0 = y0 = 0
3: for k = 0 to k = K − 1 do
4: Compute a pair λk+1 > 0 and yk+1 ∈ Rd such that

1

2
≤ λk+1

Lp · ‖yk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
,

where

yk+1 = argmin
y

{
fp(y; x̃k) +

Lp

p!
‖y − x̃k‖p+1

}
,

and

ak+1 =
λk+1 +

√
λ2k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1 , and x̃k =

Ak

Ak+1
yk +

ak+1

Ak+1
xk .

5: Update xk+1 := xk − ak+1∇f(yk+1)
6: end for
7: return yK

Then one has for any x ∈ Rd,

f(yk)− f(x) ≤ 2‖x‖2(∑k
i=1

√
λi

)2 . (4)

Furthermore if one has the following refined guarantee, for some σ ∈ [0, 1],

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ ≤ σ · ‖yk+1 − x̃k‖ , (5)

then one also has
k∑

i=1

Ai

λi
‖yi − x̃i−1‖2 ≤

‖x∗‖2

1− σ2
. (6)

To illustrate the power of Theorem 3, observe that for a L1-smooth function (first-order smooth-
ness) one has that Nesterov’s accelerated gradient descent (2) directly satisfies (3) provided that
λk+1 = 1

L1
(i.e., the classical step-size for smooth convex optimization). Using (4) this immedi-

ately shows that (2) has a rate of convergence of O(1/k2)
The key to higher-order acceleration will be to show that in fact one can take λk to be an

increasing function of Ak, thanks to a careful use of (6). This will be done in Section 3.
We now embark on the road leading to Theorem 3.

2.1. Estimate sequence style analysis

Similarly to the original construction by Nemirovski Nemirovski and Yudin (1983); Nemirovski
(1982) (and taking inspiration from the conjugate gradient method) the starting point is to consider

3
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a linear combination of past gradients: xk := −
∑k

i=1 ai∇f(yi), where both the coefficients (ai)
and the query points (yi) are yet to be defined. In the spirit of Nesterov’s estimate sequence analysis,
a key observation for such linear combination of gradients is that it minimizes an approximate lower
bound on f :

Lemma 4 Let ψ0(x) = 1
2‖x‖

2 and define by induction ψk(x) = ψk−1(x) + akf1(x, yk). Then
xk = −

∑k
i=1 ai∇f(yi) is the minimizer of ψk, and ψk(x) ≤ Akf(x) +

1
2‖x‖

2 where Ak =∑k
i=1 ai.

The next idea is to produce a ”control sequence” (zk)k≥1 demonstrating that ψk is not too far
below Akf , which in turn would directly yield a convergence rate for zk of order 1/Ak:

Lemma 5 Let (zk) be a sequence such that

ψk(xk)−Akf(zk) ≥ 0 . (7)

Then one has for any x,

f(zk) ≤ f(x) +
‖x‖2

2Ak
. (8)

Proof One has (recall Lemma 4):

Akf(zk) ≤ ψk(xk) ≤ ψk(x) ≤ Akf(x) +
1

2
‖x‖2 .

2.2. A proof by induction

Our goal is now to come up with sequences (ak, yk, zk) satisfying (7). The following lemma,
resulting from elementary calculations, reveals a simple condition to obtain (7) from an induction
argument:

Lemma 6 One has for any x,

ψk+1(x)−Ak+1f(yk+1)− (ψk(xk)−Akf(zk))

≥ Ak+1∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
zk − yk+1

)
+

1

2
‖x− xk‖2 .

Proof First we note that (the first equality follows from the fact that the Hessian of ψk remains the
identity for any k):

ψk(x) = ψk(xk) +
1

2
‖x− xk‖2, and ψk+1(x) = ψk(xk) +

1

2
‖x− xk‖2 + ak+1f1(x, yk+1) ,

so that
ψk+1(x)− ψk(xk) = ak+1f1(x, yk+1) +

1

2
‖x− xk‖2 . (9)

4
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Now we want to make appear the term Ak+1f(zk+1)−Akf(zk) as a lower bound on the right hand
side of (9) when evaluated at x = xk+1. Using the inequality f1(zk, yk+1) ≤ f(zk) we have:

ak+1f1(x, yk+1) = Ak+1f1(x, yk+1)−Akf1(x, yk+1)

= Ak+1f1(x, yk+1)−Ak∇f(yk+1) · (x− zk)−Akf1(zk, yk+1)

= Ak+1f1

(
x− Ak

Ak+1
(x− zk), yk+1

)
−Akf1(zk, yk+1)

≥ Ak+1f(yk+1)−Akf(zk) +Ak+1∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
zk − yk+1

)
,

which concludes the proof.

From Lemma 6 we see that it is natural to take for the control sequence zk := yk, so that:

ψk+1(x)−Ak+1f(yk+1)− (ψk(xk)−Akfk(yk)) (10)

≥ Ak+1∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
yk − yk+1

)
+

1

2
‖x− xk‖2 . (11)

We would like to pick the query point yk+1 so that (11) is nonnegative when evaluated at x = xk+1

(to satisfy (7)). One difficulty is that xk+1 itself depends on yk+1, so in fact we will pick yk+1 so
that the right side is nonnegative for all x. We write this as follows:

Lemma 7 Denoting λk+1 :=
a2k+1

Ak+1
and x̃k :=

ak+1

Ak+1
xk +

Ak
Ak+1

yk one has:

ψk+1(xk+1)−Ak+1f(yk+1)− (ψk(xk)−Akf(yk))

≥ Ak+1

2λk+1

(
‖yk+1 − x̃k‖2 − ‖yk+1 − (x̃k − λk+1∇f(yk+1))‖2

)
.

In particular, we have in light of (5)

ψk(xk)−Akf(yk) ≥
1− σ2

2

k∑
i=1

Ai

λi
‖yi − x̃i−1‖2.

Proof We apply Lemma 6 with zk = yk and x = xk+1, and note that (with x̃ :=
ak+1

Ak+1
x+ Ak

Ak+1
yk):

∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
yk − yk+1

)
+

1

2Ak+1
‖x− xk‖2

= ∇f(yk+1) · (x̃− yk+1) +
1

2Ak+1

∥∥∥∥Ak+1

ak+1

(
x̃− Ak

Ak+1
yk

)
− xk

∥∥∥∥2
= ∇f(yk+1) · (x̃− yk+1) +

Ak+1

2a2k+1

∥∥∥∥x̃−
(
ak+1

Ak
xk +

Ak

Ak+1
yk

)∥∥∥∥2 .
This yields:

ψk+1(xk+1)−Ak+1f(yk+1)− (ψk(xk)−Akf(yk))

≥ Ak+1 · min
x∈Rd

{
∇f(yk+1) · (x− yk+1) +

1

2λk+1
‖x− x̃k‖2

}
.

It only remains to compute the value of this minimum, which is an easy exercise.

5
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2.3. Proof of Theorem 3

For the first conclusion in Theorem 3, it suffices to combine Lemma 7 with Lemma 5, and to use
the following observation:

Lemma 8 Let (λk) be a sequence of nonnegative numbers. Define (ak) to be another sequence
of nonnegative numbers such that λkAk = a2k, where Ak =

∑k
i=1 ai. In other words one has

ak =
λk+

√
λ2
k+4λkAk−1

2 . Furthermore one also has:

√
Ak ≥ 1

2

k∑
i=1

√
λi .

Proof It suffices to observe that:

ak =
λk +

√
λ2k + 4λkAk−1

2
≥ λk

2
+
√
λkAk−1 ≥

(√
λk
2

+
√
Ak−1

)2

−Ak−1 .

The second conclusion in Theorem 3 follows from Lemma 7 and Lemma 4.

3. Accelerated Taylor Descent

Nesterov’s accelerated gradient descent (2) (with λk = 1/L1) can be rewritten as:

yk+1 = argmin
y∈Rd

f1(y, x̃k) +
L1

2
‖y − x̃k‖2 .

We naturally propose to use the following generalization for higher-order smoothness, which we
term accelerated Taylor descent (ATD):

yk+1 = argmin
y∈Rd

fp(y, x̃k) +
Lp

p!
‖y − x̃k‖p+1 . (12)

The term ‖ · ‖p+1 is added to ensure that the function being optimized is strictly convex. In Sec-
tion 3.1 we first show that ATD satisfies (3) for a special value of λk+1 defined in terms of yk+1.
We point out that there is an intricate issue here, in the sense that yk+1 depends on λk+1 (through
the definition of x̃k), and thus we will have to select the the pair (yk+1, λk+1) simultaneously rather
than sequentially. This is detailed in Section 3.2. Finally in Section 3.3 we use (6) with the special
values of (λi) to derive the rate of convergence from Theorem 1.

3.1. ATD and implicit gradient descent with large step size

The following lemma shows that minimizing the pth order Taylor expansion (12) can be viewed as
an implicit gradient step for some “large” step size:

Lemma 9 Equation (5) holds true with σ = 1/2 for (12), provided that one has:

1

2
≤ λk+1

Lp · ‖yk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
. (13)

6
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Proof Observe that the optimality condition gives:

∇yfp(yk+1, x̃k) +
Lp · (p+ 1)

p!
(yk+1 − x̃k)‖yk+1 − x̃k‖p−1 = 0 . (14)

In particular we get:

yk+1−(x̃k−λk+1∇f(yk+1)) = λk+1∇f(yk+1)−
p!

Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1
∇yfp(yk+1, x̃k) .

By doing a Taylor expansion of the gradient function one obtains:

‖∇f(y)−∇yfp(y, x)‖ ≤ Lp

p!
‖y − x‖p ,

so that we find:

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖

≤ λk+1
Lp

p!
‖yk+1 − x̃k‖p +

∣∣∣∣λk+1 −
p!

Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1

∣∣∣∣ · ‖∇yfp(yk+1, x̃k)‖

≤ ‖yk+1 − x̃k‖
(
λk+1

Lp

p!
‖yk+1 − x̃k‖p−1 +

∣∣∣∣λk+1
Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1

p!
− 1

∣∣∣∣)
= ‖yk+1 − x̃k‖

(
η

p
+

∣∣∣∣η · p+ 1

p
− 1

∣∣∣∣)
where we used (14) in the second last equation and we let η := λk+1

Lp·‖yk+1−x̃k‖p−1

(p−1)! in the last
equation. The result follows from the assumption 1/2 ≤ η ≤ p/(p+ 1) in (13).

3.2. A continuity argument

We now claim that there exists a pair (yk+1, λk+1) that satisfies simultaneously (12) and (13). This
is a direct consequence of the following lemma.

Lemma 10 Let A ≥ 0, x, y ∈ Rd such that f(x) 6= f(x∗). Define the following functions:

a(λ) =
λ+

√
λ2 + 4λA

2
, x(λ) =

a(λ)

A+ a(λ)
x+

A

A+ a(λ)
y ,

y(z) = argmin
w∈Rd

{
fp(w, z) +

Lp

p!
‖w − z‖p+1

}
, g(λ) = λ‖y(x(λ))− x(λ)‖p−1 .

Then we have g(R+) = R+.

Proof First we claim that g(λ) is a continuous function of λ. The only non-trivial part of this
statement is that y(z) is a continuous function of z. The latter statement follows easily from the
strict convexity of the function being optimized, see also Section 4 for more details.

Next we claim that g(0) = 0, and furthermore since f(x) 6= f(x∗) we also have y(x) 6= x
which in turns gives g(+∞) = +∞. This concludes the proof.

7
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3.3. Proof of (1) in Theorem 1

Recall from Lemma 5 that the rate of convergence of ATD is ‖x∗‖2/(2Ak). We now finally give an
estimate of Ak:

Lemma 11 One has, with cp = 2p−1(p+ 1)
3p+1

2 /(p− 1)!,

Ak ≥ 1

cp · Lp · ‖x∗‖p−1
k

3p+1
2 .

Proof Using Lemma 9 (and in particular (13)) in (6) we obtain, with Cp = 8 ·
(

Lp

(p−1)!

) 2
p−1 ,

k∑
i=1

Ai

λ
p+1
p−1

i

≤ Cp‖x∗‖2 . (15)

Now by reverse Hölder inequality, i.e. ‖fg‖1 ≥ ‖f‖ 1
q
‖g‖ −1

q−1
for q ≥ 1, and invoking this inequality

with q = 1 + p−1
2(p+1) =

3p+1
2(p+1) so that −1

1−q = −2(p+1)
p−1 , we have

k∑
j=1

√
λj =

k∑
j=1

(Aj)
p−1

2(p+1)

 Aj

λ
p+1
p−1

j


− p−1

2(p+1)

≥

 k∑
j=1

A
p−1
3p+1

j


3p+1
2(p+1)

 k∑
j=1

Aj

λ
p+1
p−1

j


− p−1

2(p+1)

.

(16)
Combining (15) and (16) and using by Lemma 8 we have for all k ≥ 1 that

Ak ≥ 1

4

∑
j∈[k]

√
λj

2

≥ 1

4(Cp‖x∗‖2)
p−1
p+1

 k∑
j=1

A
p−1
3p+1

j


3p+1
p+1

Next we apply Lemma 12 (see below) with α = p+1
p−1 , Bk = A

p−1
3p+1

k and c = 1

4
p+1
3p+1 (Cp‖x∗‖2)

p−1
3p+1

:

Bk ≥
(

2

p+ 1
· c · k

) p−1
2

,

or in other words, Ak ≥
(

2
p+1 · c · k

) 3p+1
2 , which concludes the proof.

Lemma 12 Given a non-decreasing positive sequence Bj such that Bα
k ≥ c ·

∑k
j=1Bj . Then, we

have that

Bk ≥
(
α− 1

α
c · k

) 1
α−1

8
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Proof We extend Bt = Bdte. Note that

Bα
t = Bα

dte ≥ c ·
dte∑
j=1

Bj ≥ c ·
∫ t

0
Bsds.

We can upper bound this integral inequality Bt ≥ Ut where U1 = B1 and

Uα
t = c ·

∫ t

0
Usds.

Taking derivatives on both sides, we have

αUα−1
t

dUt

dt
= c · Ut.

and hence dUα−1
t
dt = α−1

α c. Therefore, we have Bt ≥ Ut = (α−1
α c · (t − 1) + Bα−1

1 )
1

α−1 . Finally,
the result follows from Bα−1

1 ≥ c.

4. Complexity of the binary search step

In this section, we show how to find λk+1 satisfying equation (13). Many of the proofs in this
section ar deferred to Appendix A.

For k = 0, it is trivial since x̃0 = 0. From now on, we fix some k > 0. To simplify the notation,
we define x̃θ = (1− θ)xk + θyk, yθ = argminy F (y − x̃θ, x̃θ) with

F (z, x) = fp(x+ z, x) +
Lp

p!
‖z‖p+1,

and zθ = yθ − x̃θ. Note that the λk+1 corresponding to θ is given by λk+1 =
(1−θ)2

θ Ak. Hence, our
goal is to find θ such that

1

2
≤ ζ(θ) ≤ p

p+ 1
with ζ(θ) =

(1− θ)2

θ

Ak · Lp

(p− 1)!
‖zθ‖p−1.

Note that ζ(0) = +∞ and ζ(1) = 0. Hence, we can use binary search to find θ that is close to θ∗

such that ζ(θ∗) = 7
12 (or any value in (12 ,

p
p+1)). The main difficulty is to show how close θ need to

be so that ζ(θ) ∈ [12 ,
p

p+1 ], or in other words to control the Lipschitz constant of ζ(θ).
To bound the Lipschitz constant of ζ(θ), we need to bound ‖zθ‖ and ‖ d

dθzθ‖. First, we give
upper bounds on ‖ d

dθzθ‖ and ‖zθ‖ ≤ 12p3‖x∗‖.

Lemma 13 We have: ∥∥∥∥ ddθzθ
∥∥∥∥ ≤ 5(p+ 1)2 · ‖x∗‖.

Lemma 14 We have that ‖zθ‖ ≤ 12p3‖x∗‖ for all 0 ≤ θ ≤ 1.

Next, we have a lower bound of ‖zθ‖. We also prove Lipschitzness of θ 7→ f(yθ).

9
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Lemma 15 We have

‖zθ‖p ≥
p!

Lp · (p+ 2) · (12p3 + 4)‖x∗‖
(f(yθ)− f(x∗)) .

Furthermore θ 7→ f(yθ) is Lipschitz, with Lipschitz constant upper bounded by

Lp · (12p3‖x∗‖)p+1 .

Proof By the optimality of zθ, we have that

∇zfp(x̃θ + zθ, x̃θ) +
Lp · (p+ 1)

p!
‖zθ‖p−1zθ = 0.

By doing a Taylor expansion of the gradient function, one obtains:

‖∇zfp(x̃θ + zθ, x̃θ)−∇f(x̃θ + zθ)‖ ≤ Lp

p!
‖zθ‖p.

Hence, we have ‖∇f(x̃θ + zθ)‖ ≤ Lp·(p+2)
p! ‖zθ‖p and

f(yθ) = f(x̃θ + zθ) ≤ f(x∗) +
Lp · (p+ 2)

p!
‖zθ‖p‖x̃θ + zθ − x∗‖.

Since x̃θ is convex combination of xk and yk, Lemma 19 shows that ‖x̃θ−x∗‖ ≤ 4‖x∗‖ and Lemma
14 shows that ‖zθ‖ ≤ 12p3‖x∗‖. Combining both, we have ‖x̃θ + zθ − x∗‖ ≤ (12p3 + 4)‖x∗‖ and
hence

f(yθ)− f(x∗) ≤ Lp · (p+ 2)

p!
‖zθ‖p · (12p3 + 4)‖x∗‖.

Rearranging gives the first inequality.
For the Lipschitz statement we note that, as above, we have:

f(yθ)− f(yθ′) ≤
Lp · (p+ 2)

p!
‖zθ‖p‖yθ − yθ′‖

≤ Lp · (p+ 2)

p!
· (12p3‖x∗‖)p · (‖x̃θ − x̃θ′‖+ ‖zθ − zθ′‖).

Lemma 19 shows that ‖x̃θ − x̃θ′‖ = |θ− θ′| · ‖yk −xk‖ ≤ 5 · ‖x∗‖ · |θ− θ′|. Lemma 13 shows that
‖zθ − zθ′‖ ≤ 5(p+ 1)2‖x∗‖ · |θ − θ′|. Combining both, we have

f(yθ)− f(yθ′) ≤
Lp · (p+ 2)

p!
· (12p3‖x∗‖)p · (5 + 5(p+ 1)2)‖x∗‖ · |θ − θ′|.

We now give a bound on the Lipschitz constant ζ(θ).

Lemma 16 Denote

ωp(θ) = 4(12p3)p+1 ·
(
1 +AkLp‖x∗‖p−1 +

Lp‖x∗‖p+1

∆(θ)

)
,

and ∆(θ) = f(yθ)− f(x∗). Then one has∣∣∣∣ ddθ log ζ(θ)
∣∣∣∣ ≤ ωp(θ) ·

(
1 +

1

ζ(θ)
+ ζ(θ)

)
.

10
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The next lemma is a straightforward calculus exercise which allows to us to analyze binary
search with guarantees of the form given in Lemma 16.

Lemma 17 Let g : [0, 1] → R+ and θ∗ ∈ [0, 1] such that g(θ∗) = 7
12 . Let ω ≥ 0 such that any

θ ∈ [0, 1] with |θ − θ∗| ≤ 1
40ω satisfies∣∣∣∣ ddθ log g(θ)

∣∣∣∣ ≤ ω ·
(
1 +

1

g(θ)
+ g(θ)

)
.

Then one also has g(θ) ∈ [12 ,
2
3 ].

Proof Let h be the largest number such that |θ − θ∗| ≤ h implies g(θ) ∈ [12 ,
2
3 ]. It suffices to show

h ≥ 1
40ω . Proceed by contradiction and suppose that h ≤ 1

40ω . For any θ such that |θ − θ∗| ≤ h, by
the assumption on g and h, we have∣∣∣∣ ddθg(θ)

∣∣∣∣ ≤ ω · (g(θ) + 1 + g2(θ)) ≤ ω ·

(
2

3
+ 1 +

(
2

3

)2
)

=
19

9
ω.

Hence, for any θ such that |θ−θ∗| ≤ h, we have |g(θ)−g(θ∗)| ≤ h· 199 ω <
1
12 . Since g is continuous

and g(θ∗) = 7
12 this contradicts the assumption of h being the largest. Therefore |θ − θ∗| ≤ 1

40ω
implies that g(θ) ∈ [12 ,

2
3 ] as desired.

Now, we can prove our main theorem of this section.

Theorem 18 Let ε > 0. At iteration k, using at most 30p log2 p + log2

⌈
Lp‖x∗‖p+1

ε

⌉
calls to the

pth order Taylor oracle we find either a point y such that f(y) − f(x∗) ≤ ε or we find λk+1 that
satisfies (13).

Proof First note that we can assumeAk ≤ ‖x∗‖2/(2ε), for otherwise f(yk)−f(x∗) ≤ ε by Lemma
5. Now using log2(1/δ) binary search step on ζ, let us find θ such that |θ − θ∗| ≤ δ for some θ∗

with ζ(θ∗) = 7
12 .

If ∆(θ) ≤ ε then we are done, so let us assume this is not the case. By the Lipschitz constant
bound from Lemma 15, as well as choosing δ smaller than ε/2 divided by this Lipschitz constant,
we obtain that ∆(θ′) ≥ ε/2 for any θ′ such that |θ − θ′| ≤ 2δ (so in particular for any θ′ such that
|θ′ − θ∗| ≤ δ). We now want to apply Lemma 17 to conclude that ζ(θ) ∈ [12 ,

2
3 ]. For this we need

to compute a value for ω using Lemma 16 (and we will want δ small enough so that δ ≤ 1
40ω ). One

can easily verify that the following value of ω works given the above:

ω ≤ 4(12p3)p+1 ·
(
1 +AkLp‖x∗‖p−1 +

Lp‖x∗‖p+1

∆(θ)

)
≤ 4(12p3)p+1 ·

(
1 +

‖x∗‖2

2ε
Lp‖x∗‖p−1 +

Lp‖x∗‖p+1

ε/2

)
≤ 16 · (12p3)p+1 ·

⌈
Lp‖x∗‖p+1

ε

⌉
.

Hence we can choose

1

δ
= 640 · (12p)3(p+1) ·

⌈
Lp‖x∗‖p+1

ε

⌉
≤ p30p ·

⌈
Lp‖x∗‖p+1

ε

⌉
11
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and binary search finishes in log2(1/δ) = 30p log2 p+ log2

⌈
Lp‖x∗‖p+1

ε

⌉
steps.

Finally, we give the bound for ‖xk − x∗‖ and ‖yk − x∗‖.

Lemma 19 We have that ‖xk − x∗‖ ≤ ‖x∗‖ and ‖yk − x∗‖ ≤ 4‖x∗‖ for all k.

Proof From Lemma 7 we have

ψk+1(xk+1)−Ak+1f(yk+1) ≥
k+1∑
i=1

Ai

2λi

(
(1− σ2)‖yi − x̃i−1‖2

)
Since from Lemma 4

ψk+1(xk+1) +
1

2
‖x∗ − xk+1‖2 = ψk+1(x

∗) ≤ Ak+1f(x
∗) +

1

2
‖x∗‖2

altogether this gives

k+1∑
i=1

Ai

2λi

(
(1− σ2)‖yi − x̃i−1‖2

)
≤ Ak+1(f

∗ − f(yk+1)) +
1

2
‖x∗‖2 − 1

2
‖x∗ − xk+1‖2

therefore we have that ‖xk − x∗‖ ≤ ‖x∗‖ for all k. Let Dk = ‖yk − x∗‖. Using x̃k = Ak
Ak+1

yk +
ak+1

Ak+1
xk, we have

‖x̃k − x∗‖ ≤ Ak

Ak+1
Dk +

ak+1

Ak+1
‖x∗‖.

Hence, we have Dk+1 ≤ Ak
Ak+1

Dk +
ak+1

Ak+1
‖x∗‖+ ‖yk+1 − x̃k‖. Rescaling and summing over k, we

have

Dk+1 ≤ ‖x∗‖+ ‖yk+1 − x̃k‖+
Ak

Ak+1
‖yk − x̃k−1‖+

Ak−1

Ak+1
‖yk−1 − x̃k−2‖+ · · ·

≤ ‖x∗‖+ 1

Ak+1

k+1∑
j=1

Aj‖yj − x̃j−1‖

≤ ‖x∗‖+

√∑k+1
j=1 Ajλj

Ak+1

√√√√k+1∑
j=1

Aj

λj
‖yj − x̃j−1‖2

≤ ‖x∗‖+

√∑k+1
j=1 λj√
Ak+1

√
‖x∗‖2
1− σ2

≤ 4‖x∗‖

where we used Aj is increasing and (6) in the second to last equation, and Lemma 8 and σ = 1
2 for

the last.
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Appendix A. Proofs from Section 4

Here we provide proofs of lemmas from Section 4.
Proof [Proof of Lemma 13] To compute the derivative of zθ, we note by optimality condition that

∇zF (zθ, x̃θ) = 0.

Taking derivatives with respect to θ on both sides gives

∇2
zzF (zθ, x̃θ) ·

d

dθ
zθ +∇2

zxF (zθ, x̃θ) ·
d

dθ
x̃θ = 0.

Hence, we have
d

dθ
zθ = −

(
∇2

zzF (zθ, x̃θ)
)−1∇2

zxF (zθ, x̃θ) · (yk − xk). (17)

13
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To bound d
dθzθ, it suffices to compute ∇2

zzF (z, x) and ∇2
zxF (z, x).

For ∇2
zzF (z, x), we have

∇2
zzF (z, x) = ∇2

zzfp(x+ z, x) +∇2

[
Lp

p!
‖z‖p+1

]
.

By doing a Taylor expansion of the Hessian function, one obtains:

‖∇2
zzfp(x+ z, x)−∇2f(x+ z)‖ ≤ Lp

(p− 1)!
‖z‖p−1

and hence

∇2
zzF (z, x) � ∇2f(x+ z)− Lp

(p− 1)!
‖z‖p−1I +

Lp(p+ 1)

p!
‖z‖p−1I � Lp

p!
‖z‖p−1I

where we used that f is convex and

∇2
[
‖z‖p+1

]
= (p+ 1)‖z‖p−1 · I + (p+ 1)(p− 1)‖z‖p−3 · zz>. (18)

For ∇2
zxF (z, x), we recall that F (z, x) =

∑p
i=0

1
i!D

if(x)[z]i +
Lp

p! ‖z‖
p+1, and hence

∇2
zxF (z, x) =

p∑
i=1

1

(i− 1)!
Di+1f(x)[z]i−1

= ∇2
zzF (z, x) +

1

(p− 1)!
Dp+1f(x)[z]p−1 −∇2

[
Lp

p!
‖z‖p+1

]
.

Therefore, we have(
∇2

zzF (z, x)
)−1 (∇2

zxF (z, x)
)
= I +

(
∇2

zzF (z, x)
)−1

(
Dp+1f(x)[z]p−1

(p− 1)!
−∇2

[
Lp

p!
‖z‖p+1

])
.

and∥∥∥(∇2
zzF (z, x)

)−1 (∇2
zxF (z, x)

)∥∥∥ ≤ 1 +
p!

Lp‖z‖p−1

∥∥∥∥Dp+1f(x)[z]p−1

(p− 1)!
−∇2

[
Lp

p!
‖z‖p+1

]∥∥∥∥
≤ 1 +

p!

Lp‖z‖p−1

(
Lp

(p− 1)!
‖z‖p−1 +

Lp · (p+ 1)p

p!
· ‖z‖p−1

)
= (p+ 1)2

where we used (18) and smoothness for the second inequality. Now, (17) and Lemma 19 below
show

‖ d
dθ
zθ‖ ≤ (p+ 1)2 · ‖yk − xk‖ ≤ 5(p+ 1)2 · ‖x∗‖.

Proof [Proof of Lemma 14] By doing a Taylor expansion of the function f , one obtains:

fp(x̃θ + zθ, x̃θ) ≥ f(x̃θ + zθ)−
Lp

(p+ 1)!
‖zθ‖p+1.

14
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Hence, we have that

F (zθ, x̃θ) = fp(x̃θ + zθ, x̃θ) +
Lp

p!
‖zθ‖p+1 ≥ f(x̃θ + zθ) +

Lp · p
(p+ 1)!

‖zθ‖p+1. (19)

Rearranging the term, we have that

‖zθ‖p+1 ≤ (p+ 1)!

Lp · p
· (F (zθ, x̃θ)−min

x
f(x)) ≤ (p+ 1)!

Lp · p
· (f(x̃θ)−min

x
f(x))

where we used that F (zθ, x̃θ) ≤ F (0, x̃θ) = f(x̃θ).
For θ = 1, we have x̃θ = yk and hence

‖z1‖p+1 ≤ (p+ 1)!

Lp · p
(f(yk)−min

x
f(x)) ≤ (p+ 1)!

2p ·Ak · Lp
‖x∗‖2

where we used (8) at the end. Using Lemma 13 and Young’s inequality, we have

‖zθ‖ ≤
(

(p+ 1)!

2p ·Ak · Lp

) 1
p+1

‖x∗‖
2

p+1 + 5(p+ 1)2 · ‖x∗‖

≤ 2

p+ 1
‖x∗‖+ p− 1

p+ 1

(
(p+ 1)!

2p ·Ak · Lp

) 1
p−1

+ 5(p+ 1)2‖x∗‖.

Using Ak ≥ k
3p+1

2

cp·Lp·‖x∗‖p−1 ≥ 1
cp·Lp·‖x∗‖p−1 and cp =

2p−1(p+1)
3p+1

2

(p−1)! , we have

‖zθ‖ ≤

(
2

p+ 1
+
p− 1

p+ 1

(
(p+ 1)! · cp

2p

) 1
p−1

+ 5(p+ 1)2

)
‖x∗‖ ≤ 12p3‖x∗‖.

Proof [Proof of Lemma 16] Note that

d

dθ
log ζ(θ) = − 2

1− θ
− 1

θ
+ (p− 1)

zθ · d
dθzθ

‖zθ‖2
.

Lemma 13 shows that ∣∣∣∣ ddθ log ζ(θ)
∣∣∣∣ ≤ 2

1− θ
+

1

θ
+ 5(p+ 1)2(p− 1)

‖x∗‖
‖zθ‖

.

The facts that
1

1− θ
≤ 1 +

θ

(1− θ)2
= 1 +

Ak · Lp

(p− 1)! · ζ(θ)
‖zθ‖p−1

and that
1

θ
≤ 2 +

(1− θ)2

θ
= 2 +

(p− 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

,

yield:∣∣∣∣ ddθ log ζ(θ)
∣∣∣∣ ≤ 4 +

2Ak · Lp

(p− 1)! · ζ(θ)
‖zθ‖p−1 +

(p− 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

+ 5(p+ 1)2(p− 1)
‖x∗‖
‖zθ‖

.

15
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It only remains to plug in Lemma 14 and Lemma 15 as follows: For the second term, we have

2Ak · Lp

(p− 1)! · ζ(θ)
‖zθ‖p−1 ≤ 2Ak · Lp · (12p3‖x∗‖)p−1

ζ(θ)
.

For the third term, we have

(p− 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

≤ (p− 1)! · 12p3‖x∗‖
Ak · Lp · ‖zθ‖p

· ζ(θ)

≤ (p− 1)! · 12p3‖x∗‖
Ak · Lp

Lp · (p+ 2) · (12p3 + 4)‖x∗‖
p! ·∆(θ)

· ζ(θ)

≤ 4 · (12p
3‖x∗‖)2

Ak ·∆(θ)
· ζ(θ).

Using Ak ≥ k
3p+1

2

cp·Lp·‖x∗‖p−1 ≥ 1
cp·Lp·‖x∗‖p−1 and cp =

2p−1(p+1)
3p+1

2

(p−1)! , we have

(p− 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

≤ 2p+1(p+ 1)
3p+1

2

(p− 1)!

Lp · ‖x∗‖p−1 · (12p3‖x∗‖)2

∆(θ)
· ζ(θ)

≤ 2p+1(p+ 1)
3p+1

2 (12p3)2 · Lp · ‖x∗‖p+1

∆(θ)
· ζ(θ)

≤ 4 · (12p3)p+1 · Lp · ‖x∗‖p+1

∆(θ)
· ζ(θ).

For the last term, we have

5(p+ 1)2(p− 1)
‖x∗‖
‖zθ‖

≤ 5(p+ 1)2(p− 1)
(12p3‖x∗‖)p−1‖x∗‖

‖zθ‖p

≤ 5(p+ 1)3 · (12p3‖x∗‖)p−1 · Lp · (p+ 2) · (12p3 + 4)‖x∗‖2

p! ·∆(θ)

≤ 4 · (12p3)p+1 · Lp · ‖x∗‖p+1

∆(θ)
.

Combining all terms, we have the result∣∣∣∣ ddθ log ζ(θ)
∣∣∣∣ ≤ 4 +

2Ak · Lp · (12p3‖x∗‖)p−1

ζ(θ)
+ 4 · (12p3)p+1 · Lp · ‖x∗‖p+1

∆(θ)
· (ζ(θ) + 1)

justifying the claimed upper bound.
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