
Near-optimal Approximate Discrete and Continuous
Submodular Function Minimization

Brian Axelrod∗ Yang P. Liu † Aaron Sidford ‡

Abstract
In this paper we provide improved running times and ora-
cle complexities for approximately minimizing a submodu-
lar function. Our main result is a randomized algorithm,
which given any submodular function defined on n-elements
with range [−1, 1], computes an ε-additive approximate

minimizer in Õ(n/ε2) oracle evaluations with high proba-

bility. This improves over the Õ(n5/3/ε2) oracle evalua-
tion algorithm of Chakrabarty et al. (STOC 2017) and the

Õ(n3/2/ε2) oracle evaluation algorithm of Hamoudi et al..

Further, we leverage a generalization of this result to

obtain efficient algorithms for minimizing a broad class of

nonconvex functions. For any function f with domain [0, 1]n

that satisfies ∂2f
∂xi∂xj

≤ 0 for all i 6= j and is L-Lipschitz with

respect to the L∞-norm we give an algorithm that computes

an ε-additive approximate minimizer with Õ(n · poly(L/ε))
function evaluation with high probability.

1 Introduction

A function f which assigns real values to subsets of
a finite universe U is submodular if it satisfies the
decreasing marginal returns property, i.e. f(T ∪ {i})−
f(T) ≤ f(S ∪ {i}) − f(S) for all subsets S ⊆ T ⊆ U
and elements i 6∈ T . Such functions are natural, arise in
many applications, and have been studied extensively
since the 1950s [11, 13, 35, 16, 34]. For example, the
sizes of cuts in directed graphs or hypergraphs, the rank
function of a matroid, and the entropy of subsets of
random variables are all submodular. Further the utility
functions of agents purchasing a subset of items is often
assumed to be submodular. Given their prevalence, the
optimization of submodular functions is fundamental
to combinatorial optimization and both submodular
function maximization [14, 10] and minimization have
been studied extensively.

In this work, we focus on submodular function min-
imization (SFM), i.e. finding a subset S ⊆ U minimiz-
ing f(S). As submodular functions need not be mono-
tone and SFM generalizes multiple fundamental com-

∗Stanford University, supported by an NSF graduate research
fellowship and Finch family fellowship

†Stanford University, supported by the U.S. Department of
Defense via an NDSEG fellowship

‡Stanford University, supported by NSF CAREER Award
CCF-1844855

binatorial optimization problems, including computing
s-t minimum cuts in directed graphs and hypergraphs,
SFM is nontrivial. More recently, SFM has been applied
to many problem domains, such as image segmentation
[5, 26, 27], speech analysis [31, 32, 33], and machine
learning [2, 28].

In this paper we consider the standard and well-
studied model for SFM where f can be accessed only
through an evaluation oracle which when queried with
S ⊆ U returns f(S). For simplicity, we measure the
complexity of our algorithms by the number of queries,
i.e. oracle calls, or function calls, that we make to
the evaluation oracle; the additional runtime of all new
algorithms in this paper can be nearly linear in the
number of oracle calls. Throughout the introduction,
we refer to the time needed for an oracle call as EO. An
amazing result is that SFM can be solved with a number
of queries polynomial in n, the number of elements in
the universe J . This was demonstrated initially via the
ellipsoid algorithm [18] spawning a long line of work
faster algorithms.

Previous research on algorithms for SFM has fo-
cused on three main regimes: strongly polynomial,
weakly polynomial, and pseudopolynomial time [41, 15,
8, 29]. Letting M be the maximum absolute value of the
integer-valued submodular function f on an n-element
universe, strongly polymomial, weakly polynomial, and
pseudopolynomial refer to algorithms whose runtimes
are all polynomial in n and independent of M , logarith-
mic in M , and polynomial in M respectively. For these
regimes, the best known dependence on n in terms of the
number of oracle calls needed has a clear picture: nearly
cubic in the strongly polynomial regime [30], quadratic
in the weakly polynomial regime [30], and linear in the
pseudopolynomial regime [9].

We can also view these results in a slightly differ-
ent way. Instead, let f be a real-valued submodular
function with range [−1, 1], and consider the goal of
finding an ε-additive approximate minimizer. Here, it
is natural to study approximate SFM algorithms whose
runtimes are independent of ε, depends logarithmically
on ε, and depends polynomially on ε. These correspond
to the strongly polynomial, weakly polynomial, and ap-

837
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

proximate regimes respectively[9]. The best known run-
time in the strongly polynomial and weakly polynomial
regimes continue to be cubic and quadratic respectively
in this view. However, despite the well-studied nature of
SFM and clear picture in terms of M dependencies, the
runtime of approximate SFM is less understood. The
state-of-the-art such runtime is Õ(n3/2/ε2)1 which was
achieved by the contemporary work of [20] and improved

upon the Õ(n5/3/ε2) runtime algorithm of [9]. In this
paper, we close this gap and give a nearly linear time,
Õ(n/ε2) time algorithm for ε-approximate SFM. .

Nonconvex optimization: Another key motiva-
tion for the results of this paper is obtaining prov-
ably faster algorithms for obtaining global minimiz-
ers of broad classes of non-convex functions. Consider
the problem minx∈X f(x) for a function f : Rn → R.
For convex optimization, when f and X are both con-
vex, there are numerous methods for solving this prob-
lem: gradient descent, cubic regularized newton, cutting
plane, etc. On the other hand, the situation for non-
convex optimization, i.e. finding the global minimum
of a nonconvex function f in general, is computation-
ally intractable: finding an ε-approximate minimizer for
a k-times continuously differentiable f : Rn → R re-
quires Ω((1/ε)n/k) evaluations of the function and its
first k derivatives, ignoring problem dependent param-
eters such as the Lipschitz smoothness of f , etc. [36].

Nevertheless, as many practical problems, e.g.
training neural networks and matrix completion, are
nonconvex, it still important to understand what guar-
antees we can achieve for nonconvex optimization. Be-
cause computing an ε-approximate global minimizer of a
general convex function, as discussed, intractable in gen-
eral, some work has focused on finding ε-approximate
stationary points or approximate local minima [39, 37,
7, 4]. In addition, there are specific problems such as
matrix completion where all local minima are in fact
global minima [17]. Given these results, it would be
tantalizing to find large classes of nonconvex functions
for which we can find a global minimizer; however, this
has been a challenging task achieved in only a few situ-
ations [19, 38, 22].

In recent work, Bach [1] considered a class of

nonconvex functions f : [0, 1]n → R satisfying ∂2f
∂xi∂xj

≤
0 for all i 6= j, which are a continuous generalization
of submodular functions. Several interesting functions
satisfy this property, e.g. f(x) = xTQx where Q
is symmetric with negative off diagonal entries and
f(x) = g(

∑
i cixi) for some concave function g : R→ R

and positive weights ci. The former function is neither

1Throughout, we use Õ to hide poly(log n, log(1/ε), logM)
factors.

convex nor concave, and the latter is concave.
Despite the fact that these functions can be non-

convex, [1] provided an algorithm to find ε-approximate
global minimizers in time polynomial in n, ε, and prob-
lem dependent parameters. In our work, we improve
upon Bach’s cubic dependence on n and show that these
functions can in fact be minimized almost as efficient as
convex functions in terms of the best known methods:
nearly linear in the dimension n, and polynomial in ε
and the L∞ Lipschitz constant.

1.1 Our results In this paper we address a key open
problem in the work of [9] and [20] regarding whether
we can achieve a nearly linear runtime for approximate
SFM. We resolve this problem in this paper, giving an
Õ(nε−2·EO) time algorithm for approximate SFM. This
also directly improves the previous pseudopolynomial
time algorithms in terms of their dependence on M ,
the range of an integer submodular function. Further,
due to the subgradient oracle lower bound given in
[9] and the fact that a subgradient oracle yields more
information than an evaluation oracle, this bound is
known to be optimal up to the dependence on ε.

Theorem 1.1. Given a submodular function f :
{0, 1}n → [−1, 1] and an ε > 0, we can compute a ran-
dom set S with

E[f(S)] ≤ min
T⊆[n]

f(T) + ε

in Õ(n/ε2) calls to an evaluation oracle for f .

We can convert the guarantee of Theorem 1.1 to a
w.h.p.2 guarantee as follows. Note that the probability
that f(S) > minT⊆[n] f(T) + 2ε is at most 1/2 by
Markov’s inequality. Consequently, we can amplify to
the success probability to 1 − 1

poly(n) by running the

algorithm O(log n) times to half the expected error and
outputing the smallest value.

We also achieve sublinear time algorithms for pseu-
dopolynomial SFM in settings where we know that the
minimizer of f is s-sparse, i.e. only has s nonzero en-
tries.

Theorem 1.2. Consider an integer valued submodular
function f : {0, 1}n → [−M,M] with s-sparse mini-
mizer, i.e. there is a set Sopt ∈ argminS⊆{0,1}nf(S)

satisfying |Sopt| ≤ s. Then we can compute an exact

minimizer of f in Õ(sM2) calls to an oracle for f w.h.p.

2Throughout our results, we use w.h.p. to mean “with high
probability in n”.

838
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Note that for smallM (sayM = Õ(1)) and s = O(n1−δ)
for some δ > 0, this algorithm uses a number of oracle
calls to f which is sublinear in n. This is the first sub-
linear time algorithm for SFM. The previous bottleneck
for obtaining such sublinear results was that it seemed
necessary to compute a full subgradient of the Lovasz
extension, a well-known continuous extension of sub-
modular functions, which naively requires Ω(n) oracle
calls. We overcome this by designing an algorithm that
computes all O(M) nonzero entries of the subgradient

at 0 with Õ(M2) oracle calls.
These results makes progress towards completing

the picture for SFM algorithms: strongly polynomial
algorithms use a cubic number of queries, weakly poly-
nomial algorithms use a quadratic number of queries,
and pseudopolynomial/approximate algorithms make a
linear number of queries.

Following the work of Bach [1], our results extend
to a more general class of submodular functions not nec-
essarily defined on {0, 1}n, such as those defined on [k]n

for a positive integer k. Leveraging this result, we ob-
tain a nearly linear time algorithm for computing ap-
proximate minimizers of a class of nonconvex functions
studied by Bach [1], improving upon the cubic running
time given in that paper.

Theorem 1.3. Let f : [0, 1]n → R be a twice differen-

tiable function with ∂2f(x)
∂xi∂xj

≤ 0 for all i 6= j. There is

an algorithm that computes an ε-additive approximate
minimizer of f in Õ(nL6/ε6) function evaluation calls
w.h.p., where L is the L∞-Lipschitz constant of f .

1.2 Previous Work The first polynomial time al-
gorithm for SFM was via the ellipsoid algorithm [18].
This spawned a line of work on faster algorithms (see
Table 1 for the state-of-the-art bounds) and combina-
torial algorithms [12, 23, 40, 24], which were achieved
later. Building on a long line of work on SFM,
Lee et al. [30] gave the current state-of-the-art run-
ning times for weekly polynomial SFM, O(n2 log nM ·
EO + n3 logO(1) nM), and strongly polynomial SFM,

O(n3 log2 n · EO+ n4 logO(1) n). See [30] for more com-
prehensive coverage of previous improvements.

Additionally, there has been work towards under-
standing pseudopolyomial algorithms for SFM. Specif-
ically, the Fujishige-Wolfe [41, 15] algorithm which is
often used in practice can be shown to run in pseu-
dopolynomial time O(n2M2 ·EO+n3M2) [8, 29]. More
recently, Chakrabarty et al. [9] gave a nearly linear
pseudopolynomial algorithms for SFM with runtime
Õ(nM3 · EO). Additionally, they studied the problem
of approximate SFM, that is minimizing a real-valued
submodular function f with range [−1, 1] to additive ε

error. They achieved a subquadratic Õ(n5/3ε−2 · EO)
time algorithm for this problem. They also studied SFM
in the case where f is known to have a s-sparse mini-
mizer, i.e. the minimizer of f has only s nonzero entries,
achieving an Õ

(
(n+ sn2/3)EOε−2

)
algorithm.

Simultaneously with this work, Hamoudi et al. [20]
improved the runtime of approximate SFM to
Õ(n3/2ε−2 · EO). Additionally, they also achieved

a Õ(n5/4ε−5/2 · EO) quantum algorithm for approxi-
mate SFM through a new method for sampling with
high probability T independent elements from any dis-
crete probability distribution of support size n in time
O(
√
Tn).
Additionally, there has been work towards extend-

ing the notion of submodularity beyond functions de-
fined on subsets of a universe U . Bach [1] has shown
that the notion of submodularity extends naturally to
functions defined on [k]n (instead of {0, 1}n) and even to
functions defined on continuous domains such as [0, 1]n.
This work shows how to extend the classical polyno-
mial time algorithms for submodular optimization to
this setting, and gives polynomial time algorithms for
optimizing a large class of nonconvex functions.

1.3 Organization For the remainder of the intro-
duction, we give an overview for our techniques in Sec-
tion 1.4. In Section 2, we state the necessary prelimi-
naries for our algorithms. In Section 3 we give our main
algorithm for nearly linear time SFM and prove Theo-
rem 1.2. In Section 4 we give our sublinear time algo-
rithms for pseudopolynomial SFM when the minimizer
is sparse and prove Theorem 1.2. Finally, in Section 5
we extend our earlier results to submodular functions
on the domain [k]n and [0, 1]n, and prove Theorem 1.3
in Section 5.3.

1.4 Overview Here we give a less technical overview
of the ideas behind our algorithm. For simplicity, we
only describe our algorithm in the situation when f
is a standard submodular function on {0, 1}n. For
more technical discussion and discussion about the
sparse regime and submodular functions over [k]n, see
Section 3, Section 4, and Section 5.

Our algorithms, like those of [9], are based on
projected stochastic subgradient descent on the Lovasz
extension of f , which is a well-known continuous convex
extension of f (see Definition 2.1). The algorithms of
[9] exploited submodularity to build a data structure
and get gradient updates with fewer evaluations than
the O(n) required by the näıve method. To obtain our
result we leverage the techniques built by [9] but show
that a more efficient binary tree based data structure
can be built to support gradient estimates with little

839
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Regime Previous Best Running Time Our Result

Strongly Polynomial O(n3 log2 n · EO+ n4 logO(1) n) [30]

Weakly Polynomial O(n2 log nM · EO+ n3 logO(1) nM)[30]

Pseudopolynomial Õ(nM3 · EO)[9] Õ(nM2 · EO)

ε-Approximate Õ(n3/2 · EO/ε2)[20] Õ(n · EO/ε2)

Sparse Pseudopolynomial Õ((n+ sM3) · EO)[9] Õ(sM2 · EO)

Table 1: Running times for minimizing a submodular function f on subsets of an n element set. EO denotes the time

needed to make an oracle call to f . In all but the approximate SFM regime, f is integer valued with maximum absolute

value M . In the approximate SFM regime, f is real valued with range [−1, 1]. s is the sparsity of the minimizer of f .

Table adapted from [9].

preprocessing.
More precisely, the algorithm of [9] computes

x0, x1, · · · , xT , a (stochastic) sequence of points, where
each xi+1 is computed by taking a stochastic subgra-
dient step from xi. To do this, the algorithm writes
the gradient at xi+1 (we’ll denote it as g(xi+1)) as the
sum of smaller terms of the form g(xa) − g(xb) and
g(x0), estimates each, and sums them. As the number
of terms summed increases, the variance of the estimate
grows and the convergence rate of subgradient descent
decreases. To achieve there fastest algorithm [9] thereby
trades off leveraging such stochastic estimates and re-
computing the initial estimator.

In this paper we improve this datastructure by,
as we step through the trajectory x1, . . . , xT , choosing
to evaluate g(xa) − g(xb) at carefully chosen intervals
along the trajectory. This allows us to amortize the
maintenance of the data structure while simultaneously
maintaining a low variance of the resulting stochastic
gradient. This leads to our nearly linear time algorithm.
We hope that this general framework of using data
structures to maintain the ability to do point updates
and sample gradients can find uses in other optimization
methods where we desire sublinear gradient calls, such
as coordinate descent.

In order to extend our results to the domain [k]n, we
use the continuous extension of a submodular function
f developed by Bach [1], which is the analogue of the
Lovasz extension. We show that our algorithms extend
to this setting.

Finally, we explain our key ingredient to obtaining
sublinear time algorithms in the regime where f is
integer valued with maximum absolute value M and has
a sparse minimizer. The main idea behind the algorithm
is to compute an initial subgradient at 0 that doesn’t
require computing all n coordinates of the subgradient,
which näıvely requires n function calls. To do this, we
use that the origin has many subgradients, and develop
an algorithm that can find one such subgradient for
which we can compute all its nonzero entries in Õ(M2)

function calls. After this, we can simply plug this
initial subgradient into our earlier algorithms and get
the desired result.

2 Preliminaries

Here we provide notation and basic facts about classic
submodular functions. Preliminaries for submodular
functions on [k]n and continuous submodular functions
are deferred to Section 5.

Miscellaneous notation. We let [n]
def
=

{1, 2, . . . , n}. For a, b ∈ R we let [a, b]
def
= {x :

a ≤ x ≤ b}. For permutation P = {P1, P2, · · · , Pn}
of [n], we let P [j]

def
= {P1, P2, · · · , Pj} be the set

containing the first j elements of P . For a point x ∈ Rn

we call a permutation P of [n] consistent with x if
xP1
≥ xP2

≥ · · · ≥ xPn
. We let e1, e2, · · · , en denote

the standard basis vectors for Rn, so that ei is the
vector with a 1 in the i-th coordinate and 0 in all other
coordinates. We call a vector s-sparse if it has at most
s nonzero entries.

Submodular functions. Let {0, 1}n ⊆ Rn denote
the set of n-tuples, where each coordinate is either 0 or
1. There is a natural bijection between x ∈ {0, 1}n
and subsets S ⊆ [n] where xi being 1 corresponds to
element i being in the set. We use these interchangeably.
Throughout, we let f : {0, 1}U → R be the submodular
function we are trying to optimize, where U is a ground
set. Without loss of generality, we assume U = [n].
Additionally, we assume that f(∅) = 0, which we can
enforce by subtracting a constant from all values of f
while preserving submodularity. We say that a function
f : {0, 1}n → R is submodular if it satisfies the property
of decreasing marginal returns, specifically for all sets
S ⊆ T ⊆ [n] and element i 6∈ T , we have

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T).

An alternate (but equivalent) definition is that for all
S, T ⊆ [n] we have that

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T).

840
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

In this work, we measure the complexity of our algo-
rithms through the number of calls we make to an eval-
uation oracle for f , as the additional runtime of all new
algorithms in this paper can be nearly linear in the num-
ber of oracle calls.

Lovasz extension. The Lovasz extension is a well-
known continuous, convex extension of a submodular
function f : {0, 1}n → R to a function f̂ : [0, 1]n → R.
We now state its definition.

Definition 2.1. (Lovasz extension) Given a sub-
modular function f : {0, 1}n → R, the Lovasz exten-

sion of f , denoted as f̂ : [0, 1]n → R, is defined for any
x ∈ [0, 1]n as

(2.1) f̂(x) =
n∑

j=1

(f(P [j])− f(P [j − 1]))xPj
,

where P = {P1, P2, · · · , Pn} is a permutation which is
consistent with x.

We leverage the following well known properties of
the Lovasz extension [34, 16].

Theorem 2.1. Let f : {0, 1}n → R be a submodular

function, and let f̂ be its Lovasz extension. We have
that: f̂ is convex; for all x ∈ {0, 1}n, f̂(x) = f(x);

and minx∈[0,1]n f̂(x) = minS⊆[n] f(S). Additionally, the

vector g(x) ∈ Rn defined by g(x)Pj

def
= f(P [j])−f(P [j−

1]) for 1 ≤ j ≤ n is a subgradient of f̂ at x, where
P = (P1, P2, · · · , Pn) is any permutation consistent with
x.

Note that the vector g(x) as defined in Theorem 2.1,

despite being a subgradient of f̂ of x, only depends
on P . Thus, sometimes we define the gradient (at
zero) associated with permutation P , denoted gP , as

gPPj

def
= f(P [j])− f(P [j − 1]) for 1 ≤ j ≤ n.

We now explain (and this is standard) that given
a point x ∈ [0, 1]n, we can find a set S ⊆ [n] with

f(S) ≤ f̂(x) in O(n) oracle calls to f . In other words,

we only need to pay an extra Õ(n) oracle calls to convert

an approximate minimizer of the Lovasz extension f̂
of f to an approximate minimizer of f itself. For
completeness, we state this as a lemma and prove it
below.

Lemma 2.1. (Going from f̂ to f) For a point x ∈
[0, 1]n, we can in O(n) oracle calls compute a set S such

that f(S) ≤ f̂(x). In particular, we can go from an ε-

additive approximate minimizer of f̂ to an ε-additive
approximate minimizer of f in O(n) oracle calls.

Proof. We can rewrite Eq. (2.1) as

f̂(x) = f(P [n])xPn +

n−1∑
j=1

f(P [j])(xPj − xPj+1),

thus f̂(x) is a non-negative linear combination of
f(∅), f(P [1]), f(P [2]), · · · , f(P [n]). Therefore, either

f(∅) ≤ f̂(x) or there is an 1 ≤ i ≤ n with f(P [i]) ≤
f̂(x), as desired.

Subgradient descent. Our algorithms are pri-
marily based on (projected stochastic) subgradient de-
scent. For a convex function f on a convex compact set
S ⊆ Rn, we say that a vector g is a subgradient of f at
x ∈ S if for all y ∈ S we have that

f(y)− f(x) ≥ gT (y − x).

We let ∂f(x) be the set of all subgradients of f at
x. A subgradient oracle for f is an algorithm which
at a point x ∈ S returns a vector g with g ∈ ∂f(x).
A stochastic subgradient oracle for f is an algorithm
which at a point x ∈ S returns a stochastic vector g(x)
with E[g(x)] ∈ ∂f(x).3 Finally, intermediate points
computed during projected subgradient descent may lie
outside S. We define the projection of a point y onto S
to be

proj(y, S) = argminx∈S‖x− y‖22.
We now state a theorem which contains the guarantees
of projected stochastic subgradient descent which we
use. The version we state is adapted from [6] and suffices
for our purposes.

Theorem 2.2. Let f be a convex function on a compact
convex set S ⊆ Rn and g be a stochastic subgradient

oracle for f . Define parameters R2 def
= maxx∈S

1
2‖x‖

2
2,

B such that E[‖g(x)‖22] ≤ B2 for all x ∈ S and consider
the following iterative algorithm

x1
def
= argminx∈S‖x‖22

and

xi+1 = proj(xi − ηg(xi), S) for i ∈ [T − 1]

Then for η = R
B

√
2
T , we have that

E

[
f

(
1

T

T∑
i=1

xi

)]
≤ min

x∈S
f(x) +RB

√
2

T
.

Note that for T = 2R2B2/ε2 in Theorem 2.2 we achieve
additive error ε off the minimum function value in
expectation.

3Throughout, we use boldface (e.g. g) for stochastic variables
and normal text (e.g. g) for other variables

841
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

3 Submodular Minimization over {0, 1}n

In this section we present our improved algorithm
for SFM over {0, 1}n. For a submodular function
f : {0, 1}n → R, our algorithms perform projected
stochastic subgradient descent on the Lovasz extension
f̂ of f .

Looking at the guarantees of Theorem 2.2, we want
to design an algorithm that can compute stochastic
subgradients with low expected `2 norm without having
to make many oracle calls to f . Specifically, in the case
of Theorem 1.1, we show how to construct an algorithm
that

• Computes a sequence of points x1, x2, · · · , xT ∈
[0, 1]n and stochastic subgradients gi of f̂ at xi,
where x1 = 0 and xi+1 = proj(xi − ηgi, [0, 1]n).

• Makes Õ(T) oracle calls to f in total.

• Each stochastic subgradient gi is 1-sparse.

• Each stochastic subgradient gi has E[‖gi‖22] =

Õ(1).

By the guarantees of Theorem 2.2, choosing T =
Õ(n/ε2) suffices to prove Theorem 1.1, as R2 = n and

B2 = Õ(1).

3.1 Subgradients of the Lovasz extension Here
we state important results on the struture of the subgra-
dients of the Lovasz extension. We use this structure in
order to sample stochastic subgradients of f̂ in sublinear
time. Lemma 3.1 is due to Jegelka and Blimes [25] (also
Hazan and Kale [21]). All of Lemma 3.1, Lemma 3.2,
and Lemma 3.3 were proven in [9].

The first lemma is a bound on the L1 norm of the
subgradients.

Lemma 3.1. For a submodular function f : {0, 1}n →
[−M,M], all subgradients g of the Lovasz extension
satisfy ‖g(x)‖1 ≤ 3M.

The second lemma allows us to relate the gradients
of two points x, y ∈ {0, 1}n whose difference x − y is a
strictly positive (or negative) vector.

Lemma 3.2. Let x ∈ [0, 1]n and let d ∈ Rn
≥0 be such

that y = x + d (resp. y = x − d). Let S denote the
non-zero coordinates of d. Then for all i 6∈ S we have
g(x)i ≥ g(y)i (resp. g(x)i ≤ g(y)i).

The final lemma allows us to efficiently compute the
sum of multiple contiguous coordinates of a subgradient.

Lemma 3.3. Let x ∈ [0, 1]n and let P be the permuta-
tion consistent with x. Then we have for any integers

1 ≤ a ≤ b ≤ n that

b∑
i=a

g(x)Pi
= f(P [b])− f(P [a− 1]).

3.2 Nearly linear time approximate submodu-
lar function minimization In this section we provide
a nearly linear time algorithm for minimizing a sub-
modular function f : {0, 1}n → [−1, 1] to additive error
ε. We give a randomized algorithm that uses at most
Õ(n/ε2) oracle calls to f that computes a random point

x ∈ [0, 1]n with E[f̂(x)] ≤ minT f(T)+ε, where f̂ is the
Lovasz extension of f .

Our algorithm follows the broad framework of [9]
which minimizes the Lovasz extension using projected
stochastic subgradient descent. By Theorem 2.2, this al-
gorithm yields an ε-additive approximate minimizer in
Õ(n/ε2) provided each subgradient has expected Õ(1)
`2 norm. Because näıvely computing a full subradient
gradient g of f̂ at x requires Ω(n) oracle calls, to achieve
our runtime improvements we must do something more
sophisticated to compute stochastic subgradients. To
overcome this issue, as in [9], we leverage Lemma 3.1.
This lemma implies that there is stochastic gradient or-
acle which outputs subgradients which are both sparse
and have low `2 norm. Indeed, because ‖g‖1 ≤ 3 (by
Lemma 3.1) for all subgradients g of the Lovasz exten-
sion, we can compute a 1-sparse stochastic subgradient
g with E[‖g‖22] ≤ ‖g‖21 ≤ 9: sample g = sign(gi)‖g‖1ei
with probability |gi|/‖g‖1.

While Lemma 3.1 does give a sparse sparse stochas-
tic subgradient oracle with low `2 norm, a näıve imple-
mentation would require knowing all of g and therefore
naively, Ω(n) oracle calls. To get around this issue, a
key insight of [9] was that if g was guaranteed to have
all positive coordinates, we could use a binary search
to sample a stochastic subgradient with O(1) variance

in Õ(1) oracle calls by applying Lemma 3.3 to sample
recursively. This procedure simply samples an interval
with probability proportional to the sum of its coordi-
nates, computing the sum using Lemma 3.3 (further de-
tails are given in the proof of Lemma 3.4 in Section B).
Unfortunately, this only works in the case where all co-
ordinates of g are positive, as then there is no cancel-
lation when we compute the sum of coordinates in an
interval.

However, imagine that we have already computed
the gradient g0 at x0 (the starting point of our method)
and x1 = x0 − ηg0 where g0 is a 1-sparse stochastic
subgradient at x0. To sample a stochastic subgradient
g1 at x1 we write g1 = g0+(g1−g0). In order to sample
g1, we sample an estimate d of g0, an estimate of g1−g0,
and sum them. Call this estimate g?1. If we could

842
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

efficiently sample a 1-sparse O(1) variance estimate of
g1 − g0, then the resulting estimate g?1 would be 2-
sparse with O(1) variance. To get g1 simply sample a
random nonzero coordinate of g?1 and multiply it by 2.
Thus g1 would be 1-sparse with O(1) variance.

To efficiently sample an estimate of g1 − g0, [9]
noted that if the difference x1 − x0 is 1-sparse, then by
submodularity one can show that g1 − g0 can be split
into O(1) intervals, each of which is either all positive
or all negative. We can then sample this efficiently by
the same algorithm for sampling all positive gradients
above. This intuition is formalized and generalized in
the following lemma which is a slight modification of
Lemma 12 proven in [9]. It gives us the ability to
efficiently sample a sparse, low variance estimate of
g(x) − g(y) where x − y is sparse. For example, in the
paragraph above where x1 − x0 is 1-sparse, we could
efficiently sample a 1-sparse estimate of g1 − g0.

Lemma 3.4. Let f : {0, 1}n → [−1, 1] be a submodular

function with Lovasz extension f̂ . Let g denote the
subgradients of f̂ . Let x, y ∈ [0, 1]n be vectors such
that y − x is k-sparse. There is a data structure which
after O(k) calls to f of preprocessing, supports the
following: sample a 1-sparse random variable z with
E[z] = g(y) − g(x) and E[‖z‖22] = O(1) in Õ(1) calls
to f . Preprocessing is called through Process(x, y, f),
and the sampling is called through Sample(x, y, f).

In other words, Lemma 3.4 implies for fixed x, y,
we build a data structure with O(k) oracle calls that

supports sampling estimates of g(y) − g(x) using Õ(1)
oracle calls per sample We give the proof in Section B
for completeness. Careful application of this lemma
and the idea of sampling from gradient differences
yields the runtimes in [9] and, with modification to the
datastructure, [20].

Where we depart from [9] (and improve upon it)
is how we use the data structure of Lemma 3.4. Re-
call that at iteration t, we want to sample an estimate
of g(xt). Instead of using g(xt) − g(x0) as above, we
will carefully choose a short sequence, xi0 , xi1 , . . . , xim ,

where i0 = 0 and im = t for m = Õ(1). Now, we
sample an estimate of g(xt) using the identity g(xt) =

g(x0)+
∑m−1

j=0

[
g(xij+1

)− g(xij)
]
. Specifically, we sam-

ple an estimate of g(x0) and each of the remaining terms
g(xij+1) − g(xij) using Lemma 3.4, and sum the esti-

mates. Note that the sum is Õ(1)-sparse and has Õ(1)-
variance by Lemma 3.4. Now, we can sample a 1-sparse
estimate of this sum with Õ(1) variance. The key to
our algorithm is then choosing the sequence so that the
amortized cost of preprocessing all segments (xij , xij+1

)

is Õ(1) per iteration.

It suffices to choose the segments using the binary
representation of the step counter t. For example,
for 11 (1011 in binary) we would choose 0, 8, 10, 11
(0, 1000, 1010, 1011 in binary). See Section 3.2 for the
corresponding segments.

At this point, we are ready to state our algorithm.

Algorithm 1 SFM(f, ε). Takes a submodular function
f : {0, 1}n → [−1, 1] and returns a random point

x ∈ [0, 1]n with E[f̂(x)] ≤ minT f(T) + ε.

1: T ← Õ(n/ε2).
2: x0 ← 0 ∈ Rn.
3: g0 ← g(x0).
4: for i = 1 to T do
5: b← the number of 1 bits in the binary represen-

tation of i− 1.
6: k0 ← i−1, kj+1 ← kj−2ν2(kj) for 0 ≤ j ≤ b−1.

. ν2(y) is the maximum integer t such that 2t divides
y

7: d ← ‖g0‖1 · sign(g0k)ek with probability
|g0k|/‖g0‖. . Estimate of g0

8: g?i ← d+
∑b−1

j=0 Sample(xkj+1
, xkj

, f).
9: Let c1, c2, · · · , cs be the nonzero coordinates of

g?i. . s ≤ b+ 1
10: gi ← s · g?i

ck
· eck with probability 1

s . . gi is
1-sparse

11: xi ← proj(xi−1 − ηgi, [0, 1]n).
12: Process(xi−2ν2(i) , xi, f).

13: return 1
T+1

∑T
i=0 xi.

Description of Algorithm 1. Lines 1, 2, 3 ini-
tialize the starting point, number of iterations, and gra-
dient g0 at the the initial point. Line 4 corresponds to
the projected stochastic gradient descent loop. Lines 5,
6 compute the segments using the binary representation
of the iteration counter i. Lines 7, 8 use the precom-
puted data structures to sample a stochastic subgradi-
ent in Õ(1) time. Lines 9, 10 turn this stochastic sub-
gradient into a 1−sparse stochastic subgradient which is
used in the descent step in line 11. Line 12 updates the
data structures for segments that will be used in future
iterations. We prove later that this has an amortized
Õ(1) cost.

Analysis of Algorithm 1. In this section we show
the following theorem.

Theorem 3.1. For a submodular function
f : {0, 1}n → [−1, 1], algorithm SFM(f, ε) returns a

random point x ∈ [0, 1]n with E[f̂(x)] ≤ minT f(T) + ε

and makes Õ(n/ε2) oracle calls to f .

Theorem 3.1 approximately minimizes the Lovasz exten-
sion. We then use Lemma 2.1 to find a discrete solution,

843
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

0 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1: Intervals processed in line 12 and a decomposition of [0, 11]

directly implying Theorem 1.1.

Proof. [Proof of Theorem 3.1] We first argue that the

returned (random) point x = 1
T+1

∑T
i=0 xi satisfies

E[f̂(x)] ≤ minT f(T) + ε.
It suffices to show that each stochastic subgradient

g?i satisfies E[‖g?i‖22] = Õ(1). Then

E[‖gi‖22] = s · E[‖g?i‖22] = Õ(1)

as g?i is s-sparse and s = O(log T) = Õ(1). Then setting

T = Õ(n/ε2) suffices to apply Theorem 2.2 with R2 = n

and B2 = Õ(1).
To bound of E

[
‖g?i‖22

]
, first define zj =

Sample(xkj+1
, xkj

, f) for 0 ≤ j ≤ b − 1 where b =
O(log T), and d to be the estimate of g0 as defined in
line 7. Now, note that by Cauchy-Schwarz that

E
[
‖g?i‖22

]
= E

∥∥∥d+
b−1∑
j=0

zj

∥∥∥2
2


≤ (b+ 1) · E

‖d‖22 + b−1∑
j=0

‖zj‖22

 = Õ(1)

by the fact that E[‖zj‖22] = O(1) by Lemma 3.4 and
E[‖d‖22] ≤ ‖g0‖21 = O(1) by Lemma 3.1.

Now, we argue that running algorithm SFM(f, ε)

takes Õ(n/ε2) oracle calls. First, we need O(n) initial
oracle calls to get the gradient g0 of x0. Now, we have
to bound the total number of oracle calls from the calls
to Sample and Process. To bound the former, we
use that Sample is called Õ(1) times per iteration and

only requires Õ(1) oracles calls (Lemma 3.4). Note that
Process(xkj+1

, xkj
, f) has already been called before

we call Sample(xkj+1
, xkj

, f) as kj+1 = kj−2ν2(kj) (see
lines 6 and 12). Therefore, the total cost of all the calls

to Sample is Õ(T) = Õ(n/ε2) as desired.
Now we bound the total cost of oracle calls to

Process. Note that each gi is 1-sparse, hence xi−xi−1

is 1-sparse. Therefore, for any 0 ≤ j ≤ i, we have that
xi−xi−j is j-sparse. Thus, line 12 takes O(2ν2(i)) oracle

calls to f by Lemma 3.4. The total number of oracle
calls is thus

O

(
T∑

i=1

2ν2(i)

)
= Õ(T) = Õ(n/ε2)

as desired.

4 SFM for Functions with Sparse
Minimizer

In this section, we extend our above algorithm to the
case where the minimizer of f is s-sparse and f :
{0, 1}n → [−M,M] is an integer valued submodular
function. In this setting we are able eliminate the linear
oracle call dependence on n, the dimension of the space.
A näıve application of the previous algorithm runs into
the following barriers: computing the initial gradient
requires O(n) queries and the stochastic projected gra-
dient descent requires O(n/ε2) iterations to converge.
Previous work [9] resolves the latter issue by restricting

the domain to Ss def
= {x ∈ [0, 1]n :

∑
i xi ≤ s} and argu-

ing that the same algorithmic framework as described in
Section 3 extends to this setting. Here, we focus on the
problem of efficiently sampling a gradient of the initial
point.

There are two barriers to removing the n depen-
dence above: computing the starting subgradient and
reducing the number of required iterations. To ef-
ficiently compute the starting gradient, we carefully
choose a subgradient that is easier to compute. To do
so, we note that at x0 = 0, every permutation corre-
sponds to a valid subgradient. Thus, it suffices to find
any permutation P such that we can sample the subgra-
dient gP with Õ(1) oracle calls per sample after Õ(M2)
preprocessing.4

Efficiently sampling the initial subgradient.
Recall that for any permutation P , gP is a subgradient
at 0. In this section, we give a randomized algorithm

4This can be improved to Õ(M) oracle calls of preprocessing.
We provide a sketch in Remark 4.1.

844
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

which carefully chooses a permutation P and computes
all nonzero coordinates of gP in Õ(M2) oracle calls.

This allows us to sample future estimates of gP

with variance Õ(M2). In Section A we show that we
can actually derandomize this part of the algorithm,
deterministically finding a permutation P which we can
compute all nonzero coordinates of gP in Õ(poly(M))
oracle calls.

Now, we give a high level description for the algo-
rithm. Consider any initial permutation P0. Sample a
subset S ⊆ [n], where each element of [n] is in S with
probability 1

10M . Also, let j be a coordinate such that

say gP0
j > 0 (the gP0

j < 0 case is similar). Note that since

gP0 has integral entries, it must be 3M -sparse. There-

fore, there is at least a 1
10M

(
1− 1

10M

)3M ≥ 1
20M prob-

ability that j ∈ S and for all other coordinates j′ ∈ S,
we have gP0

j′ = 0. Condition on this event. Now, label
the coordinates in S as j1, j2, · · · , j|S|, ordered as they
were originally in P0. Label the coordinates not in S as
i1, i2, · · · , in−|S|, also ordered as they were originally in
P0.

Consider the permutation P ′ =
{j1, j2, · · · , j|S|, i1, i2, · · · , in−|S|}. Note that be-

cause gP0
t ≥ 0 for all t ∈ S and gP0

j > 0, we have that,

by submodularity, gP
′

P ′
t
≥ 0 for 1 ≤ t ≤ |S|, and that

there is a 1 ≤ t ≤ |S| with gP
′

P ′
t
> 0.

Now, we can find such a coordinate in Õ(1) oracle
calls with a binary search using Lemma 3.3. Once
we find a coordinate t with gP

′

t > 0, we can move
that coordinate to the left of the permutation, and
continue the same algorithm on the remaining elements.
We can find negative elements in a similar way by
moving them to the right of the permutation. Note
that submodularity ensures that moving the coordinate
to the left or right of the permutation never makes it
zero. Repeating this process Õ(M2) times gives us our
permutation P .

After defining some additional notation we will be
ready to state the algorithm.

• For sequences of integers A,B we use A ⊕ B to
denote concatenating A and B. This is useful
to allow us to express concatenating subsequences
of permutations. For example {1, 3} ⊕ {2, 4} =
{1, 3, 2, 4}.

• For a sequence P and a subsequence P ′ of P , the
notation P\P ′ means to delete the elements from
P ′ from P , while keeping the remaining elements
in the same order as originally in P .

• Sequences Pl and Pr. After finding coordinates
j where gPj is positive or negative, we move them

to the left or right of the permutation respectively.
We denote these “fixed coordinates” as Pl and Pr.

• Subsequence S. This is the subset of coordinates
of P that we sample in an attempt to find a positive
or negative coordinate.

Algorithm 2 FindPerm(f). Takes a integer-valued
submodular function f . Returns a pair (P ′, g′) of a
permutation P of [n] and the associated subgradient
g′ = gP

′
, encoded by all its O(M) nonzero coordinates.

1: P ← {1, 2, · · · , n}. . Arbitrary initialization.
2: Pl, Pr ← ∅.
3: for t = 1 to Õ(M2) do
4: S is a random subset of P , where each element

j ∈ P is in S with probability 1
10M .

5: Q← Pl ⊕ S ⊕ (P\S)⊕ Pr . Elements S and
P\S are ordered as in P

6: if
∑

j∈S gQj > 0 then . Check for positive
elements, using Lemma 3.3

7: x← FindIndex(f,Q, S, 1).
8: Pl ← Pl ⊕ {x}.
9: P ← P\{x}.

10: Go back to line 3.
11: Q← Pl ⊕ (P\S)⊕ S ⊕ Pr. . Elements S and

P\S are ordered as in P

12: if
∑

j∈S gQj < 0 then . Check for negative
elements, using Lemma 3.3

13: x← FindIndex(f,Q, S,−1).
14: Pr ← {x} ⊕ Pr.
15: P ← P\{x}.
16: Go back to line 3.
17: return Permutation P ′ = Pl ⊕ P ⊕ Pr, with gP

′

encoded by the nonzero coordinates in Pl and Pr.

Lemma 4.1. With high probability in n, FindPerm(f)
computes a permutation P ′ and all the nonzero coor-
dinates of the associated gradient gP

′
. It uses Õ(M2)

oracle calls to f .

Proof. Consider some point during the execution of
FindPerm(f), and the sequences Pl, Pr, P at that time.
Define P ′ = Pl ⊕ P ⊕ Pr. Our main claim is that if
gP

′

j 6= 0 for some j ∈ P , then within Õ(M) iterations
of the loop starting at line 3, one of line 6 or 12 will
be true. To show this, let j ∈ P be such that gP

′

j 6= 0,

and without loss of generality, say gP
′

j > 0. Because gP
′

has at most 3M nonzero coordinates, with probability
at least (

1− 1

10M

)3M

· 1

10M
≥ 1

20M

845
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Algorithm 3 FindIndex(f, P, S, b). Takes a integer-
valued submodular function f , permutation P of [n],
contiguous subset S of P , and integer b which is ±1.
Returns an index j ∈ S such that sign(gPj) = b.

1: If S = {x} (i.e. S contains a single element), return
x.

2: Split S in half into subintervals S′ and S′′.
3: if sign(

∑
j∈S′ gPj) = b then . Uses O(1) oracle

calls by Lemma 3.3
4: return FindIndex(f, P, S′, b).
5: else
6: return FindIndex(f, P, S′′, b).

it will be true that j ∈ S and for all t ∈ S with t 6= j,
that gP

′

t = 0. Then by submodularity, it is clear that if

we define Q = Pl ⊕ S ⊕ (P\S)⊕ Pr that
∑

j∈S gQj > 0.

As this happens with probability at least 1
20M , it will

happen w.h.p. within Õ(M) iterations.
Now, we must argue that FindIndex(f, P, S, b)

indeed computes an index j ∈ S such that sign(gPj) = b.
We do the case b = 1 as the other is analogous. This
amounts to checking that if sign(

∑
j∈S gPj) = b and S′

and S′′ are subintervals of S whose union is S, then
either sign(

∑
j∈S′ gPj) = b or sign(

∑
j∈S′′ gPj) = b but

this is trivial as∑
j∈S

gPj =
∑
j∈S′

gPj +
∑
j∈S′′

gPj .

To finish the proof, note that line 6 and 12 can
only be true O(M) times, as for any permutation P ′

we know that gP
′
has only 3M nonzero coordinates.

Therefore, iterating t = Õ(M2) is sufficient by our main
claim shown in the first paragraph. As each iteration
takes Õ(1) function calls in FindIndex(f, P, S, b) by
Lemma 3.3, the total number of function calls is also
Õ(M2) as desired.

Remark 4.1. Here we sketch how to change Algo-
rithm 2 to improve the number of oracle calls in
Lemma 4.1 to Õ(M). This doesn’t affect our main result
Theorem 1.2 because the number of oracle calls needed
to perform the projected gradient descent dominates.

If gP has exactly t nonzero coordinates, then we can
show that choosing S as a random subset of P , where
each element j ∈ P is in S with probability p for 1

20t ≤
p ≤ 1

10t (analogous to line 4 of Algorithm 2) will isolate
some nonzero coordinate of gP with at least constant
probability. This is because each nonzero coordinate of
gP has at least a p · (1 − p)t ≥ 1

100t chance of being
isolated. Unioning over all t nonzero coordinates (which
correspond to disjoint events) shows that there is at

least a 1
100 probability of some nonzero coordinate being

isolated. Therefore, running this Õ(1) times isolates
some coordinate w.h.p.

As we do not know t, we iterate over guesses for t,
i.e. set p = 2−i for for 0 ≤ i ≤ O(logM) and run the
process described in the above paragraph for each value
of p.

Projecting onto Ss. The `2 projection onto Ss

can be computed as follows. This was stated in [9].

Lemma 4.2. For s ≥ 0 let Ss = {x ∈ [0, 1]n :∑
i xi ≤ s}. For any y ∈ Rn, we have that the point

z = proj(y, Ss) is given by zi = median(0, 1, yi − λ),
where λ is the smallest nonnegative real number such
that

∑
i zi ≤ s.

Note that Lemma 4.2 shows that the permutation P
consistent with y is also consistent with proj(y, Ss).

Algorithm description and analysis. After
finding a permutation P where we can efficiently sam-
ple gP , we set x0 = 0 (the origin), which is consistent
with every permutation, and run a variation of Algo-
rithm 1 where we project onto Ss. We need the follow-
ing variation on Lemma 3.4 to deal with the projections.
Lemma 4.3 was also argued in [9]. A proof sketch is pro-
vided in Section B.

Lemma 4.3. Let f : {0, 1}n → [−M,M] be a submodu-

lar function with Lovasz extension f̂ . Let g denote the
subgradients of f̂ . Let x, y ∈ [0, 1]n be vectors and let Px

and Py be permutations consistent with x, y respectively.
Assume that we can transform Px into Py by deleting
k elements from Px and inserting them back in other
locations. There is a data structure which after O(k)
calls to f of preprocessing supports the following: sam-
ple a 1-sparse random variable z with E[z] = g(y)−g(x)

and E[‖z‖22] = O(1) in Õ(1) calls to f . Preprocessing
is called through Process(x, y, f), and the sampling is
called through Sample(x, y, f).

In other words, we don’t necessarily need for y − x
to be k-sparse as in Lemma 3.4; it suffices for their
consistent permutations to only “differ” by k moves.
This essentially follows from the fact that g(y) only
depends on Py.

At this point we are ready to state our algorithm.

Theorem 4.1. For submodular function f : {0, 1}n →
[−M,M], algorithm SparseSFM(f, s, ε) returns ran-

dom point x ∈ [0, 1]n with E[f̂(x)] < minT f(T) + 1

using Õ(sM2) oracle calls to f .

Proof. [Proof sketch] Copy the proof of Theorem 3.1,

replacing Lemma 3.4 with Lemma 4.3. T = Õ(sM2)

846
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Algorithm 4 SparseSFM(f, s, ε). Takes a submod-
ular function f : {0, 1}n → [−M,M] with an s-sparse
minimzer and returns a random point x ∈ [0, 1]n with

E[f̂(x)] < minT f(T) + 1.

1: T ← Õ(sM2).
2: x0 ← 0 ∈ Rn.
3: (P0, g

0)← FindPerm(f).
4: for i = 1 to T do
5: b← the number of 1 bits in the binary represen-

tation of i− 1.
6: k0 ← i−1, kj+1 ← kj−2ν2(kj) for 0 ≤ j ≤ b−1.

. ν2(y) is the maximum integer t such that 2t divides
y

7: d ← ‖g0‖1 · sign(g0k)ek with probability
|g0k|/‖g0‖1. . Estimate of g0

8: g?i ← d+
∑b−1

j=0 Sample(xkj+1
, xkj

, f).
9: Let c1, c2, · · · , cw be the nonzero coordinates of

g?i . w ≤ b+ 1
10: gi ← w · g?i

ck
· eck with probability 1

w . . gi is
1-sparse

11: xi ← proj(xi−1 − ηgi, Ss).
12: Process(xi−2ν2(i) , xi, f).

13: return 1
T+1

∑T
i=0 xi.

suffices as we can set ε = 1
2 , and B2 = Õ(M2), and

R2 = s in Theorem 2.2.

It is direct to see that Theorem 4.1 implies Theo-
rem 1.2.

5 SFM over Domain [k]n

Previous work [1] has considered more general do-
mains for submodular functions, instead of the standard
{0, 1}n. Such a domain that the definition of submod-
ularity can be extended to is functions f : [k]n → R.
We call a function f : [k]n → R submodular if for all
x, y ∈ [k]n we have that

f(x) + f(y) ≥ f(max{x, y}) + f(min{x, y})

where max and min are applied entry-wise. We assume
without loss of generality that f((1, · · · , 1)) = 0.

This definition can be further extended to functions
over continuous domains. This has also been considered
in previous work. We call a function f : [0, 1]n → R
submodular if for all i, j ∈ [n] with i 6= j we have

that ∂2f
∂xi∂xj

≤ 0, i.e. all mixed partials are non-positive

everywhere.
In this section we show how to obtain algorithms for

minimizing submodular functions in each setting that
make a number of oracle calls nearly linear in n.

5.1 Preliminaries We start by providing the neces-
sary definitions for this section.

General notation. Define [k]
def
= {1, 2, . . . , k} and

[k]n
def
= {(x1, x2, · · · , xn) : xi ∈ [k] for all i}.
Continuous extension. Here, we define the con-

tinuous extension for submodular functions f : [k]n →
R. All the results below were proven by Bach [1]. We
first define its domain.

Definition 5.1. (Domain of continuous extension)

Let f : [k]n → R be a submodular function. Define

the set Hk
def
= {x ∈ [0, 1]k−1 : x1 ≥ x2 ≥ · · · ≥ xk−1}.

The set Hn
k

def
=

n times︷ ︸︸ ︷
Hk × · · · ×Hk will be the domain of the

continuous extension of f .

For a point x = (x1, x2, · · · , xn) ∈ Hn
k , we define

xa,b
def
= xa

b .
We define a permutation consistent to a point

x ∈ Hn
k . This is a generalization of the situation for

submodular functions over {0, 1}n.

Definition 5.2. (Associated permutation)
An associated permutation to a point x =
(x1, x2, · · · , xn) ∈ Hn

k , denoted (P,Q), is
a permutation of [n] × [k − 1], given by
(P1, Q1), (P2, Q2), · · · , (P(k−1)n, Q(k−1)n), which

satisfies xPi

Qi
≥ x

Pi+1

Qi+1
for (k − 1)n > i ≥ 1.

We now define the continuous extension of a submodular
function.

Definition 5.3. (continuous extension) Let f :
[k]n → R be a submodular function. We define the con-

tinuous extension f̂ : Hn
k → R of f as follows. For

a point x = (x1, x2, · · · , xn) ∈ Hn
k , let (P,Q) be an

associated permutation to x. Define the sequence of
points S0, S1, · · · , S(k−1)n ∈ [k]n as S0 = (1, 1, · · · , 1)
and Si = Si−1 + ePi

for (k − 1)n ≥ i ≥ 1. Then we
define

f̂(x) = x
P(k−1)n

Q(k−1)n
f(S(k−1)n)+

(k−1)n−1∑
i=1

(xPi

Qi
−x

Pi+1

Qi+1
)f(Si)

It is direct to see that Definition 5.3 essentially reduces
to the Lovasz extension in the case k = 2.

We now give an example illustrating Definition 5.3.

Example. Consider the following submodular function
f : [3]2 → R.

f(1, 1) = 0, f(1, 2) = 1, f(1, 3) = 2

f(2, 1) = 1, f(2, 2) = 2, f(2, 3) = 2

f(3, 1) = 0, f(3, 2) = 1, f(3, 3) = 0.

847
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Consider the following point in H2
3 : x = (x1, x2) =

((0.6, 0.3), (0.5, 0.1)). The permutation (P,Q) consistent
with x is {(1, 1), (2, 1), (1, 2), (2, 2)} as x1

1 ≥ x2
1 ≥ x1

2 ≥
x2
2. This lets us compute that

S0 = (1, 1), S1 = (2, 1), S2 = (2, 2)

S3 = (3, 2), S4 = (3, 3).

Therefore, we have that

f̂(x) =0.1 · f(S4) + 0.2 · f(S3) + 0.2 · f(S2)

+ 0.1 · f(S1)

=0.1 · f(3, 3) + 0.2 · f(3, 2) + 0.2 · f(2, 2)
+ 0.1 · f(2, 1)

=0.1 · 0 + 0.2 · 1 + 0.2 · 2 + 0.1 · 1
=0.7.

The following properties of the continuous extension are
known. See Sections 3, 4, 5 in [1] for proofs.

Theorem 5.1. (Properties of the extension)

Let f : [k]n → R be a submodular function, and let f̂ be
its continuous extension. Then we have that

• f̂ is convex.

• For S = (s1, s2, · · · , sn) ∈ [k]n, if we define

xi ∈ Hk as xi =
∑si−1

j=1 ej, then for x =

(x1, x2, · · · , xn) ∈ Hn
k we have that f̂(x) = f(S).

• We have that minx∈Hn
k
f̂(x) = minS∈[k]n f(S).

Additionally, the vector g(x) ∈ Rn×(k−1) defined by

g(x)Pj ,Qj

def
= f(Sj) − f(Sj−1) is a subgradient of the

continuous extension, where the Sj are defined as in
Definition 5.3.

5.2 SFM over [k]n In this section we sketch an algo-
rithm and analysis for submodular function minimiza-
tion of functions f : [k]n → [−1, 1]. Precisely we show
the following result.

Theorem 5.2. Given a submodular function f : [k]n →
[−1, 1] and an ε > 0, we can compute a random point
x ∈ [k]n with

E[f(x)] ≤ min
y∈[k]n

f(y) + ε

in Õ(nk4/ε2) calls to an oracle for f .

As the algorithm is extremely similar to those presented
in Section 3 we simply state the analogues of the lemmas

we must show and how they imply the result. Precisely
we need the analogues of Lemma 3.1, Lemma 3.2, and
Lemma 3.3 for the continuous extension which was
defined in Section 2. The proofs are analogous to those
of Lemma 3.1, Lemma 3.2, and Lemma 3.3 which were
given in [9].

Before stating the lemmas, we remark that the
setup and notation we are using is as in Definition 5.3.

Lemma 5.1. For a submodular function f : [k]n →
[−M,M], all subgradients g of the continuous extension
satisfy ‖g(x)‖1 ≤ 4M(k − 1).

Lemma 5.2. Let x = (x1, · · · , xn), y = (y1, · · · , yn) ∈
Hn

k , and d = (d1, · · · , dn) ∈ Rn×(k−1)
≥0 be such that

y = x + d (respectively y = x − d). For all i such
that di = 0 and j ∈ [k−1] we have that g(x)i,j ≥ g(y)i,j
(respectively g(x)i,j ≤ g(y)i,j).

Lemma 5.3. Let x ∈ Hn
k and let (P,Q) be the permu-

tation consistent with x. Then we have for any integers
1 ≤ a ≤ b ≤ n(k − 1) that

b∑
i=a

g(x)Pi,Qi = f(Sb)− f(Sa−1),

where the Sj are defined as in Definition 5.3.

We prove these in Section B.
Additionally, as the algorithm we intend to use

is projected subgradient descent, we must be able to
project onto Hn

k . Projecting onto Hk is simply an
isotonic regression, which can be done via the pool-
adjacent-violators algorithm [3].

Finally, we need the analogue of Lemma 3.4. The
proof is analogous to that of Lemma 3.4 and we provide
a sketch in Section B.

Lemma 5.4. Let f : [k]n → [−1, 1] be a submodular

function with continuous extension f̂ . Let g denote
the subgradients of f̂ . Let x = (x1, · · · , xn), y =
(y1, · · · , yn) ∈ Hn

k be vectors. Let d = (d1, · · · , dn) ∈
Rn×(k−1) be the vector such that d = y − x, and say
that there are ` indices i ∈ [n] such that di 6= 0.
There is a data structure which after O(`k) calls to f
of preprocessing, supports the following: sample a 1-
sparse random variable z with E[z] = g(y) − g(x) and

E[‖z‖22] = O(k2) in Õ(1) calls to f . Preprocessing is
called through Process(x, y, f), and the sampling is
called through Sample(x, y, f).

The condition E[‖z‖22] = O(k2) comes from
the fact that our algorithm will satisfy E[|z|22] ≤
O
(
maxx ‖g(x)‖21

)
≤ O(k2) by Lemma 5.1.

848
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Proof. [Proof of Theorem 5.2] We use basically the
exactly same algorithm as Algorithm 1, except with the
projections in line 11 replaced with projections onto Hn

k .
We can compute that (in the language of Theorem 2.2)
we have that R2 = nk and B2 = O(k2), hence we
have expected error ε in O(R2B2/ε2) = O(nk3/ε2)
steps. By Lemma 5.4, the total number of calls in
the procedure corresponding to line 12 of Algorithm 1
will take on average Õ(k) times the iteration count.
Therefore, the total number of function calls to f is
Õ(k · nk3/ε2) = Õ(nk4/ε2) as desired.

5.3 SFM for continuous functions In this section
we prove Theorem 1.3. Our setup is the following: we
have a submodular function f : [0, 1]n → R, and we
wish to approximately minimize f . Our algorithms are
in terms of the L∞-Lipschitz constant of f , which we
denote as L.

Our algorithm is simple: we essentially just dis-
cretize f and use Theorem 5.2. Specifically, define
k = 2L

ε , and define the function f ′ : [k]n → R as
f ′(x) = f(x/k) for x ∈ [k]n ⊆ Rn. Note that it is
clear that

min
x∈[k]n

f ′(x) ≤ min
x∈[0,1]n

f(x) +
L

k
≤ min

x∈[0,1]n
f(x) + ε/2

by our choice of k. We can also verify that f ′ is
submodular. Therefore, it suffices to minimize f ′

within ε/2. Without loss of generality, we assume
f ′(1, 1, · · · , 1) = 0.

We can almost directly apply Theorem 5.2, except
that the range of f ′ is not [−1, 1], and is instead [−L,L].
This change multiplies the B2 term in our application
of Theorem 2.2 by L2 (so that B2 = O(k2L2)), giving

a total complexity of Õ(nk4L2/ε2) = Õ(nL6/ε6) oracle
calls to f as desired.

We now formally give the proof. It is essentially as
described above.

Proof. [Proof of Theorem 1.3] Define k = 2L
ε , and define

the function f ′ : [k]n → R as f ′(x) = f(x/k) for
x ∈ [k]n ⊆ Rn. We have that

min
x∈[k]n

f ′(x) ≤ min
x∈[0,1]n

f(x) +
L

k
≤ min

x∈[0,1]n
f(x) + ε/2.

Therefore, it suffices to minimize f ′ to additive ε/2.
To do this, we use the same algorithm as in the proof

of Theorem 5.2. As in the notation of Theorem 2.2, we
have that R2 = nk, and B2 = O(k2L2), where the extra
factor of L2 comes from the fact that the range of f ′ is
O(L). Thus, the expected error is ε/2 in O(R2B2/ε2) =
O(nk3L2/ε2) iterations. By the same argument as in
the proof of Theorem 5.2, we have that on average, each

iteration requires Õ(k) function calls. The total number

of calls is therefore Õ(nk4L2/ε2) = Õ(nL6/ε6) function
calls by our choice of k.

Acknowledgements We thank Kevin Tian,
Deeparnab Chakrabarty, Yin Tat Lee, Sahil Singla,
and Sam Chiu-wai Wong for helpful conversations.

References

[1] F. Bach, Submodular functions: from discrete to con-
tinuous domains, Math. Program., 175 (2019), pp. 419–
459.

[2] F. R. Bach, Learning with submodular functions:
A convex optimization perspective, Foundations and
Trends in Machine Learning, 6 (2013), pp. 145–373.

[3] M. J. Best and N. Chakravarti, Active set algo-
rithms for isotonic regression; A unifying framework,
Math. Program., 47 (1990), pp. 425–439.

[4] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez,
S. A. Santos, and P. L. Toint, Worst-case evalua-
tion complexity for unconstrained nonlinear optimiza-
tion using high-order regularized models, Math. Pro-
gram., 163 (2017), pp. 359–368.

[5] Y. Boykov, O. Veksler, and R. Zabih, Fast ap-
proximate energy minimization via graph cuts, in Pro-
ceedings of the Seventh IEEE International Conference
on Computer Vision, vol. 1, IEEE, 1999, pp. 377–384.

[6] S. Bubeck, Convex optimization: Algorithms and
complexity, Foundations and Trends in Machine Learn-
ing, 8 (2015), pp. 231–357.

[7] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sid-
ford, Accelerated methods for non-convex optimiza-
tion, CoRR, abs/1611.00756 (2016).

[8] D. Chakrabarty, P. Jain, and P. Kothari, Prov-
able submodular minimization using wolfe’s algorithm,
in Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Process-
ing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, 2014, pp. 802–809.

[9] D. Chakrabarty, Y. T. Lee, A. Sidford, and
S. C.-w. Wong, Subquadratic submodular function
minimization, in STOC’17—Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Com-
puting, ACM, New York, 2017, pp. 1220–1231.

[10] C. Chekuri, J. Vondrák, and R. Zenklusen,
Submodular function maximization via the multilinear
relaxation and contention resolution schemes, SIAM
Journal on Computing, 43 (2014), pp. 1831–1879.

[11] G. Choquet, Theory of capacities, Ann. Inst. Fourier,
Grenoble, 5 (1953–1954), pp. 131–295 (1955).

[12] W. H. Cunningham, On submodular function mini-
mization, Combinatorica, 5 (1985), pp. 185–192.

[13] J. Edmonds, Submodular functions, matroids, and cer-
tain polyhedra, in Combinatorial Structures and their
Applications (Proc. Calgary Internat. Conf., Calgary,

849
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Alta., 1969), Gordon and Breach, New York, 1970,
pp. 69–87.

[14] U. Feige, V. S. Mirrokni, and J. Vondrak, Max-
imizing non-monotone submodular functions, SIAM
Journal on Computing, 40 (2011), pp. 1133–1153.

[15] S. Fujishige, Lexicographically optimal base of a poly-
matroid with respect to a weight vector, Math. Oper.
Res., 5 (1980), pp. 186–196.

[16] , Submodular functions and optimization, vol. 58
of Annals of Discrete Mathematics, Elsevier B. V.,
Amsterdam, second ed., 2005.

[17] R. Ge, J. D. Lee, and T. Ma, Matrix completion has
no spurious local minimum, in Advances in Neural In-
formation Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain, 2016, pp. 2973–
2981.

[18] M. Grötschel, L. Lovász, and A. Schrijver,
Corrigendum to our paper: “The ellipsoid method
and its consequences in combinatorial optimization”
[Combinatorica 1 (1981), no. 2, 169–197; MR0625550
(84a:90044)], Combinatorica, 4 (1984), pp. 291–295.

[19] S. Guminov and A. Gasnikov, Accelerated meth-
ods for α-weakly-quasi-convex problems, arXiv preprint
arXiv:1710.00797, (2017).

[20] Y. Hamoudi, P. Rebentrost, A. Rosmanis, and
M. Santha, Quantum and classical algorithms for ap-
proximate submodular function minimization, CoRR,
abs/1907.05378 (2019).

[21] E. Hazan and S. Kale, Online submodular minimiza-
tion, Journal of Machine Learning Research, 13 (2012),
pp. 2903–2922.

[22] O. Hinder, A. Sidford, and N. S. Sohoni, Near-
optimal methods for minimizing star-convex functions
and beyond, arXiv preprint arXiv:1906.11985, (2019).

[23] S. Iwata, L. Fleischer, and S. Fujishige, A combi-
natorial, strongly polynomial-time algorithm for min-
imizing submodular functions, in Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of
Computing, ACM, New York, 2000, pp. 97–106.

[24] S. Iwata and J. B. Orlin, A simple combinatorial al-
gorithm for submodular function minimization, in Pro-
ceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SIAM, Philadelphia, PA,
2009, pp. 1230–1237.

[25] S. Jegelka and J. A. Bilmes, Online submodular
minimization for combinatorial structures, in Proceed-
ings of the 28th International Conference on Machine
Learning, ICML 2011, Bellevue, Washington, USA,
June 28 - July 2, 2011, 2011, pp. 345–352.

[26] P. Kohli, M. P. Kumar, and P. H. Torr, P3 & be-
yond: Move making algorithms for solving higher order
functions, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31 (2008), pp. 1645–1656.

[27] P. Kohli and P. H. Torr, Dynamic graph cuts and
their applications in computer vision, in Computer
Vision, Springer, 2010, pp. 51–108.

[28] A. Krause and C. Guestrin, Submodularity and its

applications in optimized information gathering, ACM
TIST, 2 (2011), pp. 32:1–32:20.

[29] S. Lacoste-Julien and M. Jaggi, On the global lin-
ear convergence of frank-wolfe optimization variants,
in Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, 2015, pp. 496–504.

[30] Y. T. Lee, A. Sidford, and S. C.-w. Wong,
A faster cutting plane method and its implications
for combinatorial and convex optimization, in 2015
IEEE 56th Annual Symposium on Foundations of
Computer Science—FOCS 2015, IEEE Computer Soc.,
Los Alamitos, CA, 2015, pp. 1049–1065.

[31] H. Lin and J. Bilmes, An application of the submodu-
lar principal partition to training data subset selection,
in NIPS workshop on Discrete Optimization in Ma-
chine Learning, 2010.

[32] , Optimal selection of limited vocabulary speech
corpora, in Twelfth Annual Conference of the Interna-
tional Speech Communication Association, 2011.

[33] H. Lin and J. A. Bilmes, A class of submodular func-
tions for document summarization, in The 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, Proceedings of
the Conference, 19-24 June, 2011, Portland, Oregon,
USA, 2011, pp. 510–520.

[34] L. Lovász, Submodular functions and convexity, in
Mathematical programming: the state of the art
(Bonn, 1982), Springer, Berlin, 1983, pp. 235–257.

[35] S. T. McCormick, Submodular function minimiza-
tion, Handbooks in operations research and manage-
ment science, 12 (2005), pp. 321–391.

[36] A. S. Nemirovsky and D. B. Yudin, Problem com-
plexity and method efficiency in optimization., (1983).

[37] Y. Nesterov, How to make the gradients small, Op-
tima, 88 (2012), pp. 10–11.

[38] Y. Nesterov, A. Gasnikov, S. Guminov, and
P. Dvurechensky, Primal-dual accelerated gradient
descent with line search for convex and nonconvex op-
timization problems, arXiv preprint arXiv:1809.05895,
(2018).

[39] Y. Nesterov and B. T. Polyak, Cubic regularization
of newton method and its global performance, Math.
Program., 108 (2006), pp. 177–205.

[40] A. Schrijver, A combinatorial algorithm minimizing
submodular functions in strongly polynomial time, J.
Combin. Theory Ser. B, 80 (2000), pp. 346–355.

[41] P. Wolfe, Finding the nearest point in a polytope,
Math. Programming, 11 (1976), pp. 128–149.

A Nonconstructive derandomization of
Algorithm 4

In this section we explain how we can nonconstructively
derandomize Algorithm 4. In other words, we sketch
a deterministic algorithm such that given an integer-
valued submodular function f : {0, 1}n → [−M,M]

850
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

finds a permutation P such that we can compute all
nonzero coordinates of gP in Õ(poly(M)) oracle calls.

Now we explain the main idea behind the deran-
domization. Let’s consider the case in Algorithm 4 when
Pl = Pr = ∅ at the start. Let S be the random sub-
set generated in line 4, where each element in P is in
S with probability 1

10M . As explained in the proof of
Lemma 4.1, this choice of S allows to make progress
as long as there is exactly one index i ∈ S such that
gPi 6= 0, and for all other indices j ∈ S with j 6= i we
have that gPj = 0. As long as gP 6= 0, the probability of
this occuring is at least

1

10M
·
(
1− 1

10M

)3M

≥ 1

20M
.

Imagine randomly generating T = 500M2 log n such
sets S1, · · · , ST . The probability that there is no set
Sj satisfying the desired property of exactly one index

i ∈ Sj with gPi 6= 0 is at most
(
1− 1

20M

)500M2 log n ≤
n−20M . Note that because ‖gP ‖1 ≤ 3M by Lemma 3.1,
there are at most (2n)3M distinct possible subgradients
gP . Because

(2n)3M · n−20M < 1,

a union bound tells us that there exist deterministic
sets S1, · · · , ST that the algorithm can precompute
independent of f such that for any nonzero subgradient
gP there is a set Sj for 1 ≤ j ≤ T such that for exactly
index i ∈ Sj we have gPi 6= 0, as desired.

We now formally state this discussion as a lemma.

Lemma A.1. There is a deterministic algorithm which
give an integer-valued submodular function f :
{0, 1}n → [−M,M] computes a permutation P and

finds all nonzero entries of gP in Õ(M3) oracle calls.

Proof. This proof essentially follows the above discus-
sion. Define T = 500M2 log n. Our goal is to determin-
istically construct sets S1, S2, . . . , ST ⊆ [n] such that
for any nonzero vector g ∈ Rn with integer entries and
‖g‖1 ≤ 3M , that for some 1 ≤ j ≤ T , we have that
there is exactly one element i ∈ Sj such that gi 6= 0.
With this construction, we can simply copy the proof of
Lemma 4.1, using that all subgradients g of the Lovasz
extension have integer entries and `1 norm at most 3M .
We focus on this goal in the remainder of the proof.

Randomly generate subsets S1, · · · , ST ⊆ [n] as
follows: each Sj is such that each i ∈ P is independently
in Sj with probaiblity 1

10M . Let g ∈ Rn be a nonzero
vector with integer entries and ‖g‖1 ≤ 3M . We now
bound the probability for some Sj we have that there
is exactly one element i ∈ Sj with gi 6= 0. For a fixed j,

the probability that Sj satisfies this property is at least

1

10M
·
(
1− 1

10M

)3M

≥ 1

20M
.

Therefore, the probability that no Sj satisfy the desired
property is at most(

1− 1

20M

)T

≤ n−20M .

Our next goal is to count the number of possible
distinct vectors g ∈ Rn with integer entries and ‖g‖1 ≤
3M. A direct counting argument easily shows that the
number of such vectors g is at most

∑3M
k=0(2n)

k ≤
2(2n)3M . Therefore, by a union bound (as 2(2n)3M ·
n−20M < 1) there exists sets S1, . . . , ST ⊆ [n] such
that for all vectors g ∈ Rn with integer entries and
‖g‖1 ≤ 3M that there is a j such that there is exactly
one element i ∈ Sj with gi 6= 0. We can find such sets
S1, . . . , ST just by brute forcing over all possibilities:
these are independent of f , so they do not cost oracle
calls to compute.

It would be interesting to give a polynomial time algo-
rithm to deterministically construct sets S1, S2, . . . , ST

as described in Lemma A.1.

Remark A.1. We can improve the number of oracle
calls in Lemma A.1 to Õ(M2) and the value of T

in the proof to Õ(M) using the same technique as in
Remark 4.1.

B Additional Proofs

Lemma 3.4. Let f : {0, 1}n → [−1, 1] be a submodular

function with Lovasz extension f̂ . Let g denote the
subgradients of f̂ . Let x, y ∈ [0, 1]n be vectors such
that y − x is k-sparse. There is a data structure which
after O(k) calls to f of preprocessing, supports the
following: sample a 1-sparse random variable z with
E[z] = g(y) − g(x) and E[‖z‖22] = O(1) in Õ(1) calls
to f . Preprocessing is called through Process(x, y, f),
and the sampling is called through Sample(x, y, f).

Proof. Let d = y − x. We first argue that it suffices to
consider the case where d either has all nonnegative or
all nonpositive coordinates. To this end, let d+, d− ∈ Rn

be the positive and negative parts of d, precisely defined
as

d+i = max(0, di) and d−i = min(0, di) for all 1 ≤ i ≤ n.

Write

g(y)− g(x) =(
g(x+ d+ + d−)− g(x+ d+)

)
+
(
g(x+ d+)− g(x)

)
.

851
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

To sample the estimate z for g(y) − g(x), we in-
stead sample z1 for (g(x+ d+ + d−)− g(x+ d+)) and
z2 for (g(x+ d+)− g(x)), and set z to be either 2z1
or 2z2, each with probability 1

2 . It is clear that if both
E[‖z1‖22] = O(1) and E[‖z2‖22] = O(1), then E[‖z‖22] =
O(1). This shows that we can reduce to the case where
either d has all nonnegative or nonpositive coordinates.

By symmetry, we only consider the case where d
has all nonnegative coordinates. Let y = x + d. Let
Px be the permutation consistent with x, and let Py be
the permutation consistent with y. Note that because d
is k-sparse, one can transform permutation Px into Py

deleting k elements from Px and inserting them back.
Therefore, there exist subsets I1, I2, · · · , I2k ⊂ [n] that
are intervals in both Px and Py.

The phase Process(x, y, f) then proceeds comput-

ing Dt
def
=
∑

j∈It
(g(y)j − g(x)j) for all 1 ≤ t ≤ 2k.

By Lemma 3.3 this requires O(k) queries to f . Note
that each for each j ∈ It, the terms g(y)j − g(x)j are

all the same sign by Lemma 3.2, hence
∑2k

t=1 |Dt| =
|g(y)− g(x)|1.

Sample(x, y, f) proceeds as follows. Choose an in-
terval It proportional to |Dt|. Let I be the interval that
is chosen. Split this interval in half into two intervals I ′

and I ′′. Compute the sums D′ =
∑

j∈I′(g(y)j − g(x)j)
and D′′ =

∑
j∈I′′(g(y)j − g(x)j). Sample one of I ′ and

I ′′ proportional to D′ and D′′, respectively. Now con-
tinue recursively. When the interval is size 1, say con-
taining the element j, return the vector z = ‖g(y) −
g(x)‖1 ·sign(g(y)j−g(x)j)·ej . By Lemma 3.3 this phase

takes Õ(1) queries to f and returns a 1-sparse estimate
z for g(y)−g(x). We can check by the construction that
E[z] = g(y)− g(x), and

E[‖z‖22] ≤ ‖g(y)− g(x)‖21 = O(1)

by Lemma 3.1.

Lemma 4.3. Let f : {0, 1}n → [−M,M] be a submodu-

lar function with Lovasz extension f̂ . Let g denote the
subgradients of f̂ . Let x, y ∈ [0, 1]n be vectors and let Px

and Py be permutations consistent with x, y respectively.
Assume that we can transform Px into Py by deleting
k elements from Px and inserting them back in other
locations. There is a data structure which after O(k)
calls to f of preprocessing supports the following: sam-
ple a 1-sparse random variable z with E[z] = g(y)−g(x)

and E[‖z‖22] = O(1) in Õ(1) calls to f . Preprocessing
is called through Process(x, y, f), and the sampling is
called through Sample(x, y, f).

Proof. [Proof sketch] It is direct to see that if we can
get from Px to Py by deleting k elements from Px and
inserting them back in other positions, then there exist

points x′, y′ ∈ [0, 1]n where all coordinates of x′ are
distinct and all coordiantes of y′ are distinct, such that
Px is consistent with x′, Py is consistent with y′, and
y′ − x′ is k-sparse. Now use the proof of Lemma 3.2
above on the points x′ and y′.

Lemma 5.1. For a submodular function f : [k]n →
[−M,M], all subgradients g of the continuous extension
satisfy ‖g(x)‖1 ≤ 4M(k − 1).

Proof. Let g be the gradient at a point x. We prove
that for 1 ≤ j < k we have that

∑n
i=1 |gi,j | ≤ 4M.

Summing over all j then gives us that ‖g‖1 ≤ 4M(k−1).
We first bound the sum of the positive entries of g,
i.e. we show that

∑n
i=1 max(0, g(i, j)) ≤ 2M for

any j ∈ [k − 1]. An analogous argument will show
that

∑n
i=1 min(0, g(i, j)) ≥ −2M , which together is

sufficient.
Fix j ∈ [k − 1]. Let (P,Q) be the permutation

corresponding to our point x. Without loss of generality,
assume that g1,j ≥ g2,j ≥ · · · ≥ gn,j . Let a1, a2, . . . , an
be such that (Pay

, Qay
) = (y, j). Let the Si be defined

as in Definition 5.3. Note that a1 ≤ · · · ≤ an by our
assumption. Let X = {i ∈ [n] : gi,j > 0}, let t = |X|
and let i1 ≤ · · · ≤ it be the elements of X. Define
v0 = (j − 1, j − 1, · · · , j − 1) ∈ Rn. For 1 ≤ y ≤ t,
define vy = vy−1 + eiy . Note that by the definition
of submodularity over [k]n that f(vy) − f(vy−1) ≥
f(Saiy

)− f(Saiy−1) = giy,j . Therefore, we have that

2M ≥ f(vt)− f(v0) =
t∑

y=1

f(vy)− f(vy−1) ≥
t∑

y=1

giy,j

as desired.

Lemma 5.2. Let x = (x1, · · · , xn), y = (y1, · · · , yn) ∈
Hn

k , and d = (d1, · · · , dn) ∈ Rn×(k−1)
≥0 be such that

y = x + d (respectively y = x − d). For all i such
that di = 0 and j ∈ [k−1] we have that g(x)i,j ≥ g(y)i,j
(respectively g(x)i,j ≤ g(y)i,j).

Proof. We only prove the case y = x + d, as the y =
x− d case is analogous. Let (P,Q) be the permutation
corresponding to x and (P ′, Q′) is the permutation
corresponding to y. Let Si be the sets defined in
Definition 5.3 for x, and let S′

i be the sets for y.
Let a, b be such that (i, j) = (Pa, Qa) and (i, j) =

(P ′
b, Q

′
b). Then Theorem 5.1 tell us that g(x)i,j =

f(Sa) − f(Sa−1) and g(y)i,j = f(S′
b) − f(S′

b−1), where
Sa = Sa−1 + ei and S′

b = S′
b−1 + ei as defined in

Definition 5.3. We will show that (Sa−1)t ≤ (S′
b−1)t

for all indices t ∈ [n], and (Sa−1)i = (S′
b−1)i. Then the

852
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

inequality

f(Sa)− f(Sa−1) = f(Sa−1 + ei)− f(Sa−1)

≥ f(S′
b−1 + ei)− f(S′

b−1)

= f(S′
b)− f(S′

b−1)

by the definition of submodularity over [k]n.
To argue that S′

b−1 ≥ Sa−1 coordinate-wise, note
that because y = x + d and d ≥ 0 that we can get
from (P,Q) to (P ′, Q′) by moving some pairs (Pt, Qt) to
the left (where the “left” has the larger elements) but
without touching any (Pt, Qt) with Pt = i as di = 0.
By the definition of the Si in Definition 5.3, we can
now directly check that S′

b−1 ≥ Sa−1 entry-wise, and
(Sa−1)i = (S′

b−1)i as desired.

Lemma 5.3. Let x ∈ Hn
k and let (P,Q) be the permu-

tation consistent with x. Then we have for any integers
1 ≤ a ≤ b ≤ n(k − 1) that

b∑
i=a

g(x)Pi,Qi = f(Sb)− f(Sa−1),

where the Sj are defined as in Definition 5.3.

Proof. This follows immediately from the definition of
g. By Theorem 5.1 we have that g(x)Pi,Qi

= f(Si) −
f(Si−1). Therefore,

b∑
i=a

g(x)Pi,Qi =

b∑
i=a

f(Si)− f(Si−1) = f(Sb)− f(Sa−1).

Lemma 5.4. Let f : [k]n → [−1, 1] be a submodular

function with continuous extension f̂ . Let g denote
the subgradients of f̂ . Let x = (x1, · · · , xn), y =
(y1, · · · , yn) ∈ Hn

k be vectors. Let d = (d1, · · · , dn) ∈
Rn×(k−1) be the vector such that d = y − x, and say
that there are ` indices i ∈ [n] such that di 6= 0.
There is a data structure which after O(`k) calls to f
of preprocessing, supports the following: sample a 1-
sparse random variable z with E[z] = g(y) − g(x) and

E[‖z‖22] = O(k2) in Õ(1) calls to f . Preprocessing is
called through Process(x, y, f), and the sampling is
called through Sample(x, y, f).

Proof. [Proof sketch] Using the same technique as in
Lemma 3.4 we reduce to the case where d has all non-
negative coordinates, so that y = x + d. Because there
are ` indices i ∈ [n] such that di 6= 0, we can transform
the associated permutation (P,Q) of x to the associated

permutation (P ′, Q′) of y by deleting and reinserting k`
elements, corresponding to k coordinates per each i with
di 6= 0, and there are at most ` such indices i.

By submodularity, we can construct O(k`) intervals
where g(y) − g(x) is either all positive or all negative.
We can preprocess these intervals in O(k`) oracle calls
as done in Lemma 3.4. Afterwards, we can sample 1-
sparse estimates to g(y) − g(x) in Õ(1) queries. As in
Lemma 3.4 our estimate will satisfy E[‖z‖22] = ‖g(y) −
g(x)‖21 = O(k2) by Lemma 5.1.

853
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

02
/0

1/
20

 to
 1

28
.1

2.
93

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

