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Abstract

In this paper, we resolve the complexity problem of
spectral graph sparcification in dynamic streams up
to polylogarithmic factors. Using a linear sketch

we design a streaming algorithm that uses O(n)
space, and with high probability, recovers a spectral

sparsifier from the sketch in O(n) time." Prior
results either achieved near optimal O(n) space, but
Q(n?) recovery time [Kapralov et al. ‘14], or ran in

o(n?) time, but used polynomially suboptimal space
[Ahn et al ‘13].

Our main technical contribution is a novel method
for recovering graph edges with high effective resis-
tance from a linear sketch. We show how to do so in
nearly linear time by ‘bucketing’ vertices of the input
graph into clusters using a coarse approximation to
the graph’s effective resistance metric.

A second main contribution is a new pseudorandom
generator (PRG) for linear sketching algorithms.
Constructed from a locally computable randomness
extractor, our PRG stretches a seed of O(n) random

bits polynomially in length with just log®™

n run-
time cost per evaluation. This improves on Nisan’s
commonly used PRG, which in our setting would re-
quire O(n) time per evaluation. Our faster PRG is
essential to simultaneously achieving near optimal

space and time complexity.

" *This paper merges a subset of re-
sults in https://arxiv.org/abs/1903.12165 and
https://arxiv.org/abs/1903.12150.

1'We use O(t) to denote O(tlog®n) for fixed constant
c that is independent of n
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1 Introduction

The dynamic streaming setting has emerged as
a popular model for studying algorithms for
processing massive graphs. In this model, we
receive a stream of edge insertions or deletions to
a graph with n-nodes. The goal is to maintain
a small space (typically < n?) “sketch” of the
information received, and at the end of the
stream, use the sketch to compute some property
of the streamed graph (its minimum spanning
tree, number of connected components, etc.)
[McG14].

Many basic graph problems have been studied
in the dynamic streaming setting — we review a
subset of this work in Section 1.3. Allowing for
edge deletions (in contrast to “insertion only”
streams) makes the dynamic model particularly
difficult, and theoretical work has lead to a pow-
erful toolkit of algorithmic techniques for large
scale and distributed graph processing [McG17].

Within the broad literature on dynamic graph
streaming, graph sparsification has emerged as a
central challenge problem. In the offline setting,
it is known that any nm-node, undirected graph
G can be well approximated by a sparse graph
[ST11, BSS12]. In particular, even though G
may have ©(n?) edges, it is always possible to
find a graph G’ with O(n/e?) edges so that,
letting L and L’ denote the graph Laplacians of
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G and G, respectively,
(1.1) (1—€e)L <L =< (1+¢)L.

Here < stands for the positive semidefinite order-
ing of matrices. Any G’ satisfying (1.1) is called
a spectral sparsifier for G. L' is called a spec-
tral approximation to L. This is a strong notion
of graph approximation, implying e.g., that all
cut values and effective resistances in G are pre-
served to within a (1 £ €) factor in G’ [SS11]. If
G’ can be computed in a dynamic graph stream,
it can be used as a general proxy for answering a
variety questions about G, which makes spectral
sparsification a natural and important goal.

1.1 Streaming graph sparsification. The
first progress on computing graph sparsifiers in
dynamic streams focused on the weaker approx-
imation goal of cut sparsification due to [Kar94,
BK96]. Ahn, Guha, and McGregror [AGM12a]
gave a O(logn)-pass sparsification algorithm for
dynamic streaming cut sparsifiers, before later
developing a single-pass algorithm using nearly
optimal Q(ne~2) space (as for spectral spar-
sifiers, outputting G’ requires O(ne=?) space)
[AGM12b]. Ahn, Guha, and McGregror’s meth-
ods are based on oblivous linear sketching: they
sketch G by multiplying its edge-vertex incidence
matrix by a random matrix, an operation that
is implemented easily in the dynamic streaming
setting. The random matrix is chosen indepen-
dently of the input data (i.e., “obliviously”) and
a cut sparsifier is extracted directly from the re-
sulting matrix product i.e., the graph sketch.

Like algorithms for many other streaming
graph problems [AGM12a], the cut sparsifica-
tion method of [AGM12b] specifically exploits
linear sketches for ¢y sparse recovery [JST11,
KNP T17]. One £y sketch is stored for each node
of the graph, maintaining local neighborhood in-
formation. At the end of the graph stream, this
local information is used to extract global infor-
mation about GG via a node contraction proce-
dure reminiscent of Boruvka’s algorithm. This
procedure allows the algorithm to find edges

crossing small cuts in GG, an essential step to com-
puting a cut sparsifier.

Sparse recovery sketches are also used to address
the more challenging problem of spectral sparsi-
fication in [AGM13], but lead to a solution with
suboptimal O(n®/3¢~2) space and runtime. The
open problem of achieving near optimal O (ne2)
space for streaming spectral sparsifiers was even-
tually resolved in [KLM ™ 17]. This result, which
was also surveyed in [Wool4], is based on edge
sampling. In particular, a well-known approach
for computing spectral sparsifiers in the offline
setting is to subsample edges from G with non-
uniform probabilities proportional to each edge’s
effective resistance [SS11]. Edges with high ef-
fective resistance are more “important” to con-
structing a spectral sparsifier. The key technique
in [KLM™17] is an algorithmic primitive for re-
covering high effective resistance edges of G from
a collection of /o sparse recovery sketches, de-
parting from prior methods based on ¢y sketches.
As in the case of cut sparsifiers, one sketch is
maintained for each node.

1.2 Our contributions. While nearly opti-
mal in terms of space, the algorithm from
[KLM™17] is slow — it requires (n?) time to
extract a spectral sparsifier G’ from the main-
tained linear graph sketch. As small time and
space complexity are both critical in large scale
graph processing, a quadratic dependence on n is
prohibitively expensive. Thus, the central open
question raised by [KLM ™ 17] was whether or not
an O(ne=2) space algorithm could also be de-
signed to run in O(ne=2) time.

Our main contribution is a resolution of this
question:

THEOREM 1.1. There is an algorithm which
processes, in a single pass, a list of edge inser-
tions and deletions to an unweighted graph G
and, for any € < 1, maintains a linear sketch
of this input in O(nefz) space. With high prob-
ability, the algorithm computes in O(ne~2) time
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a weighted subgraph G' with O(e2nlogn) edges,
such that G is a (1 % €)-spectral sparsifier of G
—i.e., G’ satisfies (1.1).

Remarks. Theorem 1.1 is easily extended to
weighted graphs using a standard reduction to
the unweighted problem [AGMI12b, KNP17].
This reduction incurs a logarithmic dependence
on the ratio of the maximum and minimum
edge weight in G, both in space and runtime.
Theorem 1.1 can also be modified to return a
spectral sparsifier of optimal, O(ne=?) size. In
particular, we can apply the offline algorithm
of [LS17] to compute an optimally sized (1 =+ €)
sparsifier G” for G’ and simply note that G” is
a (1 + ¢€)? spectral sparifier for G.

Proving Theorem 1.1 requires two key technical
contributions:

Efficient edge recovery. As in the algorithm
of [KLM™17], our method is based on designing a
primitive for recovering high effective resistance
edges from a dynamically streamed graph G. To
do so in O(n) instead of O(n?) time requires
a substantial departure from prior techniques.
In particular, [KLM'17] requires exhaustively
testing all pairs of nodes in G to determine if they
are linked by a high effective resistance edge.
This incurs an Q(n?) runtime cost.

We more efficiently take advantage of informa-
tion in local node sketches by showing that any
high effective resistance edge must have high en-
ergy in the electrical flow between one of the
edge’s end points and an arbitrary nearby node
in the effective resistance metric. All high en-
ergy edges in this flow can be identified with a
single ¢ sparse recovery sketch, allowing us to
perform O(n) tests overall (one for each node in
G) in contrast to the O(n?) tests performed in
[KLM*17].

Applying the above technique requires a novel
clustering method which “buckets” nodes based
on their distance in G’s effective resistance met-
ric and tests flows within each bucket. Inspired
by methods for locality sensitive hashing, our

bucketing method can be implemented in a dy-
namic stream using linear sketches for approxi-
mating {5 distances.

This approach can be viewed as the first efficient
‘l5-graph sketching’ result, using an analogy to
compressed sensing for vector data. Nearly lin-
ear time compressed sensing algorithms usually
operate by hashing the input vector into buckets
so as to isolate dominant entries, which can then
be recovered efficiently. Our work provides an
analogous ‘bucketing scheme’ for graphs, which
allows for nearly linear time recovery and may
be of independent interest.

Faster pseudorandomness for linear
sketching. In addition to a better under-
standing of edge recovery, obtaining nearly
optimal sketching methods for sparsification
requires solving a largely orthogonal issue. In
particular, existing dynamic streaming algo-
rithms for sparsification are developed with
the assumption that we have access to a large
number of uniformly random hash functions. To
ensure that the algorithms actually run in small
space, a common technique is to compress these
hash functions using a pseudorandom number
generator (PRG) for small space computation
[[nd06].  Unfortunately, existing PRGs run
slowly in our setting, creating another Q(n?)
runtime bottleneck for computing a sparsifier
[Nis92].

We address this issue by describing a much
faster, “locally computable” pseudorandom gen-
erator based on a construction of Nisan and
Zuckerman [N796] and a locally computable ran-
domness extractor of De and Vidick [DV10]. We
believe this result will be more widely useful in
designing faster sketching algorithms for graph
problems and other applications.

1.3 Related work. The study of algorithms
for processing streaming graph data began with
work of Feigenbaum et al. [FKMT05], which
considered streams of edge insertions only. For
the more challenging dynamic setting, where
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both edge insertions and deletions may ap-
pear in the stream, few algorithms were known
until the seminal work of Ahn, Guha and
McGregor [AGMI12al.  Amongst other prob-
lems, [AGM12a] presents a streaming algorithm
for graph connectivity with O(nlog®n) space
complexity (which is now known to be opti-
mal [NY19]). This algorithm was the first to use
oblivious linear sketches for streaming graphs.

Since [AGM12a], oblivious linear sketching has
turned out to be a powerful technique for
progress on dynamic streaming graph problems.?
Sketching had lead to efficient algorithms for
dense subgraph detection [MTVV15, BHNT15],
spanner construction [AGM12b, KW 14], match-
ing and matching size approximation [AKL17],
sketching the Laplacian [ACK ™16, JS18], and a
wide variety of other problems. We refer the
reader to the surveys of [McG14, McG17] for a
more complete review of work on graph sketch-
ing. We note that algorithmic techniques devel-
oped through this work have been influential in
developing dynamic and distributed graph algo-
rithms as well [KKIKM13, AKLY16, AKLY16].

The effective resistance metric. The effec-
tive resistance metric induced by an undirected
graph plays a central role in spectral graph
theory and has been at the heart of numer-
ous algorithmic breakthroughs over the past
decade. Aside from its role in spectral sparsi-
fication, it is used in constructing vertex sparsi-
fiers [KLLP716b], sparsifiers of the random walk
Laplacian [JKPS17], and subspace sparsifiers
[LS18]. It has played a key role in many advances
in solving Laplacian systems [ST04, KMP10,
KMP11, PS14, CKM*14, KLP*16b, KS16] and
algorithms for maximum flow and minimum cost
flow [LS14]. Given their utility, the computa-
tion of effective resistances has itself become an
area of active research [DKP 17, JS18, CGPT 18,
LS18].

?In fact, it is now known that linear sketching is

essentially a universal approach for designing dynamic
streaming algorithms [LNW14, AHLWI16].

2 Preliminaries

General Notation. For s € R, let sT :=
max{0,s}. Let G = (V,E) be an unweighted,
undirected graph with n vertices and m edges.
For any vertex v € V, let x, € R™ be an
indicator vector with a one at position v and
zeros elsewhere. Let B, € R(;)X” denote the
vertex edge incidence matrix of an unweighted
and undirected complete graph. For any edge

e = (u,v) € (g), B,’s e row is equal to

b. := byy i = Xu — Xo- Let B € R(E)*™ denote
the vertex edge incidence matrix of G = (V, E).
B is obtained by zeroing out any rows of B,
corresponding to (u,v) ¢ E.> Denote a weighted
graph as G = (V,E,w), where w : F — R,
gives the edge weights. Let W € R()*(2) be a
diagonal matrix where W(e,e) = w(e) for e € E
and W(e,e) = 0 otherwise. Lg = B'WB =
BIWB,, is the Laplacian matrix of G. Let
LJCS denote the Moore-Penrose pseudoinverse of
L. When the graph G is clear from context we
sometimes drop the subscript from L.

We require the following basic fact about un-
weighed, undirected graphs:

Fact 2.1. (LEMMA 6.1, [ST14]) Let L be the
Laplacian of an unweighted, undirected graph.
L’s non-zero eigenvalues are lower bounded by
Ay = # and upper bounded by N\, = 2n. Let

d := [log, 3\\—;‘} Note that d = O(logn).

DEFINITION 2.1. For any unweighted graph G =
(V,E) and ¢ € [0,d + 1] we define Ly as follows:

Lo+ 3+ if0<¢<d
L,= .
Le ifl=d+1.

where d and A\, are as defined in Fact 2.1.

REMARK 2.1. Our main algorithm employs a
chain of ‘coarse sparsifiers’ of Lo, ..., Lqy1 (thus

3This definition differs from others where B is an nxm

matrix with rows not in GG removed altogether.

Copyright © 2020 by SIAM

1817 Unauthorized reproduction of this article is prohibited



Downloaded 02/01/20 to 128.12.93.224. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

the last is a sparsifier for Lg itself). Since Ly
and Lyiq1 are constant factor spectral approxi-
mations to each other, once we have obtained a
sparsifier for Ly we can use it to approximate ef-
fective resistances and compute a sparsifier for
Lyyq. For details see Lemma A.1.

Effective Resistance. We associate any
weighted graph G = (V, E,w) with an electric
circuit: the vertices are junctions and each edge e
is a resistor of resistance 1/w(e). Now suppose in
this circuit we inject one unit of current at vertex
u, extract one from vertex v, and let f,, € R()
denote the the currents induced on the edges. By
Kirchhoff’s current law, except for the source u
and the sink v, the sum of the currents entering
and exiting any vertex is zero. Hence, we have
by, = B'f,,. Let ¢ € R™ denote the voltage
potentials induced at the vertices in the above
setting. By Ohm’s law we have f,, = W Be.
Putting these facts together:

Xu — Xv = BTWBQO = L.

Observe that (x, — x») L ker(L), and hence
¢ =L*(Xu — Xv)-

The effective resistance between vertices u and
v, denoted by R,, is defined as the voltage
difference between v and v when a unit of current

is injected into u and is extracted from v. We
have:

(2.2) Ruy = b, LTby,.

For convenience, we let R,, := 0 for all wu.
For any matrix K € R" " we let RE :=
bI,UK Tbuy-

For any pair of vertices (z,y), the potential
difference induced on this pair when sending a
unit of flow from u to v can be calculated as:

(23) 90('7;) - go(y) = ba—cryLeruv-

Furthermore, if the graph is unweighted, the flow
on edge (z,y) is

(2.4) fuo(zy) = Db, LTy,

We frequently use the following simple fact.

FacT 2.2. (SEE E.G. [KLMT17], LEMMA 3)
For any v > 0, a vertex set V and any Laplacian
matriz L € RIVIXIVI et K = L +~I. Then, for
any pair of vertices (u,v), (x,y) €V x V,

b, K"byy| < b, Kby,

Proof. Let ¢ = K™b,,. Suppose that for some
x € V\{u}, o(x) > ¢(u). Then, since K =
L + ~I is a full rank and diagonally dominant
matrix, one can easily see that we should have
by, (z) > 0, which is a contradiction. So, p(u) >
o(x) for any x € V' \ {u} . In a similar way, we
can argue that ¢(v) < p(y) for any y € V' \ {v}.
So, the claim holds. 0

Spectral Approximation. For matrices
C,D € RP*P, we write C X D, if Vo € RP,
r"Cxz < 2" Dx. We say that C is (1+¢)-spectral
sparsifier of C, and we write it as~5’ ~. O, if
(1-€e)C <C =< (1+¢€C. Graph G is (1 £¢€)-
spectral sparsifier of graph G if, Lz = Lg.
We sometimes use a slightly weaker notation
(1 —-¢C =, C =, (1+¢€)C, to indicate that
(1—ez'Cx<z'Cx<(1+ez' Cx, for any z
in the row span of C.

3 Main result

We start by giving intuition and presenting the
high level idea of our algorithm in Section 3.1
below. In Section 3.3 we formally state the algo-
rithm and prove its correctness. In Section 3.4
we describe how the required sketches can be im-
plemented using an efficient pseudorandom num-
ber generator. Finally in Section 3.5 we give the
proof of Theorem 1.1.

3.1 Overview of the approach. To illus-
trate our approach, consider the goal of finding
all “heavy edges” — i.e., edges with effective re-
sistance at least @ in a graph G = (V, E).

This task was studied in prior work [KLM™17]
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and shown to be sufficient for solving the spec-
tral sparsification problem. That work recovers
heavy edges by running fo-heavy hitters on ap-
proximate flow vectors, computed using a coarse
sparsifier of the graph. The number of test flow
vectors used in [KLMT'17] is quadratic in the
number of vertices: they brute force on all pair
of vertices to find the heavy edges. We start by
asking:

Can we find a near-linear number of test flow
vectors that enable us to recover all heavy
edges?

In this work, we answer this question in the
affirmative and formally show that there exist
a linear number of test flow vectors that suffice
to find all heavy edges. This is the key technical
contribution of this paper and generalizing this
solution yields our main algorithmic results.

To illustrate our approach, suppose that one can
compute a flow vector using the formula*

(3.5) BL'by, = fu,

for any pair of vertices in polylogarithmic time
(in our actual algorithms we will be unable to
compute these flow vectors exactly). Note that

(3.6)
fwl|2 =b) ,L*BTBL™b,, =b/ L*b,, = Ry,

and
(3.7) fuo(uv) = bl LTbyy = Ryy.

This implies that, when R, > @, the contri-
bution of uv coordinate of the flow vector to its £
norm is substantial, and known /¢5-heavy hitters
techniques can recover this edge from a polylog n
sized linear sketch efficiently. In O(n polylogn)

TNote that in the actual algorithm we will use a

sparsifier of the regularized graph L, when approximating
flows in the less regularized graph Ly ;. See Remark 2.1.
We use L in this overview of our techniques to simplify
notation.

space we can store a fo-heavy hitters sketch of
the full vertex edge incidence matrix B and by
linearity can reconstruct a heavy-hitters sketch
of any electrical flow vector. Testing all O(n?)
flows £, was the main technique of [KLM"17].

Since fo-heavy hitters in fact returns the set of
all edges with a (2 ( ) contribution to the

/5 norm of the flow vector, a natural question
is whether it is possible to recover a heavy edge
without using its flow vector, but rather using
other flow vectors. In this way we can test a
smaller number of flow vectors overall. Consider
the following example.

1
polylog n

EXAMPLE 3.1. (STAR GRAPH PLUS EDGE)
Suppose that graph G = (V,E) is a “star”
with a center and mn petals along with
one additional edge that connects a pair
of petals, i.e, V = A{vi,v9,...,v,} and
E = {(vi,v2),(v1,v3), (vi,00)} U {(v2,03)}
(see Figure 1a).

Note that for edge (va,v3), Ryyvs = % Suppose
that we want to recover this edge by examining an
electrical flow vector other than f,,,,. We can in
fact pick an arbitrary vertex x € V' \ vy and send
one unit of flow to vo. Regardless of the choice
of x, edge (ve,v3) contributes an Q2(1) fraction of
the energy of the flow, and thus can be recovered
by applying heavy hitters to f,,. Similarly, for
any v;, when one unit of flow is sent from x to
v;, at least a constant fraction of the energy is
contributed by edge (x,v;). So, all high effective
resistance edges in this graph (all edges) can be
recovered using n — 1 simple flow vectors, i.e.,

{frvys- s fan, }-

Of course, the graph in Example 3.1 has only n
edges, and so could be stored explicitly in the
streaming setting, without needing to recover
edges from heavy hitter queries. However, we
can give a similar example which is in fact dense.
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(a) Graph of Example 3.1

(b) Graph of Example 3.2

Figure 1: (a) Graph of Example 3.1. A star
with n petals along with one additional edge.
(b) Graph of Example 3.2. A star graph with
O(n%") petals, along with one additional edge.
Each zigzag represents a path of connected
cliques with effective resistance diameter O(1).

EXAMPLE 3.2. (THICK STAR PLUS EDGE)

Suppose that graph G is a dense version of the
previous example as follows: it has a center and
O(n®") petals. Each petal consists of a chain of
O(n%2) cliques of size n%1, where each pair of
consecutive cliques s connected with a complete
bipartite graph. One can verify that the effective
resistance diameter of each petal is ©(1). Now,
we add an additional edge, e, that connects an
arbitrary node in the leaf of one petal to a node
in the leaf of another petal (see Figure 1b).

As in Example 3.1, e is heavy, with R, = O(1).
In fact, it is the only heavy edge in the graph.
One can verify that, similar to Example 3.1, if we
let Cy and C3 denote the cliques that e connects,
choosing an arbitrary vertex x and sending flow

to any node in Cy and then to any node in
Cs, will give an electrical flow vector where e
contributes an Q2(1) fraction of the energy. Thus,
e can be recovered by applying heavy hitters to
these vectors. Consequently, using n test flow
vectors (sending flow from x to each other node
in the graph) one can recover all heavy edges of
this example.

Unfortunately, it is possible to give an example
where the above simple procedure of checking
the flow from an arbitrary vertex to all others
fails.

ExamMPLE 3.3. (THIiCcK LINE PLUS EDGE)

Suppose that graph G = (V,E) is a thick
line, consisting of n%Y set of points (clus-
ters) where any two consecutive clusters
form a complete bipartite graph.  Formally,

V = {Ul,Ug,...,Un} = Cl U 02 y---u CnoAg,
where C;’s are disjoint sets of size n®! and
n09_1
E = U C@ X Cz'—l—l-
i=1

Also, add an edge e = (u,v) such that u € C;
and v € Cpo2 (see Figure 2).

One can verify that R, = Q(1). However, if one
picks an arbitrary vertex x € V and sends one
unit of flow each other vertex, running fo-heavy
hitters on each of these flows will not recover
edge e if x is far from w and v in the thick path.
Any flow that must cross (u,v) will have very
large energy due to the fact that it must travel
a long distance to the clusters containing these
vertices, so e will not contribute a non-trivial
fraction.

Fortunately, the failure of our recovery method
in Example 3.3 is due to a simple fact: the
effective resistance diameter of the graph is large.
When the effective resistance diameter is small
(as in Examples 3.1 and 3.2) the strategy always
suffices. This follows from the following simple
observation:
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Cl CV2 03 04 Cno.z

Figure 2: Graph of Example 3.3. Each C; repre-
sents a cluster with n%! vertices (with no inter-
nal edges) and each zigzag represents the edges
of a complete bipartite graph between consecu-
tive C;’s.

OBSERVATION 3.1. For a graph G = (V,E),
suppose that for an edge e = (u,v) € E, one
has R. > (. Then, for any x € V, in at least
one of these settings, edge e carries at least 3/2
units of flow: either (1) one unit of flow is sent
from x to u or (2) one unit of flow is sent from
x to v.

This observation follows formally from the fol-
lowing simple lemma.

LEMMA 3.1. Consider a vertex set V and any
PSD matriz D € RIVIXIVI. For any pair of
vertices (u,v) € V. x V and any vertex x € V'\

v
{u, v}, max{|b], Dby,|, |b], Db,,|} > Buxlbur,

v

Proof. Note that b Dby, =
(b, +b.,) Dby, = b, Dby, + b, Dby,
and hence, the claim holds. a

Consider the setting where g = @. The
observation guarantees that edge e contributes
at least m energy to either flow f,, or f,,,.
Thus, we can recover this edge via f5 heavy
hitters, as long as the total energy ||f..||3 or
|[f2]|3 is not too large. Note that this energy is
just equal to the effective resistance R,, between
x and v (respectively = and wu). Thus it is
bounded if the effective resistance diameter is
small, demonstrating that our simple recovery
procedure always succeeds in this setting. For

example, if the diameter is O(1), both ||f.,||3 =
O(1) and ||f,.]|3 = O(1), and so by Observation
3.1, edge e = (u,v) contributes at least a

S} (%) fraction of the energy of at least one
og?n

of these flows.

We next explain how to extend this procedure to
handle general graphs, like that of Example 3.3.

Ball carving in effective resistance metric.
When the effective resistance diameter of G is
large, if we attempt to recover e using fo-heavy
hitters on the flow vectors f,, and f,,, for an
arbitrary chosen z € V, we may fail if the
effective resistance distance between x and v or u
(|I1f20]13 or ||fz.]3) is large. This is exactly what
we saw in Example 3.3.

However, using the fact that ||f.,||3 = Ry, our
test will succeed if we find a vertex xz, which is
close to v and v in the effective resistance met-
ric. This suggests that we should partition the
vertices into cells of fairly small effective resis-
tance diameter, ensuring that both endpoints of
an edge (u,v) that we would like to recover fall in
the same cell with nontrivially large probability.
This is exactly what standard metric decompo-
sition techniques achieve through a ball-carving
approach, which we use, as described next.

Partitioning the graph into low effective
resistance diameter sets. We first embed the
vertices of the graph into Euclidian space such
that the Euclidian distance squared between two
vertices corresponds to the effective resistance
between those vertices. This can be done using
known techniques. Indeed, recall that

Ryy = ||BL byl[3 = |BL X0 — BLx0|f3-

Therefore, the embedding v — BLTy, suf-
fices. This embedding is into R@), however,
using Johnson-Lindenstrauss (JL) dimension re-
duction, one can instead embed the vertices into
R4, for ¢ = O(logn), such that the Euclidean
distances squared correspond to constant factor
multiplicative approximations to the effective re-
sistances.
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We then partition R? into /., balls centered
at points of a randomly shifted infinite ¢-
dimensional grid with side length w > 0, essen-
tially defining a hash function that maps every
point in RY to the nearest point on the randomly
shifted grid. We can bound the maximum effec-
tive resistance of pair of vertices in the same cell
(see Claim 3.2), and show how an appropriate
choice of the width w ensures that any w and
v that have an edge between them (and thus
are reasonably close in the effective resistance
metric) belong to the same cell, with a prob-
ability no less than 1/2 (see Claim 3.1). This
ensures that in at least one of O(logn) indepen-
dent repetitions of this process with high prob-
ability, v and v fall into the same cell. We note
that the parameters of our partitioning scheme
can be improved somewhat using Locality Sen-
sitive Hashing techniques (e.g., [IM98, DIIMO04,
AT06G, AINRI14, AR15]). More precisely, LSH
techniques would improve the space complex-
ity by polylogarithmic factors at the expense of
slightly higher runtime (the best improvement
in space complexity would result from Euclidean
LSH [AI06, AR15], at the cost of an n°() ad-
ditional factor in runtime). However, since the
resulting space complexity does not quite match
the lower bound of Q(nlog® n) due to [NY19], we
leave the problem of fine-tuning the parameters
of the space partitioning scheme as an exciting
direction for further work.

Sampling edges with probability propor-
tional to effective resistances. The above
techniques can actually be extended to recover
edges of any specific target effective resistance.
Broadly speaking, if we aim to capture edges of
effective resistance about R, we can afford to
lower our grid cell size proportionally to R. Un-
fortunately, these edges don’t contribute enough
to the flow vector to be recoverable. Thus, we
will also subsample the edges of the graph at rate
approximately proportional to R to allow us to
detect the target edges while also subsampling
them.

3.2 Reducing the cost of randomness.
Beyond the new algorithmic ideas discussed
above, obtaining a near linear time recovery
procedure for streaming graph sparsification re-
quires solving a second mostly orthogonal prob-
lem: we need a faster way to generate pseudo-
random bits for use in our randomized sketching
algorithms.

Nisan’s pseudorandom number generator.
Like most streaming algorithms, our methods
depend heavily on randomness. We compute
sketches of the form II - B, where II is a ran-
domly constructed matrix with (Z) columns and
s = polylog(n) rows. Naively, storing II after
random initialization would take €(n?) space,
dominating the space complexity of our algo-
rithms. Accordingly, to obtain truly space ef-
ficient methods, we need to find a more compact
way of representing the random matrix II. This
is not a challenge unique to graph sketching —
essentially all linear sketching algorithms require
efficient ways of representing the sketch matrix
I1.

Amongst several techniques for doing so
(e.g., many algorithms build II using low-
independence hash functions), one powerful ap-
proach is to generate II using a pseudorandom
number generator (PRG) with a small seed. In-
dyk first applied this idea for streaming estima-
tion of vector norms [Ind06]. He showed that any
PRG than can “fool” a small space algorithm
can also fool any linear sketching algorithm with
a small sketch size (i.e., with few rows in II).

Instantiating Indyk’s result with Nisan’s well
known PRG [Nis92] allows II to be generated
from a seed of just O(N log R) random bits, as
long as II-x, or in our case, II- B can be stored in
N space and II can be generated from R random
bits. Instead of storing II, the streaming algo-
rithm just needs to store this small random seed
and any entry of II can be generated “on-the-fly”
as needed. This is a powerful result: since In-
dyk’s original application, Nisan’s generator has
become a central tool in streaming algorithm de-
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sign.

However, when runtime is a concern, Nisan’s
PRG is a costly option for graph streaming al-
gorithms. If R random bits are required to gen-
erate II, Nisan’s generator requires O(N log R)
time to generate even a single random bit from
its O(N log R) length seed. In our setting R is
polynomial in N, but upwards of O(n) random
bits need to be accessed during our sparsifier re-
covery algorithm. Generating these bits on-the-
fly would immediately imply an Q(nN) > Q(n?)
runtime bottleneck.

A faster pseudorandom generator. To deal
with the cost of generating I in a pseudorandom
way, in Section 4 we present a pseudorandom
generator that is much faster than Nisan’s. In
particular, we show that, at least when R is
polynomial in N, it is possible to construct a
generator that can produce any pseudorandom
output bit in polylog N time. At the same
time, our generator still uses a seed of just
O(N polylog N) random bits (only a polylog N
factor more than Nisan’s).

To understand how to achieve a faster genera-
tor, notice why Nisan’s pseudorandom generator
requires O(N log N) time per output bit: every
output bit in Nisan’s construction depends on
every seed bit in its O(N log N) length seed. To
avoid this cost, we need a generator that is in-
herently local, with each pseudorandom bit only
depending on polylog N seed bits.

While “locally computable” pseudorandom num-
ber generators have not been studied directly,
there do exist locally computable constructions
of extractors, a closely related object [Vad04,
Lu02, DPVR12]. The goal of an extractor is to
extract a small string of nearly uniform random
bits from a long stream of weakly random bits.
In certain cryptographic settings, it is desirable
to do so in a way that only bases each output bit
on a relatively small number of input bits.

Furthermore, it is actually possible to construct
a pseudorandom number generator using an al-

gorithm for randomness extraction. In partic-
ular, by plugging a locally computable extrac-
tor from [DV10] into a pseudorandom gener-
ator of Nisan and Zuckerman [NZ96], we ob-
tain a generator that can compute each pseu-
dorandom bit using just O(polylog N) pseudo-
random bits. Naively, this construction can out-
put up to N2 pseudorandom bits using a seed of
O(N). We describe an iterative process which
further exands the output to N¢ pseudorandom
bits, while still maintaining a generation time of
polylog N whenever c is constant.

There are likely many possible improvements to
our basic construction. We hope that bringing
a broader set of tools from the pseudorandom-
ness literature to the streaming algorithms com-
munity, we can initiate an exploration of these
improvements, which could lead to fast linear
sketching.

3.3 Our algorithm and proof of main
result. As discussed, our algorithm consists of
two phases. In the first, the algorithm maintains
sketches of the stream (in particular the vertex
edge incidence matrix B), updating the sketches
at each edge addition or deletion. Then, in the
second phase, the algorithm recovers a spectral
sparsifier of the graph from these sketches. In
the following lines, we give a brief overview of
each phase:

Updating sketches in the dynamic stream.
Our algorithm maintains a set of sketches I1B,
of size O(n polylog(n) - €72), and updates them
each time it receives an edge insertion or deletion
in the stream. IIB consists of multiple sketches
(TTBY),s where B! is a subsampling of the
edges in B at rate 27° and II¢ is an /5 heavy
hitters sketch. In Section 3.4 we discuss these
sketches in more detail and we show that the
update time for each edge insertion or deletion
is O(polylog(n) - e~2).

Recursive sparsification. After receiving the
updates in the form of a dynamic stream, our al-
gorithm uses the maintained sketches to recover
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a spectral sparsifier of the graph. This is done
recursively, and relies on the idea of a chain of
coarse sparsifiers described in Remark 2.1 and
Lemma A.1. For a regularization parameter /¢
between 0 and d = O(logn) the task of SPAR-
sty (IISB, £, €) is to output a spectral sparsifier
to matrix Ly, which was defined in Def. 2.1 as:

Lo+ 31 if0<e<d
L, = :
LG 1f€:d—|-1,

where d = [log, i—lﬂ (see Lemma A.1 for more
details about the chain of coarse sparsifiers).

Note that the call receives a collection of sketches
[I=‘B as input that suffices for all recursive
calls with smaller values of ¢. So, to com-
pute a sparsifier of the graph we invoke SPAR-
siFy (ITS9H1 B, d + 1,¢€), which receives all the
sketches maintained throughout the stream and
passes the required sketches to the recursive calls
in line 6 of Algorithm 1. The algorithm first
invokes itself recursively to recover K, a spec-
tral approximation for Ly;_; (or uses the trivial
approximation A,/ when ¢ = 0). The effective
resistance metric induced by K is then approxi-
mated using the Johnson-Lindenstrauss lemma
(JL). Finally, the procedure RECOVEREDGES
(i.e. Algorithm 2) uses this metric and the heavy
hitters sketches (II{BS)s to recover a sparsifier
for Ly_1 using the techniques described in Sec-
tion 3.1. We formally state our algorithm, Algo-
rithm 1 below.

Algorithm 2 (the RECOVEREDGES primitive) is
the core of Algorithm 1. It receives a pa-
rameter s as input, and its task is to recover
€ _9-5 from a

edges with effective resistance ~ oz
sample at rate min(1,0(27%)) from an appro-
priate sketch. It is convenient to let s range
from —O(log(logn/e?)) to O(logn), so that the
smallest value of s corresponds to edges of con-
stant effective resistance. That way the sam-
pling level corresponding to s is simply equal to
st := max(0,s). Therefore, Algorithm 2 takes
as input a heavy hitters sketch Hf,+ Bf+ of Bf+,
the edge incidence matrix of L, sampled at rate

2—s" , an approximate effective resistance embed-
ding M, the target sampling probability 27%, the
dimension ¢ of the embedding, and the target
accuracy €. This procedure then performs the
previously described random grid hashing of the
points using the effective resistance embedding
and queries the heavy hitters sketch to find the
edges sampled at the appropriate rate.

Algorithm 1 SPARSIFY(IIS/B, Y, €)

1: procedure SPARSIFY (IIS‘B, /, €)

2 W <« onxn

3 if /=0 then

4: K+ M\

5: else

6 K+ %SPARSIFY(HSZ—lB,E —1,¢)

7 /B; <+ the edge vertex incident matrix of lj(:
8 W < diagonal weightmatrix of edges of K
9: Q + gx((3) + n) is arandom +1 matrix
10: ~___ for g+ 1000logn
11: M « \%QWVQBIG' > M is such that
12: Ry, < FIIM(xu — x0)ll5 < SRE,
13 for s € [—log (3czlogn/e?) ,10logn] do
14 E, < RECOVEREDGES(IIY, B',, M,
15: K*,s,q,¢€)
16: > We use s = max(0, s)
17: for e € E, do W (e, e) + 27 (")

18: if ¢ = {logz i—ﬂ + 1 then v+ 0

19: else v < 3—;
20: return B WB,, +~I.

The development and analysis of RECOV-
EREDGES (Algorithm 2) is the main technical
contribution of our paper. In the rest of the
section we prove the correctness this algorithm
(Lemma 3.2, our main technical lemma), and
then provide a correctness proof for Algorithm 1,
establishing Theorem 3.1. We put these re-
sults together with runtime and space complex-
ity bounds to prove Theorem 1.1.

Specifically, Lemma 3.2 proves that if Algo-
rithm 1 successfully executes all lines before
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line 13, then each edge is sampled and weighted
properly (as required by Theorem A.1), in the
remaining steps.

LEMMA 3.2. (EDGE RECOVERY)

Consider an invocation of
RECOVEREDGES(IT®, B, | M, K, s,q,¢) of
Algorithm 2, where Hﬁ+B§+ is a sketch of the
edge incidence matrix B of the input graph G
as described in Section 3.4, s is some integer,
and € € (0,1/5). Suppose further that K and M
satisfy the following guarantees:

(A) K is such that % Ly =, K =, Ly (see
lines J and 6 of Algorithm 1)

(B) M is such that for any pair of vertices u
and v, R, < §IM(xu = xo)|3 < §R,
(RX is the effective resistance metric in K;
see line 12 of Algorithm 1)

Then, with high probability, for every edge e,
RECOVEREDGES(Hf;+ B§+, M,K,s,q,¢e) will re-
cover e if and only if:

(1) § -2 [[Mb][3 - log(n)/e® € (27571, 27]
where co s the oversampling constant of
Theorem A.1 (see lines 23 and 2/ of Algo-
rithm 2), and

(2) edge e is sampled in BY, .

The proof of Lemma 3.2 relies on the following
two claims regarding the hashing scheme of Al-
gorithm 2. First, Claim 3.1 shows that the end-
points of an edge of effective resistance bounded
by a threshold most likely get mapped to the
same grid point in the random hashing step in
line 12 of Algorithm 2.

CrAM 3.1. (HAasH COLLISION PROBABILITY)

Let g be a positive integer and let the function
G : R? — 719 define a hashing with width w > 0
as follows: Vi € [q], G(u); = L%J, where
s; ~ Unif[0,w], as per line 12 of Algorithm 2. If
for a pair of points x,y € RY, ||z —y||l2 < wo and

w > 2wogq, then G(x) = G(y) with probability at
least 1/2.

Proof of Claim 3.1 is deferred to [KKNST'19].

Algorithm 2 RECOVEREDCES(ITY, BY, , M,

K+7 87 q7 6)

1: procedure RECOVEREDCES(IT, BY, , M, K+,
2 S, 4, 6)

3. E 0.

4: (' < is as in the proof of Lemma 3.2
5: ¢g < the constant of Theorem A.1
6

7

8

9

w <— 2(] t A/ m
for j € [10logn] do
Vi € [g], choose s; ~ Unif([0, w]).
: H <+ () (an empty hash table)
10 foru €V do > Hash vertices to points
11: on randomly shifted grid

12: Vi € [q], G(u)i < LM '

13: Insert w into H with key G(u). > G(u)
14:  indezes a point on a randomly shifted grid
15:  for b € keys(H) do

16: x <arbitrary vertex in H~1(b)
17: forve H71(b)\ {z} do
18: F + HEAVYHITTER (H§+B§+ K*b,,,
19:

1 1 | €2
20: 5 * C_q3 * m).
21: > As per Lemma A.2
22: for e € F' do
23: pL+ 2 ey ||Mb||3 - logn/e?
24: if p/, € (27°71,27%] then
25: E' «+ E"U{e}.

26: return F’.

The next claim, Claim 3.2 bounds the effective
resistance diameter of buckets in the hash table
constructed in line 13 of Algorithm 2.

CrLAM 3.2. (HASH BUCKET DIAMETER) Let

the function G : RY — 749, for some integer q,
define a hashing with width w > 0 as follows:
Vi € [q], G(u); = | %=t |, where s; ~ Unif[0, w],
as per line 12 of Algorithm 2. For any pair of
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points u,v € RY, such that G(u) = G(v), one has
lu—vll2 < w- 2.

Using Claim 3.1 and Claim 3.2 one can prove
Lemma 3.2, however we defer the proof to
[KNST19].

THEOREM 3.1. (Correctness of Algorithm 1)
Algorithm SPARSIFY(IIS!B, ¢, €), for £ = d +
1 = [log, i—ﬂ + 1 (see Lemma A.1), any € €
(0,1/5) and sketches IIS*B of graph G as de-
scribed in Section 3.4, returns a graph H with
O(n - polylogn - €=2) weighted edges, with Lapla-
cian matriz Ly, such that Ly ~. Lqg, with high
probability.

The proof of this theorem is deferred to
[KNST19].

3.4 Maintenance of sketches. Note that
Algorithm 2 takes sketch IIB as input. More
precisely, II is a concatenation of HEAVYHITTER
sketch matrices composed with sampling matri-
ces, indexed by sampling rate s and regulariza-
tion level ¢. In particular, for all s and ¢ let
B be a row-sampled version of B at rate 27°.
Then Hﬁ is a HEAVYHITTER sketch drawn from
the distribution from Lemma A.2 with parame-

ter n = % . C_ng . loin. Note that the matri-

ces (Hf;)s , are independent and identically dis-
tributed. We then maintain IT¢B¢ for all s and
{. We define

4 L Rt 0 0
II'B = 1_[OBO D... 691_[1010gn31010gn7

where @ denotes concatenation of rows. We
let TI=¢ denote I @ ... @ II*, and let II de-
note IIS%*1 to simplify notation. Thus, the al-
gorithm maintains IIB throughout the stream.
We maintain 1B by maintaining each 1B in-
dividually. To this end we have for each s and
¢ an independent hash function h¢ mapping (‘2/)
to {0,1} independently such that P(h¢(u,v) =
1) =275, Then when an edge insertion or dele-
tion, 4+(u,v), arrives in the stream, we update
I B¢ by +11% - by, - hE(u,v).

Overall, the number of random bits needed for
all the matrices in an invocation of Algorithm 2
is at most R = O(n?), in addition to the
random bits needed for the recursive calls. To
generate matrix IT we use the fast pseudo random
numbers generator from Theorem 4.1.

Observe that the space used by Algorithm 2
is s = O(n) in addition to the space used by
the recursive calls. Since R = O(n?), we have
R = O(s?). Therefore, by Theorem 4.1 we can
generate seed of O(s - poly(logs)) random bits
in O(s - poly(log s)) time that can simulate our
randomized algorithm.

Also, note that the random matrix @ €
ROz m)x(3) for JL, (line 9 of Algorithm 2) can be
generated using O(log n)-wise independent hash
functions.

3.5 Proof of Theorem 1.1 Correctness of
Algorithm 2 is proved in Theorem 3.1. It remains
to prove space and runtime bounds.

Proof of Theorem 1.1:

Run-time and space analysis. We will prove
that one call of SPARSIFY in Algorithm 1 re-
quires O(n - €72) time and space, discounting
the recursive call, where n is the size of the
vertex set of the input graph. Consider first
lines 9 and 12, and note that the random matrix
Q € ROUemx(3) for JL (line 9 of Algorithm
2) can be generated using O(logn)-wise inde-
pendent hash functions, resulting in poly(logn)
time to generate an entry of @ and O(logn)
space. We then multiply QW/2B by K+ which
amounts to solving O(logn) Laplacian systems
and can be done in O(npolylogn - €~2) time,
since K is O(npolylog(n) - € 2) sparse, using
any of a variety of algorithms in the long line
of improvements in solving Laplacian systems
[ST04, KMP10, KMP11, KOSA13, LS13, PS14,
CKM*14, KLP16a, KLP"16b, KS16]. The re-
sulting matrix, M, is again O(logn x n) and
can be stored in n polylogn space. We note that
the aforementioned Laplacian solvers provide ap-

Copyright © 2020 by SIAM

1826 Unauthorized reproduction of this article is prohibited



Downloaded 02/01/20 to 128.12.93.224. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

proximate solutions with inverse polynomial pre-
cision, which is sufficient for application of the
HEAVYHITTER sketch.

The for loops in both line 13 and line 7 iterate
over only O(logn) values. For all non-empty cells
we iterate over all vertices in that cell, so overall
we iterate n times. The HEAVYHITTERS sub-
routine called with parameter = €/ polylogn
returns by definition at most O(polylogn - €~2)
elements, so the for loop in line 22 is over
O(polylogn - €72) iterations. In total this is
O(n polylogn - €72) time and space as claimed.

To get an e-sparsifier of the input graph G, we
need only to run SPARSIFY(IIS9T1B d + 1,¢).
Therefore, the chain of recursive calls will be
©(log(n)) long, and the total run time will still

be O(ne2). O

4 Faster pseudorandom numbers for
sketching algorithms

Like many sketching and streaming algorithms,
our algorithm results rely crucially on random-
ness. In particular, they use many more random
bits than they have space to store. Moreover,
most of these random bits are not used in a “read
once” way. For example, many are used to ini-
tialize persistent random hash functions, which
must access the same set of random bits every
time a particular edge is updated in our graph
sketch.

Naively, after random initialization, we need to
store each of these persistent hash functions. Do-
ing so, however, would require O(n?) space for a
graph with n nodes, which would dominate the
space complexity of our methods. To cope with
this issue, we need a more compact way of repre-
senting persistent random hash functions, a chal-
lenge arising in the design of most randomized
streaming algorithms, both for graph problems
and other applications.

There are several techniques to deal with the
issue. One approach is to prove that an algo-

rithm can be implemented with limited indepen-
dence hash functions, which can take exponen-
tially fewer bits to represent than fully random
hash functions [CW79]. However, proving that
limited independence hashing still gives a correct
algorithm can be a significant burden. For ex-
ample, Indyk’s well known streaming algorithm
for ¢, norm estimation [Ind06] was only shown
to work with limited independence a decade af-
ter its introduction [[KNW10]. Moreover, many
streaming algorithms for graph problems are not
known to work with limited independence (see
e.g. [AGMI2b, KLM™"17]) and this same chal-
lenge carry’s over to a variety of other problems
[RU10, BZ16, CGK16, BBC*17].

In these cases, a more powerful ‘black box’ tech-
nique is needed to reduce the costly requirement
of “storing randomness”. For algorithms based
on linear sketching (like those presented in this
paper) one such technique is the application of
pseudorandom number generators [Nis92, NZ96],
which have been widely used in streaming al-
gorithms since Indyk’s original application to
streaming norm estimation [Ind06]. A pseudo-
random number generator can obviate the need
to persistently store random hash functions al-
together.

4.1 Simulating small space randomized
algorithms. The goal of a pseudorandom num-
ber generator (PRG) is to deterministically gen-
erate a large string of pseudorandom bits from
a much smaller seed of truly random bits. For
certain algorithms, including those that use
bounded memory, it is possible to show that us-
ing these pseudorandom bits instead of a full set
of truly random bits leads to very little degrada-
tion in performance.

While we are not interested in reducing the total
number of random bits used by our algorithms,
PRGs offer an additional advantage: they can
reduce the space required to store randomness
when random bits need to be accessed repeat-
edly. In particular, we only need to store the

Copyright © 2020 by SIAM

1827 Unauthorized reproduction of this article is prohibited



Downloaded 02/01/20 to 128.12.93.224. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PRG’s small random seed and can then gener-
ate pseudorandom bits “on-the-fly”, as they are
needed.

Towards this goal, a pseudorandom number gen-
erator designed by Nisan has been especially
popular in streaming applications [Nis92]. For
any algorithm that use no more than S bits of
space, Nisan’s PRG generates R pseudorandom
bits from a seed of O(S'log R) truly random bits.
If these pseudorandom bits are used to simulate
truly random bits, the algorithm’s failure prob-
ability increases by at most 27°. Furthermore,
space to store the pseudorandom bits only in-
creases the algorithm’s space complexity from S

to O(Slog R).

This PRG can be used to reduce the randomness
requirements of any linear sketching algorithm?
that 1) does not access more than S random
bits on every sketch update and 2) does not use
more than S space beyond what is required to
store randomness. This claim is not immediate:
naively, streaming algorithms that use a large
number of persistent random bits do not run
in small space. However, it can be proven via
a reordering argument from [Ind06], which is
discussed further in [KNMM™19].

4.2 The computation cost of PRGs. Since
our results use linear sketching, we can apply
Nisan’s PRG to eliminate the assumption that
hash functions and other random bits are chosen
truly at random. In particular, for graphs
on n nodes, our algorithms use R = poly(n)
random bits and S = poly(n) space, beyond
what is required to store randomness. So Nisan’s
PRG allows for implementations in total space

O(Slog S).

However, in contrast to prior work on streaming
spectral sparsification [KLM717], we are also
interested in the time complezity of our sketching

5This is a broad class: all known turnstile streaming
algorithms (i.e. those handling insertions and deletions)

are based on linear sketching [LNW14].

methods, both in terms of update and recovery
time. When runtime is a concern, Nisan’s
PRG provides an unsatisfying solution: for our
application it is prohibitively slow.

In particular, using a seed of O(Slog R) random
bits, Nisan’s PRG requires O(Slog R) time to
generate any specific pseudorandom bit. This
runtime is good when S is logarithmic in the
natural problem parameters. For example, for
many streaming problems involving length n
vectors, S = polylog(n) and R = poly(n). In
this setting, the total generation time for Nisan’s
PRG is just polylog(n) per bit. This is very
good considering that, if poly(n) random bits
are stored persistently, it takes O(logn) time just
to specify which bit we would like the PRG to
generate.

However, our algorithms and other graph
streaming algorithms, use significantly more
than polylog(n) space [FKMT05, McGl4].
Specifically, in our setting, both S and R are
polynomial in n for graphs on n nodes, so Nisan’s
PRG requires O(SlogS) time per random bit.
Since polylog(,S) random bits are accessed on ev-
ery edge update, this leads to an update time of
O(S) We would like to reduce the PRG’s cost
to polylog(S) time per bit, which would improve
our update time to polylog(n).

4.3 Main Result. The goal of this section
is to demonstrate that this significant runtime
improvement can be achieved using a different
pseudorandom generator than Nisan’s. In par-
ticular, we prove:

THEOREM 4.1. For any constants q,c > 0, there
is an explicit PRG that draws on a seed of
O(S polylog(S)) random bits and can simulate
any randomized algorithm running in space S
and using R = O(S?) random bits. This PRG
can output any pseudorandom bit in O(logo(q) S)
time and the simulated algorithm fails with prob-
ability at most S~¢ higher than the original.
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The proof of this theorem is deferred to
[KMM™19].

Theorem 4.1 implies a method for reducing the
randomness required by a large class of linear
sketching algorithms (including those presented
in this paper). A formal statement appears as
Theorem 13. [KMMT"19]. In short, as long as
the sketching algorithm uses S space and, for
any update to a particular entry (i.e. an edge in
our case, or a vector entry in a vector streaming
algorithm) the algorithm only accesses at most .S
persistent random bits, then it can be simulated
using a PRG with seed O(S polylogS). As in
Theorem 4.1, this PRG can produce a single
pseudorandom bit in just O(polylog.S) time.
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A Supplementary material

We will need Lemma A.1 that we use in the
correctness proof of our algorithm.

LEMMA A.1. ([LMP13, KLM"17]) Consider
any PSD matriz K with maximum eigenvalue
bounded from above by \,, and minimum nonzero
eigenvalue bounded from below by N,.  Let
d = [log, i—ﬂ For ¢ € {0,1,2,...,d}, define:
v() = ;—1; So y(d) < A, and v(0) = A\y. Then
the chain of PSD matrices, Ko, Ki,..., K]
with K, = K + ~(£)I satisfies the following
relations:

1. K=, Kg=,2-K,
2. Ky = Ky_1 22K, forallte{1,...,d},

COROLLARY A.l1. By Fact 2.1, the statements
of Lemma A.1 holds when K 1is the Laplacian of
an unweighted graph and d = ©(logn).

We will need Theorem A.1 that we use in the
proof of correctness of the main algorithm. It is
well known that by sampling the edges of B ac-
cording to their effective resistance, it is possible
to obtain a weighted edge vertex incident matrix
B such that (1-€¢)B"TB<B'"B=<(1+¢)B'B
with high probability (see Lemma A.1).

THEOREM A.1. ([SS11]) Let B e RG)*" | =
BTB, and let T be a vector of leverage score
overestimates for B’s rows, i.e. T, > b;erJ“by

for all y € [m]. For e € (0,1) and fized constant
c, define the sampling probability for row b,
to be p, = min{l,c- e ?logn - 7,}. Define a
diagonal sampling matrizc W with W (y,y) = i
with probability p, and W(y,y) = 0 otherwise.
With high probability, K = BTWB ~. K.
Furthermore W has O(||7||1-€ 2 logn) non-zeros
with high probability.

LEMMA A.2. (¢ HEAVY HITTERS) For  any
n > 0, there is a decoding algorithm denoted
by HEAVYHITTER and a distribution on ma-
trices SP in ROM “polylog(N)XN g op that,
for any x € RYN, given S"x, the algorithm
HEAVYHITTER(S"x,n) returns a list F C [N]
such that |F| = O(n~2polylog(N)) with prob-
Zbility 1 - m over the choice of S™ one
as

(1) for every i € [N] such that |x;| > nl|lz||2
one has i € F and (2) for every i € F one
has |z;| > (n/2)||z||2- The sketch S™z can be
maintained and decoded in O(n=2 polylog(N))
time and space.

LEMMA A.3. (BINARY JL LEMMA [AcH03])
Let P be an arbitrary set of points in R,
represented by a d X n matrix A, such that
the j' point is Ax;. Given ¢, f > 0 and
q > %logn. Let Q be a random q X d
matriz (¢;j)i; where q;;’s are independent iden-
tically distributed variables taking 1 and —1 each
with probability 1/2. Then, if M = \/LaQA, then
with probability at least 1—n=5, for allu,v € [n]:
(1 = [l Axu — Axull3 < [IMxu — Mxoll5 <
(1 + )l Axu — Axol[3.
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