
Deterministic Approximation of Random Walks in
Small Space
Jack Murtagh
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
http://scholar.harvard.edu/jmurtagh
jmurtagh@g.harvard.edu

Omer Reingold
Computer Science Department, Stanford University, Stanford, CA USA
reingold@stanford.edu

Aaron Sidford
Management Science & Engineering, Stanford University, Stanford, CA USA
http://www.aaronsidford.com/
sidford@stanford.edu

Salil Vadhan
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
http://salil.seas.harvard.edu/
salil_vadhan@harvard.edu

Abstract

We give a deterministic, nearly logarithmic-space algorithm that given an undirected graph G, a
positive integer r, and a set S of vertices, approximates the conductance of S in the r-step random
walk on G to within a factor of 1 + ε, where ε > 0 is an arbitrarily small constant. More generally,
our algorithm computes an ε-spectral approximation to the normalized Laplacian of the r-step walk.

Our algorithm combines the derandomized square graph operation [21], which we recently used
for solving Laplacian systems in nearly logarithmic space [16], with ideas from [5], which gave
an algorithm that is time-efficient (while ours is space-efficient) and randomized (while ours is
deterministic) for the case of even r (while ours works for all r). Along the way, we provide some
new results that generalize technical machinery and yield improvements over previous work. First,
we obtain a nearly linear-time randomized algorithm for computing a spectral approximation to the
normalized Laplacian for odd r. Second, we define and analyze a generalization of the derandomized
square for irregular graphs and for sparsifying the product of two distinct graphs. As part of this
generalization, we also give a strongly explicit construction of expander graphs of every size.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Random walks and Markov chains

Keywords and phrases random walks, space complexity, derandomization, spectral approximation,
expander graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.42

Category RANDOM

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.06361.

Funding Jack Murtagh: Supported by NSF grant CCF-1763299.
Omer Reingold: Supported by NSF grant CCF-1763311.
Salil Vadhan: Supported by NSF grant CCF-1763299.

© Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 42; pp. 42:1–42:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://scholar.harvard.edu/jmurtagh
mailto:jmurtagh@g.harvard.edu
mailto:reingold@stanford.edu
http://www.aaronsidford.com/
mailto:sidford@stanford.edu
http://salil.seas.harvard.edu/
mailto:salil_vadhan@harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://arxiv.org/abs/1903.06361
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Deterministic Approximation of Random Walks in Small Space

1 Introduction

Random walks provide the most dramatic example of the power of randomized algorithms
for solving computational problems in the space-bounded setting, as they only require
logarithmic space (to store the current state or vertex). In particular, since undirected graphs
have polynomial cover time, random walks give a randomized logspace (RL) algorithm
for Undirected S-T Connectivity [1]. Reingold [19] showed that this algorithm can
be derandomized, and hence that Undirected S-T Connectivity is in deterministic
logspace (L). However, Reingold’s algorithm does not match the full power of random walks
on undirected graphs; in particular it does not allow us to approximate properties of the
random walk at lengths below the mixing time.

In this work, we provide a nearly logarithmic-space algorithm for approximating properties
of arbitrary-length random walks on an undirected graph, in particular the conductance of
any set of vertices:

I Definition 1. Let G = (V, E) be an undirected graph, r a positive integer, and S ⊆ V a
set of vertices. The conductance of S under the r-step random walk on G is defined as

Φr(S) = Pr[Vr 6∈ S|V0 ∈ S],

where V0, V1, . . . , Vr is a random walk on G started at the stationary distribution Pr[V0 =
v] = deg(v)/2|E|.

I Theorem 2. There is a deterministic algorithm that given an undirected multigraph G on
n vertices, a positive integer r, a set of vertices S, and ε > 0, computes a number Φ̃ such that

(1 − ε) · Φr(S) ≤ Φ̃ ≤ (1 + ε) · Φr(S)

and runs in space O(log N + (log r) · log(1/ε) + (log r) · log log r), where N is the bit length
of the input graph G.

Previously, approximating conductance could be done in O(log3/2(N/ε) + log log r) space,
which follows from Saks’ and Zhou’s proof that RL is in L3/2 [22].

Two interesting parameter regimes where we improve the Saks-Zhou bound are when
r = 1/ε = 2O(

√
log N), in which case our algorithm runs in space O(log N), or when ε =

1/polylog(N) and r ≤ poly(N), in which case our algorithm runs in space Õ(log N). When r

exceeds the poly(N) · log(1/ε) time for random walks on undirected graphs to mix to within
distance ε of the stationary distribution, the conductance can be approximated in space
O(log(N/ε) + log log r) by using Reingold’s algorithm to find the connected components of
G, and the bipartitions of the components that are bipartite and calculating the stationary
probability of S restricted to each of these pieces, which is proportional to the sum of degrees
of vertices in S.

We prove Theorem 2 by providing a stronger result that with the same amount of space it
is possible to compute an ε-spectral approximation to the normalized Laplacian of the r-step
random walk on G.

I Definition 3. Let G be an undirected graph with adjacency matrix A, diagonal degree
matrix D, and transition matrix T = AD−1. The transition matrix for the r-step random
walk on G is T r. The normalized Laplacian of the r-step random walk is the symmetric
matrix I − Mr for M = D−1/2AD−1/2.

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:3

Note that the normalized Laplacian can also be expressed as I − Mr = D−1/2(I − T r)D1/2,
so it does indeed capture the behavior of r-step random walks on G.1

I Theorem 4 (Main result). There is a deterministic algorithm that given an undirected
multigraph G on n vertices with normalized Laplacian I − M , a nonnegative integer r, and
ε > 0, constructs an undirected multigraph G̃ whose normalized Laplacian L̃ is an ε-spectral
approximation of L = I − Mr. That is, for all vectors v ∈ Rn

(1 − ε) · vT Lv ≤ vT L̃v ≤ (1 + ε) · vT Lv.

The algorithm runs in space O(log N + (log r) · log(1/ε) + (log r) · log log r), where N is the
bit length of the input graph G.

Theorem 2 follows from Theorem 4 by taking v to be D1/2eS where eS is the characteristic
vector of the set S and normalizing appropriately (See Section 5).

Our main technique for proving Theorem 4 is the derandomized product, a new generaliz-
ation of the derandomized square, which was introduced by Rozenman and Vadhan [21] to
give an alternative proof that
Undirected S-T Connectivity is in L. Our main result follows from carefully applying
the derandomized product and analyzing its properties with inequalities from the theory of
spectral approximation. Specifically, our analysis is inspired by the work of Cheng, Cheng,
Liu, Peng, and Teng [5], who studied the approximation of random walks by randomized
algorithms running in nearly linear time. We emphasize that the work of [5] gives a ran-
domized algorithm with high space complexity (but low time complexity) for approximating
properties of even length walks while we give a deterministic, space-efficient algorithm for
approximating properties of walks of every length. Interestingly, while the graphs in our
results are all undirected, some of our analyses use techniques for spectral approximation of
directed graphs introduced by Cohen, Kelner, Peebles, Peng, Rao, Sidford, and Vladu [7, 6].

The derandomized square can be viewed as applying the pseudorandom generator of
Impagliazzo, Nisan, and Wigderson [10] to random walks on labelled graphs. It is somewhat
surprising that repeated derandomized squaring does not blow up the error by a factor
proportional to the length of the walk being derandomized. For arbitrary branching programs,
the INW generator does incur error that is linear in the length of the program. Some special
cases such as regular [3, 4, 8] and permutation [8, 24] branching programs of constant width
have been shown to have a milder error growth as a function of the walk length. Our work
adds to this list by showing that properties of random walks of length k on undirected graphs
can be estimated in terms of spectral approximation without error accumulating linearly in k.

In our previous work [16], we showed that the Laplacian of the derandomized square of a
regular graph spectrally approximates the Laplacian of the true square, I − M2, and this was
used in a recursion from [18] to give a nearly logarithmic-space algorithm for approximately
solving Laplacian systems Lx = b. A natural idea to approximate the Laplacian of higher
powers, I − Mr, is to repeatedly derandomized square. This raises three challenges, and we
achieve our result by showing how to overcome each:
1. It is not guaranteed from [16] that repeated derandomized squaring preserves spectral

approximation. For this, we use ideas from [5] to argue that it does.
2. When r is not a power of 2, the standard approach would be to write r = b0 + 2 · b1 +

. . . + 2z · bz where bi is the ith bit of r and multiply approximations to M2i for all i

such that bi 6= 0. The problem is that multiplying spectral approximations of matrices

1 When G is irregular, the matrix I − T r is not necessarily symmetric. It is a directed Laplacian as defined
in [7, 6]. See Definition 9.

APPROX/RANDOM 2019

42:4 Deterministic Approximation of Random Walks in Small Space

does not necessarily yield a spectral approximation of their product. Our solution is to
generalize the derandomized square to produce sparse approximations to the product
of distinct graphs. In particular, given I − M and an approximation I − M̃ to I − Mk,
our derandomized product allows us to combine M and M̃ to approximate I − Mk+1.
Although our generalized graph product is defined for undirected graphs, its analysis uses
machinery for spectral approximation of directed graphs, introduced in [6].

3. We cannot assume that our graph is regular without loss of generality. In contrast,
[19, 21, 16] could do so, since adding self-loops does not affect connectivity or solutions to
Laplacian systems of G, however, it does affect random walks. Our solution is to define
and analyze the derandomized product for irregular graphs.

A key element in the derandomized product is a strongly explicit (i.e. neighbor relations
can be computed in space O(log N)) construction of expander graphs whose sizes equal the
degrees of the vertices in the graphs being multiplied. This is problematic when we are
not free to add self loops to the graphs because strongly explicit constructions of expander
graphs only exist for graph sizes that are certain subsets of N such as powers of 2 (Cayley
graphs based on [17] and [2]), perfect squares [14, 9], and other size distributions [20] or are
only explicit in the sense of running time or parallel work [13]. To address this issue, we give
a strongly explicit construction of expander graphs of all sizes by giving a reduction from
existing strongly explicit constructions in Section 3.

Many of our techniques are inspired by Cheng, Cheng, Liu, Peng, and Teng [5], who gave
two algorithms for approximating random walks. One is a nearly linear time randomized
algorithm for approximating random walks of even length and another works for all walk
lengths r but has a running time that is quadratic in r, and so only yields a nearly linear
time algorithm for r that is polylogarithmic in the size of the graph. In addition, [11] studied
the problem of computing sparse spectral approximations of random walks but the running
time in their work also has a quadratic dependence on r. We extend these results by giving a
nearly linear time randomized algorithm for computing a spectral approximation to I − Mr

for all r. This is discussed in Section 5.

2 Preliminaries

2.1 Spectral Graph Theory
Given an undirected multigraph G the Laplacian of G is the symmetric matrix D − A,
where D is the diagonal matrix of vertex degrees and A is the adjacency matrix of G. The
transition matrix of the random walk on G is T = AD−1. Tij is the probability that a
uniformly random edge from vertex j leads to vertex i (i.e. the number of edges between
j and i divided by the degree of j). The normalized Laplacian of G is the symmetric
matrix I − M = D−1/2(D − A)D−1/2. Note that when G is regular, the matrix M =
D−1/2AD−1/2 = AD−1 = T . The transition matrix of the r-step random walk on G is T r.
For all probability distributions π, T rπ is the distribution over vertices that results from
picking a random vertex according to π and then running a random walk on G for r steps.
The transition matrix of the r-step random walk on G is related to the normalized Laplacian
in the following way:

I − Mr = D−1/2(I − T r)D1/2.

For undirected multigraphs, the matrix M = D−1/2AD−1/2 has real eigenvalues between −1
and 1 and so I − Mr has eigenvalues in [0, 2] and thus is positive semidefinite (PSD). The
spectral norm of a real matrix M , denoted ‖M‖, is the largest singular value of M . That is,

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:5

the square root of the largest eigenvalue of MT M . When M is symmetric, ‖M‖ equals the
largest eigenvalue of M in absolute value. For an undirected graph G with adjacency matrix
A, we write k · G to denote the graph with adjacency matrix k · A, i.e. the multigraph G

with all edges duplicated to have multiplicity k.
Given a symmetric matrix L, its Moore-Penrose Pseudoinverse, denoted L†, is the unique

matrix with the same eigenvectors as L such that for each eigenvalue λ of L, the corresponding
eigenvalue of L† is 1/λ if λ 6= 0 and 0 otherwise. When L is a Laplacian, we write L†/2 to
denote the unique symmetric PSD matrix square root of the pseudoinverse of L.

To measure the approximation between graphs we use spectral approximation2[23]:

I Definition 5. Let L, L̃ ∈ Rn×n be symmetric PSD matrices. We say that L̃ is an ε-
approximation of L (written L̃ ≈ε L) if for all vectors v ∈ Rn

(1 − ε) · vT Lv ≤ vT L̃v ≤ (1 + ε) · vT Lv.

Note that Definition 5 is not symmetric in L and L̃. Spectral approximation can also be
written in terms of the Loewner partial ordering of PSD matrices:

(1 − ε) · L � L̃ � (1 + ε) · L

where for two matrices A, B, we write A � B if B − A is PSD. Spectral approximation has a
number of useful properties listed in the following proposition.

I Proposition 6. If W, X, Y, Z ∈ Rn×n are PSD symmetric matrices then:
1. If X ≈ε Y for ε < 1 then Y ≈ε/(1−ε) X

2. If X ≈ε1 Y and Y ≈ε2 Z then X ≈ε1+ε2+ε1·ε2 Z ,
3. If X ≈ε Y and V is any n × n matrix then V T XV ≈ε V T Y V ,
4. If X ≈ε Y then X + Z ≈ε Y + Z,
5. If W ≈ε1 X and Y ≈ε2 Z then W + Y ≈max{ε1,ε2} X + Z, and
6. If X ≈ε Y then c · X ≈ε c · Y for all nonnegative scalars c

For regular undirected graphs, we use the measure introduced by [15] for the rate at which a
random walk converges to the uniform distribution.

I Definition 7 ([15]). Let G be a regular undirected graph with transition matrix T . Define

λ(G) = max
v⊥~1
v 6=0

‖Tv‖
‖v‖

= 2nd largest absolute value of the eigenvalues of T ∈ [0, 1].

1 − λ(G) is called the spectral gap of G.

λ(G) is known to be a measure of how well-connected a graph is. The smaller λ(G), the faster
a random walk on G converges to the uniform distribution. Graphs G with λ(G) bounded
away from 1 are called expanders. Expanders can equivalently be characterized as graphs
that spectrally approximate the complete graph. This is formalized in the next lemma.

I Lemma 8. Let H be a c-regular undirected multigraph on n vertices with transition matrix
T and let J ∈ Rn×n be a matrix with 1/n in every entry (i.e. J is the transition matrix
of the complete graph with a self loop on every vertex). Then λ(H) ≤ λ if and only if
I − T ≈λ I − J .

2 In [16], we use an alternative definition of spectral approximation where L̃ ≈ε L if for all v ∈ Rn,
e−ε · vT Lv ≤ vT L̃v ≤ eε · vT Lv. We find Definition 5 more convenient for this paper.

APPROX/RANDOM 2019

42:6 Deterministic Approximation of Random Walks in Small Space

A proof of Lemma 8 can be found in the full version of the paper. In [6] Cohen, Kelner,
Peebles, Peng, Rao, Sidford, and Vladu introduced a definition of spectral approximation
for asymmetric matrices. Although the results in our paper only concern undirected graphs,
some of our proofs use machinery from the theory of directed spectral approximation.

I Definition 9 (Directed Laplacian [7, 6]). A matrix L ∈ Rn×n is called a directed Laplacian
if Lij ≤ 0 for all i 6= j and Lii = −

∑
j 6=i Lji for all i ∈ [n]. The associated directed graph

has n vertices and an edge (i, j) of weight −Lji for all i 6= j ∈ [n] with Lji 6= 0.

I Definition 10 (Asymmetric Matrix Approximation [6]). Let L̃ and L be (possibly asymmetric)
matrices such that U = (L + LT)/2 is PSD. We say that L̃ is a directed ε-approximation
of L if:
1. ker(U) ⊆ ker(L̃ − L) ∩ ker((L̃ − L)T), and
2.

∥∥U†/2(L̃ − L)U†/2
∥∥

2 ≤ ε

Below we state some useful lemmas about directed spectral approximation. The first gives
an equivalent formulation of Definition 10.

I Lemma 11 ([6] Lemma 3.5). Let L ∈ Rn×n be a (possibly asymmetric) matrix and let
U = (L + LT)/2. A matrix L̃ is a directed ε-approximation of L if and only if for all vectors
x, y ∈ Rn

xT (L̃ − L)y ≤ ε

2 · (xT Ux + yT Uy).

I Lemma 12 ([6] Lemma 3.6). Suppose L̃ is a directed ε-approximation of L and let U =
(L + LT)/2 and Ũ = (L̃ + L̃T)/2. Then Ũ ≈ε U .

Lemma 12 says that directed spectral approximation implies the usual notion from
Definition 5 for “symmetrized” versions of the matrices L and L̃. In fact, when the matrices
L and L̃ are both symmetric, the two definitions are equivalent:

I Lemma 13. Let L̃ and L be symmetric PSD matrices. Then L̃ is a directed ε-approximation
of L if and only if L̃ ≈ε L.

A proof of Lemma 13 can be found in the full version of the paper.

2.2 Space Bounded Computation
We use a standard model of space-bounded computation where the machine M has a read-
only input tape, a constant number of read/write work tapes, and a write-only output tape.
If throughout every computation on inputs of length at most n, M uses at most s(n) total
tape cells on all the work tapes, we say M runs in space s = s(n). Note that M may write
more than s cells (in fact as many as 2O(s)) but the output tape is write-only. The following
proposition describes the behavior of space complexity when space bounded algorithms
are composed.

I Proposition 14. Let f1, f2 be functions that can be computed in space s1(n), s2(n) ≥ log n,
respectively, and f1 has output of length at most `1(n) on inputs of length n. Then f2 ◦ f1
can be computed in space

O(s2(`1(n)) + s1(n)).

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:7

2.3 Rotation Maps
In the space-bounded setting, it is convenient to use local descriptions of graphs. Such descrip-
tions allow us to navigate large graphs without loading them entirely into memory. For this we
use rotation maps, functions that describe graphs through their neighbor relations. Rotation
maps are defined for graphs with labeled edges as described in the following definition.

I Definition 15 ([20]). A two-way labeling of an undirected multigraph G = (V, E) with
vertex degrees (dv)v∈V , is a labeling of the edges in G such that
1. Every edge (u, v) ∈ E has two labels: one in [du] as an edge incident to u and one in [dv]

as an edge incident to v,
2. For every vertex v ∈ V , the labels of the dv edges incident to v are distinct.
In [21], two-way labelings are referred to as undirected two-way labelings. Note that every
graph has a two-way labeling where each vertex “names” its neighbors uniquely in some
canonical way based on the order they’re represented in the input. We will describe
multigraphs with two-way labelings using rotation maps:

I Definition 16 ([20]). Let G be an undirected multigraph on n vertices with a two-way
labeling. The rotation map RotG is defined as follows: RotG(v, i) = (w, j) if the ith edge to
vertex v leads to vertex w and this edge is the jth edge incident to w.

We will use expanders that have efficiently computable rotation maps. We call such graphs
strongly explicit. The usual definition of strong explicitness only refers to time complexity,
but we will use it for both time and space.

I Definition 17. A family of two-way labeled graphs G = {Gn,c}(n,c), where Gn,c is a c-
regular graph on n vertices, is called strongly explicit if given n, c, a vertex v ∈ [n] and an
edge label a ∈ [c], RotGn,c(v, a) can be computed in time poly(log(nc)) and space O(log nc).

3 The Derandomized Product and Expanders of All Sizes

In this section we introduce our derandomized graph product. The derandomized product
generalizes the derandomized square graph operation that was introduced by Rozenman
and Vadhan [21] to give an alternative proof that Undirected S-T Connectivity is in L.
Unlike the derandomized square, the derandomized product is defined for irregular graphs
and produces a sparse approximation to the product of any two (potentially different) graphs
with the same vertex degrees.

Here, by the “product” of two graphs G0, G1, we mean the reversible Markov chain with
transitions defined as follows: from a vertex v, with probability 1/2 take a random step on
G0 followed by a random step on G1 and with probability 1/2 take a random step on G1
followed by a random step on G0.

When G0 = G1 = G, this is the same as taking a 2-step random walk on G. Note,
however, that when G is irregular, a 2-step random walk is not equivalent to doing a 1-step
random walk on the graph G2, whose edges correspond to paths of length 2 in G. Indeed,
even the stationary distribution of the random walk on G2 may be different than on G.3
Nevertheless, our goal in the derandomized product is to produce a relatively sparse graph
whose 1-step random walk approximates the 2-step random walk on G.

3 For example, let G be the graph on two vertices with one edge (u, v) connecting them and a single
self loop on u. Then [2/3, 1/3] is the stationary distribution of G and [3/5, 2/5] is the stationary
distribution of G2.

APPROX/RANDOM 2019

42:8 Deterministic Approximation of Random Walks in Small Space

The intuition behind the derandomized product is as follows: rather than build a graph
with every such two-step walk, we use expander graphs to pick a pseudorandom subset of the
walks. Specifically, we first pick b ∈ {0, 1} at random. Then, as before we take a truly random
step from v to u in Gb. But for the second step, we don’t use an arbitrary edge leaving u in
Gb̄, but rather correlate it to the edge on which we arrived at u using a c-regular expander
on deg(u) vertices, where we assume that the vertex degrees in G0 and G1 are the same.
When c < deg(u), the vertex degrees of the resulting two-step graph will be sparser than
without derandomization. However using the pseudorandom properties of expander graphs,
we can argue that the derandomized product is a good approximation of the true product.

I Definition 18 (Derandomized Product). Let G0, G1 be undirected multigraphs on n vertices
with two-way labelings and identical vertex degrees d1, d2, . . . , dn. Let H = {Hi} be a family
of two-way labeled, c-regular expanders of sizes including d1, . . . , dn. The derandomized
product with respect to H, denoted G0pOHG1, is an undirected multigraph on n vertices with
vertex degrees 2 · c · d1, . . . , 2 · c · dn and rotation map RotG0pOHG1 defined as follows: For
v0 ∈ [n], j0 ∈ [dv0], a0 ∈ [c], and b ∈ {0, 1} we compute RotG0pOHG1(v0, (j0, a0, b)) as
1. Let (v1, j1) =RotGb

(v0, j0)
2. Let (j2, a1) =RotHdv1

(j1, a0)
3. Let (v2, j3) =RotGb̄

(v1, j2)
4. Output (v2, (j3, a1, b̄))
where b̄ denotes the bit-negation of b.

Note that when G0 = G1 the derandomized product generalizes the derandomized square
[21] to irregular graphs, albeit with each edge duplicated twice. To see that G0pOHG1 is
undirected, one can check that RotG0pOHG1(RotG0pOHG1(v0, (j0, a0, b))) = (v0, (j0, a0, b))).

Note that Definition 18 requires that each vertex i has the same degree di in G0 and
G1, ensuring that the random walks on G0, G1, and G0pOHG1 all have the same stationary
distribution. This can be generalized to the case that there is an integer k such that for each
vertex v with degree dv in G1, v has degree k · dv in G0. For this, we can duplicate each edge
in G1 k times to match the degrees of G0 and then apply the derandomized product to the
result. In such cases we abuse notation and write G0pOHG1 to mean G0pOHk · G1.

In [16] we showed that the derandomized square produces a spectral approximation to
the true square. We now show that the derandomized product also spectrally approximates
a natural graph product.

I Theorem 19. Let G0, G1 be undirected multigraphs on n vertices with two-way labelings,
and normalized Laplacians I − M0 and I − M1. Let G0 have vertex degrees d1, . . . , dn and
G1 have vertex degrees d′

1, . . . , d′
n where for all i ∈ [n], di = k · d′

i for a positive integer k. Let
H = {Hi} be a family of two-way labeled, c-regular expanders with λ(Hi) ≤ λ for all Hi ∈ H,
of sizes including d1, . . . , dn. Let I − M̃ be the normalized Laplacian of G̃ = G0pOHG1. Then

I − M̃ ≈λ I − 1
2 · (M0M1 + M1M0).

A proof of Theorem 19 can be found in Appendix A.
Note that for a graph G with normalized Laplacian I − M and transition matrix T ,

approximating I − 1
2 · (M0M1 + M1M0) as in Theorem 19 for M0 = Mk0 and M1 = Mk1

gives a form of approximation to random walks of length k1 + k2 on G, as

I − T k1+k2 = D1/2(I − Mk1+k2)D−1/2

= I − 1
2 · D1/2(M0M1 + M1M0)D−1/2.

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:9

To apply the derandomized product, we need an expander family H with sizes equal to all
of the vertex degrees. However, existing constructions of strongly explicit expander families
only give graphs of sizes that are subsets of N such as all powers of 2 or all perfect squares.
In [21, 16] this was handled by adding self loops to make the vertex degrees all equal and
matching the sizes of expanders in explicit families. Adding self loops was acceptable in those
works because it does not affect connectivity (the focus of [21]) or the Laplacian (the focus
of [16]). However it does affect long random walks (our focus), so we cannot add self loops.
Instead, we show how to obtain strongly explicit expanders of all sizes. Our construction
works by starting with a strongly explicit expander from one of the existing constructions
and merging vertices to achieve any desired size:

I Theorem 20. There exists a family of strongly explicit expanders H such that for all n > 1
and λ ∈ (0, 1) there is a c = poly(1/λ) and a c-regular graph Hn,c ∈ H on n vertices with
λ(Hn,c) ≤ λ.

A proof of Theorem 20 can be found in Appendix B.

4 Main Result

In this section we prove Theorem 4, our main result regarding space bounded computation
of the normalized Laplacian of the r-step random walk on G.

The algorithm described below is inspired by techniques used in [5] to approximate
random walks with a randomized algorithm in nearly linear time. Our analyses use ideas
from the work of Cohen, Kelner, Peebles, Peng, Rao, Sidford, and Vladu on directed Laplacian
system solvers even though all of the graphs we work with are undirected.

4.1 Algorithm Description and Proof Overview
Let I − M be the normalized Laplacian of our input and r be the target power. We will
first describe an algorithm for computing I − Mr without regard for space complexity and
then convert it into a space-efficient approximation algorithm. The algorithm iteratively
approximates larger and larger powers of M . On a given iteration, we will have computed
I − Mk for some k < r and we use the following operations to increase k:

Square: I − Mk → I − M2k,
Plus one: I − Mk → I − 1

2 · (M · Mk + Mk · M) = I − Mk+1.

Interleaving these two operations appropriately can produce any power r of M , invoking
each operation at most log2 r times. To see this, let bzbz−1 . . . b0 be the bits of r in its binary
representation where b0 is the least significant bit and bz = 1 is the most significant. We are
given I − M = I − M bz . The algorithm will have z iterations and each one will add one more
bit from most significant to least significant to the binary representation of the exponent. So
after iteration i we will have I − M bzbz−1...bz−i .

For iterations 1, . . . , z, we read the bits of r from bz−1 to b0 one at a time. On each
iteration we start with some power I − Mk. If the corresponding bit is a 0, we square to
create I − M2k (which adds a 0 to the binary representation of the current exponent) and
proceed to the next iteration. If the corresponding bit is a 1, we square and then invoke a
plus one operation to produce I − M2k+1 (which adds a 1 to the binary representation of
the current exponent). After iteration z we will have I − Mr.

APPROX/RANDOM 2019

42:10 Deterministic Approximation of Random Walks in Small Space

Implemented recursively, this algorithm has log2 r levels of recursion and uses O(log N)
space at each level for the matrix multiplications, where N is the bit length of the input graph.
This results in total space O(log r · log N), which is more than we want to use (cf. Theorem 4).
We reduce the space complexity by replacing each square and plus one operation with the
corresponding derandomized product, discussed in Section 3.

Theorem 19 says that the derandomized product produces spectral approximations to the
square and the plus one operation. Since we apply these operations repeatedly on successive
approximations, we need to maintain our ultimate approximation to a power of I − M . In
other words, we need to show that given G̃ such that I − M̃ ≈ε I − Mk we have:
1. I − M̃2 ≈ε I − M2k

2. I − 1
2 · (MM̃ + M̃M) ≈ε I − Mk+1.

We prove these in Lemmas 21 and 22. The transitive property of spectral approximation
(Proposition 6 Part 2) will then complete the proof of spectral approximation.

We only know how to prove items 1 and 2 when Mk is PSD. This is problematic because
M is not guaranteed to be PSD for arbitrary graphs and so Mk may only be PSD when
k is even. Simple solutions like adding self loops (to make the random walk lazy) are not
available to us because loops may affect the random walk behavior in unpredictable ways.
Another attempt would be to replace the plus one operation in the algorithm with a “plus
two” operation

Plus two: I − Mk → I − 1
2 · (M2 · Mk + Mk · M2) = I − Mk+2.

Interleaving the square and plus two would preserve the positive semidefiniteness of the
matrix we’re approximating and can produce any even power of M . If r is odd, we could
finish with one plus one operation, which will produce a spectral approximation because
I − Mr−1 is PSD. A problem with this approach is that the derandomized product is defined
only for unweighted multigraphs and M2 may not correspond to an unweighted multigraph
when G is irregular. (When G is regular, the graph G2 consisting of paths of length 2 in G

does have normalized Laplacian I − M2.)
For this reason we begin the algorithm by constructing an unweighted multigraph G0

whose normalized Laplacian I − M0 approximates I − M2 and where M0 is PSD. We can
then approximate any power I − Mr′

0 using the square and plus one operation and hence can
approximate I − Mr for any even r (see Lemma 23). For odd powers, we again can finish
with a single plus one operation.

Our main algorithm is presented below. Our input is an undirected two-way labeled
multigraph G with normalized Laplacian I − M , ε ∈ (0, 1), and r = bzbz−1 . . . b1b0.

Algorithm 1 Computing a spectral approximation to the r-step random walk.
Input: G with normalized Laplacian I − M , ε ∈ (0, 1), r = bzbz−1 . . . b1b0
Output: Gz with normalized Laplacian I − Mz such that I − Mz ≈ε I − Mr

1. Set µ = ε/(32 · z)
2. Let H be family of expanders of every size such that λ(H) ≤ µ for all H ∈ H.
3. Construct G0 such that I − M0 ≈ε/(16·z) I − M2 and M0 is PSD.
4. For i in {1, . . . , z − 1}

a. If bz−i = 0, Gi = Gi−1pOHGi−1
b. Else Gi = (Gi−1pOHGi−1)pOHG0

5. If b0 = 0 (r even), Gz = Gz−1
6. Else (r is odd), Gz = Gz−1pOHG

7. Output Gz

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:11

Note that each derandomized product multiplies every vertex degree by a factor of 2 · c.
So the degrees of G, G0, . . . , Gz are all proportional to one another and the derandomized
products in Algorithm 1 are well-defined.

4.2 Proof of Main Result
In this section we prove Theorem 4 by showing that Algorithm 1 yields a spectral approxim-
ation of our target power I − Mr and can be implemented space-efficiently. First we show
that our two operations, square and plus one, preserve spectral approximation.

I Lemma 21 (Adapted from [5]). Let N and Ñ be symmetric matrices such that I−Ñ ≈ε I−N

and N is PSD, then I − Ñ2 ≈ε I − N2.

The proof of Lemma 21 can be found in [5] as well as the full version of this paper. Next we
show that the plus one operation in our algorithm also preserves spectral approximation.

I Lemma 22. Let Ñ , N1, and N2 be symmetric matrices with spectral norm at most 1 and
suppose that N1 is PSD and commutes with N2. If I − Ñ ≈ε I − N1 then

I − 1
2 · (ÑN2 + N2Ñ) ≈ε I − N2N1.

A proof of Lemma 22 can be found in the full version of the paper.
Setting N1 = Mk and N2 = M in Lemma 22 shows that the plus one operation preserves

spectral approximation whenever Mk is PSD. Recall that the first step in Algorithm 1 is to
construct a graph G0 with normalized Laplacian I − M0 such that M0 is PSD and I − M0
approximates I − M2. We can then approximate I − Mk

0 for any k using squaring and plus
one because Mk

0 will always be PSD. The following Lemma says that I − Mk
0 spectrally

approximates I − M2k.

I Lemma 23. Let r be a positive integer with bit length `(r) and A and B be symmetric PSD
matrices with ‖A‖, ‖B‖ ≤ 1 such that I − A ≈ε I − B and I − B ≈ε I − A for ε ≤ 1/(2 · `(r)).
Then I − Ar ≈2·ε·`(r) I − Br.

A proof of Lemma 23 can be found in the full version of the paper.
Now we can prove Theorem 4. We prove the theorem with three lemmas: Lemma 24

shows how to construct the graph G0 needed in Algorithm 1, Lemma 25 argues that the
algorithm produces a spectral approximation to I − Mr, and Lemma 26 shows that the
algorithm can be implemented in space O(log N + (log r) · log(1/ε) + (log r) · log log r).

4.2.1 Building G0

I Lemma 24. There is an algorithm that takes an undirected, unweighted multigraph G with
normalized Laplacian I − M and a parameter ε > 0, and outputs a rotation map RotG0 for
an undirected, unweighted multigraph G0 with a two-way labeling and normalized Laplacian
I − M0 such that:
1. M0 is PSD,
2. I − M0 ≈ε I − M2,
3. The algorithm uses space O(log N +log(1/ε)), where N is the bit length of the input graph

G.
A proof of Lemma 24 can be found in Appendix C.

APPROX/RANDOM 2019

42:12 Deterministic Approximation of Random Walks in Small Space

4.2.2 Proof of Spectral Approximation
I Lemma 25. Let G be an undirected multigraph with normalized Laplacian I − M , r be a
positive integer and ε ∈ (0, 1). Let Gz be the output of Algorithm 1 with normalized Laplacian
I − Mz. Then

I − Mz ≈ε I − Mr

Proof. Let bzbz−1 . . . b1b0 be the binary representation of r. Recall that for the derandomized
products in our algorithm we use a family of c-regular expanders H from Theorem 20 such
that for every H ∈ H, λ(H) ≤ µ = ε/(32 · z) (and hence c = poly(1/µ) = poly((log r)/ε)).

We construct G0 with normalized Laplacian I − M0 as in Lemma 24 such that M0 is
PSD and I − M0 ≈ε/(16·z) I − M2. By Proposition 6 Part 1, and the fact that

ε/(16 · z)
1 − ε/(16 · z) = ε

(16 · z) − ε

≤ ε

8 · z
,

we also have I − M2 ≈ε/(8·z) I − M0.
For each i ∈ {0, . . . z} let ri be the integer with binary representation bzbz−1 . . . bz−i and

let I − Mi be the normalized Laplacian of Gi. We will prove by induction on i that Gi is a
(4 · µ · i)-approximation to I − Mri

0 . Thus, Gz−1 is a 4 · µ · (z − 1) ≤ ε/8-approximation to
I − M

rz−1
0 .

The base case is trivial since r0 = 1. For the induction step, suppose that I −
Mi−1 ≈4·µ·(i−1) I − M

rz−i+1
0 . On iteration i, if bz−i = 0, then Gi = Gi−1pOHGi−1. So

we have

I − Mi ≈µ I − M2
i−1

≈4·µ·(i−1) I − M
2·ri−1
0

= I − Mri
0

where the first approximation uses Theorem 19 and the second uses Lemma 21. By Proposition
6 Part 2 this implies that I − Mi approximates I − Mri

0 with approximation factor

µ + 4 · µ · (i − 1) + 4 · µ2 · (i − 1) ≤ 4 · µ · i

where we used the fact that µ < 1/(32 · (i − 1)).
If bz−i = 1, Gi = (Gi−1pOHGi−1)pOHG0. Let I − Mds be the normalized Laplacian of

Gi−1pOHGi−1. By the analysis above, I−Mds is a (µ+4·µ·(i−1)+4·µ2 ·(i−1))-approximation
of I − M

2·ri−1
0 . By Theorem 19 and Lemma 22 we have

I − Mi ≈µ I − 1
2 · (MdsM0 + M0Mds)

≈µ+4·µ·(i−1)+4·µ2·(i−1) I − M
2·ri−1
0 M0

= I − Mri
0

Applying Proposition 6 Part 2 and noting that µ ≤ 1/(32 · (i − 1)) we get

I − Mi ≈4·µ·i I − Mri
0 .

So we conclude that I − Mz−1 ≈ε/8 I − M
rz−1
0 . Furthermore, by Lemma 23 we have

I − M
rz−1
0 ≈ε/8 I − M2·rz−1 .

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:13

By Proposition 6 Part 2, and the fact that ε ≤ 1, this gives

I − Mz−1 ≈ε/3 I − M2·rz−1

If b0 = 0 then 2 · rz−1 = r and we are done. If b0 = 1 then we apply one more plus one
operation using our original graph G to form Gz = Gz−1pOHG such that

I − Mz ≈µ I − 1
2 · (Mz−1M + MMz−1)

≈ε/3 I − M2·rz−1+1

= I − Mr.

Applying Proposition 6 Part 2 then gives I − Mz ≈ε I − Mr. J

4.2.3 Analysis of Space Complexity
I Lemma 26. Algorithm 1 can be implemented so that given an undirected multigraph G,
a positive integer r, and ε ∈ (0, 1), it computes its output Gz in space O(log N + (log r) ·
log(1/ε) + (log r) · log log r), where N is the bit length of the input graph G.

Proof. We show how to compute RotGz in space O(log N +(log r)·log(1/ε)+(log r)·log log r).
Let bzbz−1 . . . b0 be the binary representation of r. Following Algorithm 1, G0 is constructed
with normalized Laplacian I − M0 ≈ε/(16·z) I − M2. From Lemma 24, we know RotG0 can be
computed in space O(log N + log(16 · z/ε)) = O(log N + log(1/ε) + log log r). Let d1, . . . , dn

be the vertex degrees in G0 and dmax be the maximum degree.
The algorithm is presented to have z iterations, where on iteration i ∈ [z − 1], if bz−i = 0

the derandomized product is invoked once, and if bz−i = 1, it is invoked twice. On iteration
z it is either invoked once (b0 = 1) or not at all (b0 = 0). It will be simpler for us to
think of each derandomized product happening in its own iteration. So we will consider
τ = z + w = O(log r) iterations where w is the number of ones in bz−1, . . . , b0. On iterations
1, . . . , z − 1, there are z − 1 derandomized square operations and w plus one operations.
The final iteration will either have a plus one operation with the graph G (if b0 = 1)
or no operation.

We copy the bits of r into memory and expand them into τ bits as follows: for i ∈
{1, . . . z −1} if bz−i = 0, record a 0 (corresponding to a derandomized square) and if bz−i = 1,
record a 0 followed by a 1 (corresponding to a derandomized square followed by a plus one
operation). Finish by just recording bz at the end. Now we have τ bits t1, . . . , tτ in memory
where for i < τ , ti = 0 if the ith derandomized product in our algorithm is a derandomized
square and ti = 1 if the ith derandomized product is a plus one with the graph G0. If tτ = 0,
we do no derandomized product on the last iteration and if tτ = 1 we apply the plus one
operation using G instead of G0 as described in the algorithm.

We also re-number our graphs to be G1, . . . , Gτ where Gi is the graph produced by
following the derandomized products corresponding to t1, . . . , ti. For each i ∈ [τ] and v ∈ [n],
vertex v in graph Gi has degree (2 · c)i · dv because each derandomized product multiplies
every vertex degree by a factor of 2 · c.

Since our graphs can be irregular, the input to a rotation map may have a different length
than its output. To simplify the space complexity analysis, when calling a rotation map, we
will pad the edge labels to always have the same length as inputs and outputs to the rotation
map. For each graph Gi, we pad its edge labels to have length `i = dlog2 dmaxe+i·dlog2(2 · c)e.

Sublogarithmic-space complexity can depend on the model, so we will be explicit about
the model we use. We compute the rotation map of each graph Gi on a multi-tape Turing
machine with the following input/output conventions:

APPROX/RANDOM 2019

42:14 Deterministic Approximation of Random Walks in Small Space

Input Description:
Tape 1 (read-only): Contains the input G, r, and ε with the head at the leftmost
position of the tape.
Tape 2 (read-write): Contains the input to the rotation map (v0, k0), where v0 ∈ [n] is
a vertex of Gi, and k0 is the label of an edge incident to v0 padded to have total length
`i. The tapehead is at the rightmost end of k0. The rest of the tape may contain
additional data.
Tape 3: (read-write) Contains the bits t1, . . . , tτ with the head pointing at ti.
Tapes 4+: (read-write): Blank worktapes with the head at the leftmost position.

Output Description:
Tape 1: The head should be returned to the leftmost position.
Tape 2: In place of (v0, k0), it should contain (v2, k2) = RotGi(v0, k0), where v2 ∈ [n],
and k2 is padded to have total length `i. The head should be at the rightmost position
of k2 and the rest of the tape should remain unchanged from its state at the beginning
of the computation.
Tape 3: Contains the bits t1, . . . , tτ with the head pointing at ti.
Tapes 4+: (read-write): Are returned to the blank state with the heads at the leftmost
position.

Let Space(Gi) be the space used on tapes other than tape 1 to compute RotGi
. We

will show that Space(Gi) = Space(Gi−1) + O(log c). Recalling that Space(G0) = O(log N +
log(1/ε) + log log r) and unraveling the recursion gives

Space(Gz) = O(log N + log(1/ε) + log log r + τ · log c)
= O(log N + log(1/ε) + log log r + log r · log(poly(log r)/ε))
= O(log N + (log r) · log(1/ε) + (log r) · log log r)

as desired. Now we prove the recurrence on Space(Gi). We begin with (v0, k0) on Tape 2
(possibly with additional data) and the tapehead at the far right of k0. We parse k0 into
k0 = (j0, a0, b) where j0 is an edge label in [(2 ·c)i−1 ·dv0] padded to have length `i−1, a0 ∈ [c],
and b ∈ {0, 1}.

Note that Gi = Gi−1pOHG′ where for i 6= τ , we have G′ = Gi−1 if ti−1 = 0 and G′ = G0
when ti−1 = 1. We compute RotGi according to Definition 18. We move the head left to
the rightmost position of j0. If b = 0, we move the third tapehead to ti−1 and recursively
compute RotGi−1(v0, j0) so that Tape 2 now contains (v1, j1, a0, b) (with j1 padded to have
the same length as j0). The vertex v1 in the graph Gi−1 has degree d′ = (2 · c)i−1 · dv1 so
we next compute RotHd′ (j1, a0) so that (v1, j2, a1, b) is on the tape. Finally we compute
RotG′(v1, j2) and flip b to finish with (v2, j3, a1, b̄) on the second tape. We then move the
third tapehead to ti. If b = 1 then we just swap the roles of Gi−1 and G′ above.

So computing RotGi involves computing the rotation maps of Gi−1, Hd′ , and G′ each once.
Note that each of the rotation map evaluations occur in succession and can therefore reuse
the same space. Clearly Space(G′) ≤ Space(Gi−1) because either G′ = Gi−1 or G′ is either
G0 or G, both of whose rotation maps are subroutines in computing RotGi−1 . Computing
RotHd′ adds an overhead of at most O(log c) space to store the additional edge label a0 and
the bit b. So we can compute the rotation map of Gτ in space O(log N + (log r) · log(1/ε) +
(log r) · log log r). J

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:15

5 Corollaries

5.1 Random Walks
Our algorithm immediately implies Theorem 2, which we prove below.

Proof of Theorem 2. Let D be the diagonal degree matrix and I − M be the normalized
Laplacian of G. Let v = D1/2eS where eS is the characteristic vector of the set S. Let dS be
the sum of the degrees of vertices in S. Then using the fact that I −Mr = D−1/2(I −T r)D1/2

where T is the transition matrix of G gives:

1
dS

· vT (I − Mr)v = 1
dS

· eT
S D1/2D−1/2(I − T r)D1/2D1/2eS

= 1
dS

· eT
S DeS − eT

S (T r(DeS/dS))

= 1 − Pr[Vr ∈ S|V0 ∈ S]
= Φr(S)

where the penultimate equality follows from the fact that DeS/dS is the probability distri-
bution over vertices in S where each vertex has mass proportional to its degree, i.e. the
probability distribution V0‖(V0 ∈ S). Multiplying this distribution by T r gives the distribu-
tion of Vr‖(V0 ∈ S). Multiplying this resulting distribution on the left by eT

S , sums up the
probabilities over vertices in S, which gives the probability that our random walk ends in S.

From Theorem 4, we can compute a matrix L̃ such that L̃ ≈ε I − Mr in space O(log N +
(log r) · log(1/ε) + (log r) · log log r). It follows from Proposition 6, Part 6 and the definition
of spectral approximation that

(1 − ε) · Φr(S) ≤ 1
dS

· vT L̃v ≤ (1 + ε) · Φr(S). J

5.2 Odd Length Walks in Nearly Linear Time
Our approach to approximating odd length walks deterministically and space-efficiently also
leads to a new result in the context of nearly linear-time (randomized) spectral sparsification
algorithms. Specifically, we extend the following Theorem of Cheng, Cheng, Liu, Peng,
and Teng [5].

I Theorem 27 ([5]). There is a randomized algorithm that given an undirected weighted
graph G with n vertices, m edges, and normalized Laplacian I − M , even integer r, and
ε > 0 constructs an undirected weighted graph G̃ with normalized Laplacian L̃ containing
O(n log n/ε2) non-zero entries, in time O(m · log3 n · log5 r/ε4), such that L̃ ≈ε I − Mr with
high probability.

Our approach to approximating odd length walks can be used to extend Theorem 27 to odd r.

I Corollary 28. There is a randomized algorithm that given an undirected weighted graph G

with n vertices, m edges, and normalized Laplacian I −M , odd integer r, and ε > 0 constructs
an undirected weighted graph G̃ with normalized Laplacian L̃ containing O(n log n/ε2) non-
zero entries, in time O(m · log3 n · log5 r/ε4), such that L̃ ≈ε I − Mr with high probability.

Our proof of Corollary 28 uses Theorem 27 as a black box. So in fact, given G with
normalized Laplacian I − M and any graph G̃ whose normalized Laplacian approximates
I − Mr for even r, we can produce an approximation to I − Mr+1 in time nearly linear in

APPROX/RANDOM 2019

42:16 Deterministic Approximation of Random Walks in Small Space

the sparsities of G and G̃. To prove the corollary, we use the same method used in [18] and
[6] for sparsifying two-step walks on undirected and directed graphs, respectively. The idea
is that the graphs constructed from two-step walks can be decomposed into the union of
product graphs: graphs whose adjacency matrices have the form xyT for vectors x, y ∈ Rn.
We use the following fact from [6] that says that product graphs can be sparsified in time
that is nearly-linear in the number of non-zero entries of x and y rather than the number of
non-zero entries in xyT , which may be much larger.

I Lemma 29 (Adapted from [6] Lemma 3.18). Let x, y be non-negative vectors with ‖x‖1 =
‖y‖1 = r and let ε ∈ (0, 1). Furthermore, let s denote the total number of non-zero entries in
x and y and let L = diag(y) − 1

r · xyT . Then there is an algorithm that in time O(s · log s/ε2)
computes a matrix L̃ with O(s · log s/ε2) non-zeros such that L̃ is a directed ε-approximation
of L with high probability.

After using Lemma 29 to sparsify each product graph in our decomposition, we then
apply an additional round of graph sparsification.

I Lemma 30 ([12]). Given an undirected graph G with n vertices, m edges, and Laplacian
L and ε > 0, there is an algorithm that computes a graph G̃ with Laplacian L̃ containing
O(n·log n/ε2) non-zero entries in time O(m·log2 n/ε2) such that L̃ ≈ε L with high probability.

Now we are able to prove Corollary 28. See Appendex D for the proof.

References
1 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.

Random walks, universal traversal sequences, and the complexity of maze problems. In 20th
Annual Symposium on Foundations of Computer Science (San Juan, Puerto Rico, 1979), pages
218–223. IEEE, New York, 1979.

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
See also addendum in issue 4(1), 1993, pp. 199–120. doi:10.1002/rsa.3240030308.

3 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom Generators
for Regular Branching Programs. In FOCS, pages 40–47. IEEE Computer Society, 2010.
doi:10.1109/FOCS.2010.11.

4 Joshua Brody and Elad Verbin. The Coin Problem and Pseudorandomness for Branching
Programs. In FOCS, pages 30–39. IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.10.

5 Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Spectral sparsification
of random-walk matrix polynomials. arXiv preprint, 2015. arXiv:1502.03496.

6 Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup Rao, Aaron Sidford,
and Adrian Vladu. Almost-Linear-Time Algorithms for Markov Chains and New Spectral
Primitives for Directed Graphs. arXiv preprint, 2016. arXiv:1611.00755.

7 Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian
Vladu. Faster algorithms for computing the stationary distribution, simulating random walks,
and more. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 583–592. IEEE, 2016.

8 Anindya De. Pseudorandomness for Permutation and Regular Branching Programs. In IEEE
Conference on Computational Complexity, pages 221–231. IEEE Computer Society, 2011.
doi:10.1109/CCC.2011.23.

9 Ofer Gabber and Zvi Galil. Explicit Constructions of Linear-Sized Superconcentrators. J.
Comput. Syst. Sci., 22(3):407–420, 1981. doi:10.1016/0022-0000(81)90040-4.

https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1109/FOCS.2010.11
https://doi.org/10.1109/FOCS.2010.10
http://arxiv.org/abs/1502.03496
http://arxiv.org/abs/1611.00755
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1016/0022-0000(81)90040-4

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:17

10 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for Network
Algorithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of
Computing, pages 356–364, Montréal, Québec, Canada, 1994.

11 Gorav Jindal, Pavel Kolev, Richard Peng, and Saurabh Sawlani. Density Independent Al-
gorithms for Sparsifying k-Step Random Walks. In Klaus Jansen, José D. P. Rolim, David
Williamson, and Santosh S. Vempala, editors, Approximation, Randomization, and Combin-
atorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017), volume 81
of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:17, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
APPROX-RANDOM.2017.14.

12 Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. A Framework for
Analyzing Resparsification Algorithms. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), volume abs/1611.06940. ACM, 2016.
arXiv:1611.06940.

13 Yin Tat Lee, Richard Peng, and Daniel A. Spielman. Sparsified Cholesky Solvers for SDD
linear systems. CoRR, abs/1506.08204, 2015. arXiv:1506.08204.

14 G. A. Margulis. Explicit constructions of expanders. Problemy Peredači Informacii, 9(4):71–80,
1973.

15 Milena Mihail. Conductance and Convergence of Markov Chains-A Combinatorial Treatment
of Expanders. In 30th Annual Symposium on Foundations of Computer Science (Research
Triangle Park, North Carolina), pages 526–531. IEEE, 1989.

16 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. Derandomization Beyond
Connectivity: Undirected Laplacian Systems in Nearly Logarithmic Space. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 801–812, 2017. doi:10.1109/FOCS.2017.79.

17 Joseph Naor and Moni Naor. Small-Bias Probability Spaces: Efficient Constructions and
Applications. SIAM J. Comput., 22(4):838–856, 1993.

18 Richard Peng and Daniel A. Spielman. An Efficient Parallel Solver for SDD Linear Systems.
STOC, 2014.

19 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):Art. 17, 24,
2008.

20 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy Waves, the Zig-Zag Graph Product,
and New Constant-Degree Expanders. Annals of Mathematics, 155(1), January 2001.

21 Eyal Rozenman and Salil Vadhan. Derandomized Squaring of Graphs. In Proceedings of the 8th
International Workshop on Randomization and Computation (RANDOM ‘05), number 3624
in Lecture Notes in Computer Science, pages 436–447, Berkeley, CA, August 2005. Springer.

22 Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and
System Sciences, 58(2):376–403, 1999.

23 Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90. ACM, 2004.

24 Thomas Steinke. Pseudorandomness for Permutation Branching Programs Without the Group
Theory. Technical Report TR12-083, Electronic Colloquium on Computational Complexity
(ECCC), July 2012. URL: http://eccc.hpi-web.de/report/2012/083/.

APPROX/RANDOM 2019

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.14
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.14
http://arxiv.org/abs/1611.06940
http://arxiv.org/abs/1506.08204
https://doi.org/10.1109/FOCS.2017.79
http://eccc.hpi-web.de/report/2012/083/

42:18 Deterministic Approximation of Random Walks in Small Space

A Proof of Theorem 19

Proof. Note that k · G1 has the same transition matrix and normalized Laplacian as G1. So
we can replace G1 with k · G1 and assume k = 1 without loss of generality.

Since G0 and G1 have the same vertex degrees, we can we write

I − 1
2 · (M0M1 + M1M0) = I − D−1/2 1

2 · (T0T1 + T1T0)D1/2 (1)

where T0 and T1 are the transition matrices of G0 and G1, respectively.
Following the proofs in [21] and [16], we can write the transition matrix for the random

walk on G̃ as T̃ = 1
2 · (PR0B̃R1Q + PR1B̃R0Q), where each matrix corresponds to a step in

the definition of the derandomized product. The two terms correspond to b = 0 and b = 1 in
the derandomized product and, setting d̄ =

∑
i∈[n] di,

Q is a d̄ × n matrix that “lifts” a probability distribution over [n] to one over [d̄] where
the mass on each coordinate i ∈ [n] is divided uniformly over the corresponding degree
di. That is, Q(u,i),v = 1/di if u = v and 0 otherwise where the rows of Q are ordered
(1, 1), (1, 2), . . . , (1, d1), (2, 1), . . . , (2, d2),
. . . (n, 1), . . . , (n, dn).
R0 and R1 are the d̄ × d̄ symmetric permutation matrices corresponding to the rotation
maps of G0 and G1, respectively. That is, entry (u, i), (v, j) in Ra is 1 if RotGa(u, i) = (v, j)
and 0 otherwise for a ∈ {0, 1}.
B̃ is a d̄× d̄ symmetric block-diagonal matrix with n blocks where block i is the transition
matrix for the random walk on Hdi

∈ H, the expander in our family with di vertices.
P = DQT is the n × d̄ matrix that maps any d̄-vector to an n-vector by summing
all the entries corresponding to edges incident to the same vertex in G0 and G1.
This corresponds to projecting a distribution on [d̄] back down to a distribution over
[n]. Pv,(u,i) = 1 if u = v and 0 otherwise where the columns of P are ordered
(1, 1), (1, 2), . . . , (1, d1), (2, 1), . . . , (2, d2), . . . (n, 1), . . . , (n, dn).

Likewise, we can write

(T0T1 + T1T0) = (PR0J̃R1Q + PR1J̃R0Q) (2)

where J̃ is a d̄ × d̄ symmetric block-diagonal matrix with n blocks where block i is Ji, the
transition matrix for the complete graph on di vertices with a self loop on every vertex. That
is, every entry of Ji is 1/di.

We will show that

Id̄ − 1
2 · (R0B̄R1 + R1B̄R0) ≈λ Id̄ − 1

2 · (R0J̄R1 + R1J̄R0).

From this the theorem follows by multiplying by D−1/2P on the left and (D−1/2P)T = QD1/2

on the right and applying Proposition 6 Part 3. Since D−1/2PQD1/2 = In, the left-hand
side becomes

In − D−1/2T̃D1/2 = In − D̃−1/2T̃ D̃1/2

= In − M̃

where D̃ = 2 · c · D is the diagonal matrix of vertex degrees of G̃. By Equations (1) and (2),
the right-hand side becomes In − 1

2 (M0M1 + M1M0).

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:19

By Lemma 8, each graph in H is a λ-approximation of the complete graph on the same
number of vertices. It follows that Id̄ − B̃ ≈λ Id̄ − J̃ because the quadratic form of a block
diagonal matrix equals the sum of the quadratic forms of its blocks. By Lemma 13 and
the fact that Id − J̃ is PSD, Id̄ − B̃ is also a directed λ-approximation of Id̄ − J̃ . So for all
vectors x, y ∈ Rd̄ we have

∣∣xT (B̃ − J̃)y
∣∣ ≤ λ

2 · (xT (Id̄ − J̃)x + yT (Id̄ − J̃)y)

≤ λ

2 · (xT x + yT y − 2xT J̃y).

The first inequality uses Lemma 11. We can add the absolute values on the left-hand side
since the right-hand side is always nonnegative (Id − J̃ is PSD) and invariant to swapping x

with −x. The second inequality follows from the fact that J̃ is PSD and so

0 ≤ (x − y)T J̃(x − y) = xT J̃x + yT J̃y − 2 · xT J̃y.

Fix v ∈ Rd̄ and set x = R0v and y = R1v. Recall that R0 and R1 are symmetric permutation
matrices and hence R2

0 = R2
1 = Id̄. Also note that for all square matrices A and vectors x,

xT Ax = xT (A + AT)x/2. Combining these observations with the above gives∣∣∣∣vT

(
1
2 ·

(
R0(B̃ − J̃)R1 + R1(B̃ − J̃)R0

))
v

∣∣∣∣ =
∣∣vT R0(B̃ − J̃)R1v

∣∣
≤ λ

2 · (vT R2
0v + vT R2

1v − 2vT R0J̃R1v)

= λ · (vT v − vT R0J̃R1v)

= λ · vT

(
I − 1

2 ·
(
R0J̃R1 + R1J̃R0

))
v

Rearranging the above shows that

Id̄ − 1
2 · (R0B̄R1 + R1B̄R0) ≈λ Id̄ − 1

2 · (R0J̄R1 + R1J̄R0),

which proves the theorem. J

B Proof of Theorem 20

Proof. Let H ′ be a c′-regular expander on m vertices such that n ≤ m ≤ 2n, c′ is a constant
independent of n and λ(H ′) ≤ λ′ < 1/4. H ′ can be constructed using already known strongly
explicit constructions such as [9, 20] followed by squaring the graph a constant number of
times to achieve λ′ < 1/4. We will construct H as follows: Pair off the first (m − n) vertices
with the last (m − n) vertices in H ′ and merge each pair into a single vertex (which will then
have degree 2 · c′). To make the graph regular, add c′ self loops to all of the unpaired vertices.
More precisely, given u′ ∈ [n] and i′ ∈ [c] = [2 · c′] we compute RotH(u′, i′) as follows:
1. If 1 ≤ u′ ≤ m − n [u′ is a paired vertex]:

a. If 1 ≤ i′ ≤ c′, let u = u′, i = i′ [u′ is the first vertex in pair]
b. else let u = m − u′, i = i′ − c′ [u′ is the second vertex in pair]
c. let (v, j) = RotH′(u, i)

APPROX/RANDOM 2019

42:20 Deterministic Approximation of Random Walks in Small Space

2. else (if m − n < u′ ≤ n) [u′ is an unpaired vertex]
a. If 1 ≤ i′ ≤ c′, let u = u′, i = i′, and (v, j) = RotH(u, j) [original edge]
b. else let (v, j) = (u′, i′) [new self loop]

3. a. If v ≤ n, let (v′, j′) = (v, j)
b. else let v′ = m − v, j′ = j + c′.

4. Output (v′, j′)

Next we show that λ(H) is bounded below 1 by a constant. The theorem then follows by
taking the O(log 1/λ)th power to drive λ(H) below λ. This gives the graph degree poly(1/λ).

Let A′ be the adjacency matrix of H ′ and K ′ be the m × m all ones matrix. Since
λ(H ′) ≤ λ′, Lemma 8 implies that

1
c′ · (c′ · I − A′) ≈λ′

1
m

· (m · I − K ′).

Define B to be the m × n matrix such that Bu′,u = 1 if and only if vertex u′ ∈ V (H ′) was
merged into vertex u ∈ V (H) or vertex u ∈ V (H ′) was not merged and is labeled vertex u′

in H. That is, Bu′,u = 1 if and only if u = u′ or n ≤ u = m − u′. Then the unnormalized
Laplacian of the expander after the merging step is BT (c′ · I − A′)B. Adding self loops to a
graph does not change its Laplacian. So applying Proposition 6 parts 3 and 6 we get

L(H) = 1
2c′ · BT (c′ · I − A′)B ≈λ′

1
2m

· BT (m · I − K)B

Note that the righthand side is the normalized Laplacian of the graph U that results from
starting with the complete graph on m vertices, merging the same pairs of vertices that are
merged in H and adding m self loops to all of the unmerged vertices for regularity.

We finish the proof by showing that λ(U) ≤ 1/2 and thus H is a (λ′ + 1/2 + λ′/2)-
approximation of the complete graph by Proposition 6 Part 2 and Lemma 8. Recalling that
λ′ < 1/4 completes the proof.

U has at least m edges between every pair of vertices so we can write its transition matrix
Tu as

Tu = 1
2 · Jm + 1

2 · E

where Jm is the transition matrix of the complete graph on m vertices with self loops on
every vertex and E is the transition matrix for an m-regular multigraph. Since the uniform
distribution is stationary for all regular graphs, ~1 is an eigenvector of eigenvalue 1 for Tu, Jm,

and E. Thus

λ(U) = sup
v⊥~1

‖Tuv‖
‖v‖

≤ sup
v⊥~1

1
2 · (‖Jmv‖ + ‖Ev‖)

‖v‖

≤ 1
2 · 0 + 1

2 · 1,

which completes the proof. J

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:21

C Proof of Lemma 24

Proof. Let δ = 1/d4/εe and t = 1/δ, an integer. Let H be a family of c-regular expanders of
every size from Theorem 20, such that for every H ∈ H, λ(H) ≤ δ (and hence c = poly(1/δ)).

Let G̃ = GpOHG be the derandomized square of G with normalized Laplacian I − M̃ .
Each vertex v in G̃ has degree d̃v = 2 · c · dv, where dv is the degree of v in G. We construct
G0 as follows: duplicate every edge of G̃ to have multiplicity t and then for each vertex v,
add d̃v self loops. So for each vertex v in G0, v has degree (t + 1) · 2 · c · dv and hence G0 has
the same stationary distribution as G. Note that we can write

M0 = (t · M̃ + I)/(t + 1).

First we show that M0 is PSD. From Theorem 19, we have I − M̃ ≈δ I − M2, so I − M̃ �
(1 + δ) · (I − M2) � (1 + δ) · I, since M2 is PSD. Thus M̃ � −δ · I and

M0 � t · (−δ · I) + I

t + 1 � 0.

Next we prove that I − M0 ≈ε I − M2

I − M0 = (t/(t + 1)) · (I − M̃)

=
(

1
1 + δ

)
· (I − M̃)

� I − M2.

Observe that since I − M̃ ≈δ I − M2, we also have

I − M0 =
(

1
1 + δ

)
· (I − M̃)

�
(

1 − δ

1 + δ

)
· (I − M2)

� (1 − ε) · (I − M2).

We can construct a two-way labeling of G in space O(log N) by arbitrarily numbering
the edges incident to each vertex. Computing RotG̃ involves computing RotG twice and
the rotation map of an expander in H once. For a given vertex degree d in G, RotHd

can be computed in space O(log(d · c)) = O(log N + log(1/ε)). Duplicating the edges
and adding self loops for RotG0 adds at most O(log N + log(1/ε)) overhead for a total of
O(log N + log(1/ε)) space. J

D Proof of Corollary 28

Proof. Theorem 27 says that we can compute a graph G̃ with normalized Laplacian I−M̃ with
O(n log n/ε2) non-zero entries, in time O(m·log3 n·log5 r/ε4), such that I −M̃ ≈ε/8 I −Mr−1

with high probability. By Lemma 22 we have

I − 1
2 · (M̃M + MM̃) ≈ε/8 I − Mr. (3)

Our goal is to sparsify the lefthand side. Note that since I − M̃ spectrally approximates
I − Mr−1, the corresponding graphs must have the same stationary distribution and hence
proportional vertex degrees. In other words there is a number k such that for all vertices

APPROX/RANDOM 2019

42:22 Deterministic Approximation of Random Walks in Small Space

v ∈ [n] we have degG̃(v) = k · degG(v). We will think of the graph that adds one step to our
walk as k · G rather than G because k · G and G̃ have the same degrees and the normalized
Laplacian of k · G is the same as the normalized Laplacian of G.

Let A and Ã be the adjacency matrices of k · G and G̃, respectively and let D be the
diagonal matrix of vertex degrees. Let Q = D − AD−1Ã and note that Q is the Laplacian of
a weighted directed graph. We will show how to compute a sparse directed approximation
of Q and use this to show how to compute a sparse approximation to the lefthand side of
Equation 3. Our approach is inspired by similar arguments from [18, 6]. We decompose Q

into n product graphs as follows. For each i ∈ [n] let

Qi = diag(Ãi,:) − 1
Di,i

· A:,iÃ
T
i,:

where Ãi,: and A:,i denote the ith row of Ã and the ith column of A, respectively. Observe
that Qi is a directed Laplacian of a bipartite graph between the neighbors of vertex i in
k · G and the neighbors of i in G̃ and that Q =

∑
i∈[n] Qi. Furthermore, each Qi is a product

graph and hence can be sparsified using Lemma 29. Set xi = A:,i, yi = Ãi,:, ri = Di,i, and
let si be the total number of non-zero entries in x and y. Note that ‖xi‖1 = ‖yi‖1 = ri

because k · G and G̃ have the same vertex degrees. By Lemma 29, for each i ∈ [n] we
can compute a directed ε/8-approximation Q̃i of Qi containing O(si · log si/ε2) entries in
time O(si · log si/ε2). Applying the lemma to each Qi yields Q̃ =

∑
i∈[n] Q̃i, which contains

O(m · log m/ε2) non-zero entries and can be computed in time O(m · log m/ε2) because∑
i∈[n] si = O(m). By Lemma 12 we have

1
2 · (Q̃i + Q̃T

i) ≈ε/8
1
2 · (Qi + QT

i)

for all i ∈ [n] with high probability. It follows from Proposition 6 Part 5 that

1
2 · (Q̃ + Q̃T) = 1

2 ·
∑
i∈[n]

(Q̃i + Q̃T
i)

≈ε/8
1
2 ·

∑
i∈[n]

(Qi + QT
i)

= 1
2 · (Q + QT)

with high probability. From Proposition 6 Part 3, we then get

D−1/2 1
2 · (Q̃ + Q̃T)D−1/2 ≈ε/8 D−1/2 1

2 · (Q + QT)D−1/2

= I − 1
2 · (M̃M + MM̃)

with high probability. Applying Lemma 30 we can re-sparsify the graph corresponding
to D−1/2 1

2 · (Q̃ + Q̃T)D−1/2 to produce a graph G′ whose normalized Laplacian I − M ′

has O(n · log n/ε2) non-zero entries and I − M ′ ≈ε/8 D−1/2 1
2 · (Q̃ + Q̃T)D−1/2 with high

probability. This takes additional time O(m · log2 n/ε2) due to Theorem 1.1 of [12]. Applying
Proposition 6 Part 2 twice we get that I − M ′ ≈ε I − Mr and the total running time for the
procedure was O(m · log3 n · log5 r/ε4). J

	Introduction
	Preliminaries
	Spectral Graph Theory
	Space Bounded Computation
	Rotation Maps

	The Derandomized Product and Expanders of All Sizes
	Main Result
	Algorithm Description and Proof Overview
	Proof of Main Result
	Building
	Proof of Spectral Approximation
	Analysis of Space Complexity

	Corollaries
	Random Walks
	Odd Length Walks in Nearly Linear Time

	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Lemma 24
	Proof of Corollary 28

