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Abstract

Many modern learning tasks involve fitting non-

linear models which are trained in an overparame-

terized regime where the parameters of the model

exceed the size of the training dataset. Due to

this overparameterization, the training loss may

have infinitely many global minima and it is criti-

cal to understand the properties of the solutions

found by first-order optimization schemes such as

(stochastic) gradient descent starting from differ-

ent initializations. In this paper we demonstrate

that when the loss has certain properties over a

minimally small neighborhood of the initial point,

first order methods such as (stochastic) gradient

descent have a few intriguing properties: (1) the

iterates converge at a geometric rate to a global op-

tima even when the loss is nonconvex, (2) among

all global optima of the loss the iterates converge

to one with a near minimal distance to the initial

point, (3) the iterates take a near direct route from

the initial point to this global optimum. As part of

our proof technique, we introduce a new potential

function which captures the tradeoff between the

loss function and the distance to the initial point as

the iterations progress. The utility of our general

theory is demonstrated for a variety of problem

domains spanning low-rank matrix recovery to

shallow neural network training.

1. Introduction

1.1. Motivation

In a typical statistical estimation or supervised learning prob-

lem, we are interested in fitting a function f(⋅;θ) ∶ Rd ↦ R
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parameterized by θ ∈ R
p to a training data set of n input-

output pairs xi ∈ R
d and yi ∈ R for i = 1,2, . . . , n. The

training problem then consists of finding a parameter θ

that minimizes the empirical risk 1

n ∑n
i=1 ℓ(f(xi;θ), yi).

The loss ℓ(ỹ, y) measures the discrepancy between the

output(or label) y and the model prediction ỹ = f(xi;θ).
For regression tasks one typically uses a least-squares loss

ℓ(ỹ, y) = 1

2
(ỹ − y)2 so that the training problem reduces to

a nonlinear least-squares problem of the form

min
θ∈Rp
L(θ) ∶= 1

2

n∑
i=1
(f(xi;θ) − yi)2 . (1.1)

In this paper we mostly focus on nonlinear least-squares

problems however Section 5 of the supplementary material

extends our results to a broader class of loss functions L(θ).
Classical statistical estimation/learning theory postulates

that to find a reliable model that avoids overfitting, the size

of the training data must exceed the intrinsic dimension1 of

the model class f(⋅;θ) used for empirical risk minimization

(1.1). For many models such notions of intrinsic dimension

are at least as large as the number of parameters in the model

p, so that this literature requires the size of the training data

to exceed the number of parameters in the model i.e. n > p.

Contrary to this classical literature, modern machine learn-

ing models such as deep neural networks are often trained

via first-order methods in an over-parameterized regime

where the number of parameters in the model exceed the

size of the training data (i.e. n < p). Statistical learning

in this over-parameterized regime poses new challenges:

Given the nonconvex nature of the training loss (1.1) can

first-order methods converge to a globally optimal model

that perfectly interpolate the training data? If so, which of

the global optima do they converge to? What are the statisti-

cal properties of this model and how does this model vary as

a function of the initial parameter used to start the iterative

updates? What is the trajectory that iterative methods such

as (stochastic) gradient descent take to reach this point?

Why does a model trained using this approach generalize to

1Some common notions of intrinsic dimension include Vap-
nik–Chervonenkis (VC) Dimension (Vapnik & Chervonenkis,
2015), Rademacher/Gaussian complexity (Bartlett & Mendelson,
2002; Mohri et al., 2018; Talagrand, 2006), as well as naive param-
eter counting.
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new data and avoid overfitting to the training data?

In this paper we take a step towards addressing such chal-

lenges. We demonstrate that in many cases first-order meth-

ods do indeed converge to a globally optimal model that

perfectly fits the training data. Furthermore, we show that

among all globally optimal parameters of the training loss

these algorithms tend to converge to one which has a near

minimal distance to the parameter used for initialization.

Additionally, the path that these algorithms take to reach

such a global optima is rather short, with these algorithms

following a near direct trajectory from initialization to this

global optimum. We believe these key features may help

demystify why models trained using first-order methods

can achieve reliable learning in modern over-parametrized

regimes without over-fitting to the training data.

1.2. Contributions

Our main contributions can be summarized as follows:

• We provide a general convergence result for overparam-

eterized learning via gradient descent, that comes with

matching upper and lower bounds, showing that under

appropriate assumptions over a small neighborhood of the

initialization, gradient descent (1) finds a globally optimal

model, (2) among all possible globally optimal param-

eters it finds one which is approximately the closest to

initialization and (3) it follows a nearly direct trajectory

to find this global optima.

• We show that SGD exhibits the same behavior sand con-

verges linearly without ever leaving a small neighborhood

of the initialization even with rather large learning rates.

• We demonstrate the utility of our general results in the

context of three overparameterized learning problems:

generalized linear models, low-rank matrix regression,

and shallow neural network training.

2. Convergence Analysis for Gradient Descent

The nonlinear least-squares problem in (1.1) can be written

in the more compact form

min
θ∈Rp
L(θ) ∶= 1

2
∥f(θ) − y∥2ℓ2 , (2.1)

where y ∶= [y1 y2 . . . yn]T ∈ R
n and f(θ) ∶=

[f(x1;θ) f(x2;θ) . . . f(xn;θ)]T ∈ R
n. A natural

approach to optimizing (2.1) is to use gradient descent up-

dates of the form

θτ+1 = θτ − ητ∇L(θτ),
starting from some initial parameter θ0. For the formulation

(2.1) above the gradient takes the form

∇L(θ) = J (θ)T (f(θ) − y). (2.2)

Here, J (θ) ∈ R
n×p is the Jacobian matrix associated with

the mapping f(θ) with entries given by Jij = ∂f(xi,θ)
∂θj

.

We note that in the over-parameterized regime (n < p),

the Jacobian has more columns than rows. Throughout,

σmin(⋅)/∥⋅∥ denote the minimum/maximum singular value.

Our first assumption ensures that the Jacobian matrix

smoothly changes as a function of the parameter θ.

Assumption 1 (Jacobian smoothness) Consider a set

D ⊂ R
p containing the initial point θ0 (i.e. θ0 ∈ D). We

assume that for all θ1,θ2 ∈ D,

∥J (θ2) − J (θ1)∥ ≤ L ∥θ2 − θ1∥ℓ2 .2
We will also assume that the spectrum of the Jacobian is

bounded in a local neighborhood of the initialization.

Assumption 2 (Jacobian Spectrum) Consider a set D ⊂
R
p containing the initial point θ0 (i.e. θ0 ∈ D). We assume

that for all θ ∈ D the following inequality holds

α ≤ σmin (J (θ)) ≤ ∥J (θ)∥ ≤ β,
with α,β scalars obeying β ≥ α > 0.

With these assumptions in place we are now ready to state

our main result.

Theorem 2.1 Consider a nonlinear least-squares optimiza-

tion problem of the form (2.1). Suppose the Jacobian map-

ping associated with f obeys Assumption 2 over a ball

D of radius R ∶= 4∥f(θ0)−y∥ℓ2
α

around a point θ0 ∈ R
p.3

Furthermore, suppose Assumption 1 holds over D and set

η ≤ 1

2β2 ⋅ min(1, α2

L∥f(θ0)−y∥ℓ2
). Then, running gradient

descent updates of the form θτ+1 = θτ − η∇L(θτ) starting

from θ0, all iterates obey.

∥f(θτ) − y∥2ℓ2 ≤ (1 − ηα2

2
)
τ

∥f(θ0) − y∥2ℓ2 , (2.3)

1

4
α ∥θτ − θ0∥ℓ2 + ∥f(θτ) − y∥ℓ2 ≤ ∥f(θ0) − y∥ℓ2 . (2.4)

Furthermore, the total gradient path is bounded. That is,

∞∑
τ=0
∥θτ+1 − θτ∥ℓ2 ≤ 4 ∥f(θ0) − y∥ℓ2

α
. (2.5)

To apply our main result, one can simply verify that Jacobian

is nice at the initial point. The following corollary highlights

the key relations between smoothness, residual, and initial

Jacobian for global convergence.

2Note that, if
∂J(θ)

∂θ
is continuous, Lipschitzness condition

holds over any compact domain (for possibly large L).

3That is, D = B (θ0,
4∥f(θ0)−y∥ℓ2

α
) with B(c, r) = {θ ∈ R

p ∶
∥θ − c∥ℓ2 ≤ r}
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Figure 1. In the left figure we show that the gradient descent iterates in over-parameterized learning exhibit a sharp tradeoff between

distance to the initial point (∥θ − θ0∥ℓ2 ) and the misfit error (∥f(θ) − y∥ℓ2 ). Our upper (equation (2.10)) and lower bounds (Theorem

2.4) guarantee that the gradient descent iterates must lie in the green region. Additionally this is the tightest region as we provide examples

in Theorem 2.4 where gradient descent occurs only on the upper bound (green) line or on the lower bound (red line). Right figure shows

the same behavior in the parameter space. Our theorems predict that the gradient descent trajectory ends at a globally optimal point θGD

in the green region and this point will have approximately the same distance to the initialization parameter as the closest global optima to

the initialization (θ∗). Furthermore, the GD iterates follow a near direct route from the initialization to this global optima.

Theorem 2.2 Suppose the Jacobian at θ0 obeys

2α ≤ σmin (J (θ0)) ≤ ∥J (θ0)∥ ≤ β/2.
Additionally, suppose Assumption 1 holds over a ball of

radius R = 4∥f(θ0)−y∥ℓ2
α

around θ0 and

α2 ≥ 4L∥y − f(θ0)∥ℓ2 . (2.6)

Then, the conclusions of Theorem 2.1 hold with η ≤ 1

2β2 .

Another trivial consequence of our theorem is the following.

Corollary 2.3 Consider the setting and assumptions of The-

orem 2.1 above. Let θ∗ denote the global optima of the lossL(θ) with smallest Euclidean distance to the initial param-

eter θ0. Then, the gradient descent iterates θτ obey

∥θτ − θ0∥ℓ2 ≤ 4βα ∥θ∗ − θ0∥ℓ2 , (2.7)

∞∑
τ=0
∥θτ+1 − θτ∥ℓ2 ≤ 4βα ∥θ∗ − θ0∥ℓ2 . (2.8)

The theorems and corollary above show that if the Jacobian

of the nonlinear mapping has bounded/smooth deviations

(Assumptions 1) and is well-conditioned (Assumption 2)

in a ball of radius R around the initial point, then gradient

descent enjoys three intriguing properties.

Zero traning error: The first property demonstrated by

Theorem 2.1 above is that the iterates converge to a global

optima θGD. This hold despite the fact that the fitting prob-

lem may be highly nonconvex in general. Indeed, based

on (2.3) the fitting/training error ∥f(θτ) − y∥ℓ2 achieved by

Gradient Descent (GD) iterates converges to zero. There-

fore, GD can perfectly interpolate the data and achieve zero

training error. Furthermore, this convergence is rather fast

and the algorithm enjoys a geometric (a.k.a. linear) rate of

convergence to this global optima.

Gradient descent iterates remain close to the initializa-

tion: The second interesting aspect of these results is that

they guarantee the GD iterates never leave a neighborhood

of radius 4

α
∥f(θ0) − y∥ℓ2 around the initial point. That is

the GD iterates remain rather close to the initialization. In

fact, based on (2.7) we can conclude that

∥θGD − θ0∥ℓ2 = lim
τ→∞
∥θτ − θ0∥ℓ2 ≤ 4βα ∥θ∗ − θ0∥ℓ2 .

Thus the distance between the global optima GD converges

to and the initial parameter θ0 is within a factor 4β

α
of the

distance between the closest global optima to θ0 and the

initialization. This shows that among all global optima

of the loss, the GD iterates converge to one with a near

minimal distance to the initialization. In particular, (2.4)

shows that for all iterates the weighted sum of the distance

to the initialization and the misfit error remains bounded so

that as the loss decreases the distance to the initialization

only moderately increases.

Gradient descent follows a short path: Another interest-

ing aspect of the above results is that the total length of the

path taken by gradient descent remains bounded. Indeed,

based on (2.8) the length of the path taken by GD is within

a factor of the distance between the closest global optima

and the initialization. This implies that GD follows a near

direct route from the initialization to a global optima!

We would like to note that Theorem 2.1 and Corollary

2.3 are special instances of a more general result stated

in Theorem 9.3 of the supplementary material. This more
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general result requires Assumptions 1 and 2 to hold in a

smaller neighborhood and improves the approximation ra-

tios. Specifically, the radius R can be chosen as small as

∥f(θ0) − y∥ℓ2
α

, (2.9)

and (2.4) can be improved to

α ∥θτ − θ0∥ℓ2 + ∥f(θτ) − y∥ℓ2 ≤ ∥f(θ0) − y∥ℓ2 (2.10)

This improves th approximation ratios in Corollary 2.3 to

∥θτ − θ0∥ℓ2 ≤ β

α
∥θ∗ − θ0∥ℓ2 , (2.11)

∞∑
τ=0
∥θτ+1 − θτ∥ℓ2 ≤ β

α
∥θ∗ − θ0∥ℓ2 . (2.12)

The role of the sample size: Theorem 2.1 provides a good

intuition towards the role of sample size in the overparame-

terized optimization landscape. First, observe that adding

more samples can only increase the condition number of the

Jacobian matrix (larger β and smaller α). Second, assuming

samples are i.i.d, the initial misfit ∥y − f(θ0)∥ℓ2 is propor-

tional to
√
n. Together these imply that more samples lead

to a more challenging optimization problem as: (1) More

samples leads to a slower convergence rate by degrading the

condition number of the Jacobian. (2) The required conver-

gence radius R increases proportional to
√
n and we need

Jacobian to be well-behaved over a larger neighborhood.

A natural question about the results discussed so far is

whether the size of the local neighborhood for which we

require our assumptions to hold is optimal. In particular,

one may hope to be able to show that a significantly smaller

neighborhood is sufficient. We now state a lower bound

showing that this is not possible.

Theorem 2.4 Consider a nonlinear least-squares optimiza-

tion problem of the form (2.1) and assume Assumption 1

holds over a set D around a point θ0 ∈ R
p. Then,

∥y − f(θ)∥ℓ2 + β∥θ − θ0∥ℓ2 ≥ ∥y − f(θ0)∥ℓ2 , (2.13)

holds for all θ ∈ D. Hence, any θ that sets the loss to zero

satisfies ∥θ − θ0∥ℓ2 ≥ ∥y − f(θ0)∥ℓ2/β. Furthermore, for

any α and β obeying α,β ≥ 0 and β ≥ α, there exists a

linear regression problem such that

∥y − f(θ)∥ℓ2 + α∥θ − θ0∥ℓ2 ≥ ∥y − f(θ0)∥ℓ2 , (2.14)

holds for all θ. Also, for any α and β obeying α,β ≥ 0
and β ≥ α, there also exists a linear regression problem

where running gradient descent updates of the form θτ+1 =
θτ − η∇L(θτ) starting from θ0 = 0 with a sufficiently small

learning rate η, all iterates θτ obey

∥y − f(θτ)∥ℓ2 + β∥θτ − θ0∥ℓ2 = ∥y − f(θ0)∥ℓ2 . (2.15)

The result above shows that any global optima is at least a

distance ∥θ − θ0∥ℓ2 ≥ ∥y−f(θ0)∥ℓ2
β

away from the initializa-

tion so that the minimum ball around the initial point needs

to have radius at least R ≥ ∥y−f(θ0)∥ℓ2
β

for convergence

to a global optima to occur. Comparing this lower-bound

with that of Theorem 2.1 and in particular the improve-

ment discussed in (2.9) suggests that the size of the local

neighborhood is optimal up to a factor β/α which is the

condition number of the Jacobian in the local neighbor-

hood. More generally, this result shows that the weighted

sum of the residual/misfit to the model (∥f(θ) − y∥ℓ2) and

distance to initialization (∥θ − θ0∥ℓ2) has nearly matching

lower/upper bounds (compare (2.10) and (2.13)). Theorem

2.4 also provides two specific examples in the context of

linear regression which shows that both of these upper and

lower bounds are possible under our assumptions.

Collectively our theorems (Theorem 2.1, Corollary 2.3, im-

provements in equations (2.9) and (2.10), and Theorem 2.4)

demonstrate that the path taken by gradient descent is by

no means arbitrary. Indeed as depicted in the left picture

of Figure 1, gradient descent iterates in over-parameterized

learning exhibit a sharp tradeoff between distance to the ini-

tial point (∥θ − θ0∥ℓ2) and the misfit error (∥f(θ) − y∥ℓ2).

Our upper (equation (2.10)) and lower bounds (Theorem

2.4) guarantee that the gradient descent iterates must lie in

the green region in this figure. Additionally this is the tight-

est region as we provide examples in Theorem 2.4 where

gradient descent occurs only on the upper bound (green)

line or on the lower bound (red line). In the right picture of

Figure 1 we also depict the gradient descent trajectory in the

parameter space. As shown, the GD iterates end at a globally

optimal point θGD in the green region and this point will

have approximately the same distance to the initialization

parameter as the closest global optima to the initialization

(θ∗). Furthermore, the GD iterates follow a near direct route

from the initialization to this global optima.

3. Convergence Analysis for Stochastic

Gradient Descent

Arguably the most widely used algorithm in modern learn-

ing is Stochastic Gradient Descent (SGD). For optimizing

nonlinear least-squares problems (2.1) a natural implemen-

tation of SGD is to sample a data point at random and use

that data point for the gradient updates. Specifically, let

{γτ}∞τ=0 be an i.i.d. sequence of integers chosen uniformly

from {1,2, . . . , n}. The SGD iterates take the form

θτ+1 = θτ − η(f(xγτ
;θτ) − yγτ

)∇f(xγτ
;θτ). (3.1)

We are interested in understanding the trajectory of SGD

for over-parameterized learning. In particular, whether the

intriguing properties of GD continue to hold for SGD. Our

next theorem addresses this challenge.



Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?

Theorem 3.1 Consider a nonlinear least-squares optimiza-

tion problem of the form min
θ∈Rp
L(θ) ∶= 1

2
∥f(θ) − y∥2ℓ2 , with

f ∶ Rp ↦ R
n and y ∈ R

n. Suppose the Jacobian mapping as-

sociated with f obeys Assumption 2 over a ball D of radius

R ∶= ν ∥f(θ0)−y∥ℓ2
α

around a point θ0 ∈ R
p with ν a scalar

obeying ν ≥ 3. Also assume the rows of the Jacobian have

bounded Euclidean norm over this ball, that is

max
i
∥Ji(θ)∥ℓ2 ≤ B for all θ ∈ D.

Furthermore, suppose Assumption 1 holds over D and set

η ≤ α2

νβ2B2+νβBL∥f(θ0)−y∥ℓ2
. Then, there exists an event E

with P(E) ≥ 1− 4

ν
(β
α
) 1

p
such that running SGD updates of

the form (3.1) starting from θ0, all iterates obey

E [ ∥f(θτ) − y∥2ℓ2 1E] ≤(1 − ηα2

2n
)
τ

∥f(θ0) − y∥2ℓ2 .
Furthermore, on this event the SGD iterates never leave the

local neighborhood D.

This result shows that SGD converges to a global optima

that is close to the initialization. Furthermore, SGD always

remains in close proximity to the initialization with high

probability. Specifically, the neighborhood is on the order of
∥f(θ0)−y∥ℓ2

α
which is consistent with the results on gradient

descent and the lower bounds. However, unlike for gradient

descent our approach to proving such a result is not based

on the potential function (2.4). Rather we introduce a new

potential function that keeps track of the average distances

to multiple points around the initialization θ0.

One interesting aspect of the result above is that the learn-

ing rate used is rather large. Indeed, ignoring an β/α ratio

our convergence rate is on the order of 1 − c/n so that n

iterations of SGD correspond to a constant decrease in the

misfit error on par with a full gradient iteration. This is

made possible by a novel martingale-based technique which

is in part inspired by (Tan & Vershynin, 2017) which studies

SGD for nonconvex phase retrieval. Our novelty is analyz-

ing SGD without knowing where it eventually converges

by utilizing our potential function and ensuring that SGD

iterations never exit the local neighborhood.

We note that it is possible to also used Azuma’s inequality

applied to the sequence log ∥f(θτ) − y∥ℓ2 to show that the

SGD iterates stay in a local neighborhood with very high

probability. This idea has been utilized by recent related

works (Allen-Zhu et al., 2018b; Li & Liang, 2018). How-

ever, such an argument requires a very small learning rate

to ensure that one can take many steps without leaving the

neighborhood at which point the concentration effect of

Azuma becomes applicable. In contrast, our proof allows

for using aggressive learning rates (on par with gradient

descent) without ever leaving the local neighborhood.

4. Case studies

In this section we specialize and further develop our general

convergence analysis in the context of three fundamental

problems: fitting a generalized linear model, low-rank re-

gression, and shallow neural network training.

4.1. Learning generalized linear models

In this section we focus on learning Generalized Linear

Models (GLM) from data which involves fitting functions

of the form f(⋅;θ) ∶ Rd
→ R

f(x;θ) = φ(⟨x,θ⟩).
A natural approach for fitting such GLMs is via minimizing

the nonlinear least-squares misfit of the form

min
θ∈Rp
L(θ) ∶= 1

2

n∑
i=1
(φ(⟨xi,θ⟩) − yi)2 . (4.1)

Define the data matrix X ∈ R
n×p with rows given by xi for

i = 1,2, . . . , n. We thus recognize the above fitting problem

as a special instance of (2.1) with f(θ) = φ (Xθ). Here, φ

when applied to a vector means applying the nonlinearity

entry by entry. We wish to understand the behavior of GD

in the over-parameterized regime where n ≤ p. This is the

subject of the next two theorems.

Theorem 4.1 (Overparameterized GLM) Consider a
GLM fitting problem of the form (4.1) with φ ∶ R → R a
strictly increasing nonlinearity with continuous derivatives
obeying 0 < γ ≤ φ′(z) ≤ Γ for all z. Starting from
arbitrary θ0, we run gradient descent on the loss (4.1) with

η ≤ 1

∥X∥2Γ2
. Furthermore, let θ∗ denote the closest global

optimum to θ0. Then, all GD iterates obey

∥θτ − θ⋆∥ℓ2 ≤ (1 − ηγ2
λmin (XX

T ))τ ∥θ0 − θ⋆∥ℓ2 . (4.2)

This theorem demonstrates that when fitting GLMs in the

over-parameterized regime, gradient descent converges at a

linear to a globally optimal model. Furthermore, this conver-

gence is to the closest global optimum to the initialization.

4.2. Low-rank regression

A variety of modern learning problems spanning recom-

mender engines to controls involve fitting low-rank models

to data. In this problem given a data set of size n con-

sisting of input/features Xi ∈ R
d×d and labels yi ∈ R for

i = 1,2, . . . , n, we aim to fit nonlinear models of the form

X ↦ f(X;Θ) = ⟨X,ΘΘ
T ⟩ = trace (ΘTXΘ) ,

with Θ ∈ R
d×r the parameter of the model. Fitting such

models require optimizing losses of the form

min
Θ∈Rd×r

L(Θ) = 1

2

n∑
i=1
(yi − ⟨Xi,ΘΘ

T ⟩)2 . (4.3)
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This approach, originally proposed by Burer and Monteiro

(Burer & Monteiro, 2003), shifts the search space from

a large low-rank positive semidefinite matrix ΘΘ
T to its

factor Θ. In this section we study the behavior of GD on this

problem in the over-parameterized regime where n < dr.

Theorem 4.2 Consider the problem of fitting a low-rank

model of the form (4.3). Assume the input features Xi

are i.i.d. matrices with i.i.d. N(0,1) entries. Further-

more, assume the labels yi are arbitrary and denote the

vector of all labels by y ∈ R
n. Set the initial parameter

Θ0 ∈ R
d×r to a matrix with singular values lying in the

interval [
√
∥y∥ℓ2
4
√
rn

,2

√
∥y∥ℓ2
4
√
rn
] Furthermore, let c, c1, c2 > 0

be numerical constants and assume

n ≤ cdr.

We set η = c1
√
n

r2d∥y∥ℓ2
and run GD starting from Θ0. Then,

with probability at least 1 − 4e−n
2 all iterates obey

n

∑
i=1
(yi − ⟨Xi,ΘτΘ

T
τ ⟩)2 ≤ 100(1 − c2

r3/2
)τ ∥y∥2ℓ2 ,

This theorem shows that with modest over-parametrization

dr ≳ n, GD linearly converges to a globally optimal model

and achieves zero loss. Note that the degrees of freedom of

a d×r matrices is on the order of dr hence as soon as n > dr,

gradient descent can no longer perfectly fit arbitrary labels

highlighting a phase transition from zero loss to non-zero as

sample size increases. Furthermore, our result holds despite

the nonconvex nature of the Burer-Monteiro approach.

4.3. Training shallow neural networks

In this section we specialize our general approach in the

context of training simple shallow neural networks. We

shall focus on neural networks with only one hidden layer

with d inputs, k hidden neurons and a single output. The

overall input-output relationship of the neural network in

this case is a function f(⋅;θ) ∶ Rd
→ R that maps the input

vector x ∈ R
d into a scalar output via the following equation

x↦ f(x;W ) = k

∑
ℓ=1

vℓφ (⟨wℓ,x⟩) .
In the above the vectors wℓ ∈ R

d contains the weights of

the edges connecting the input to the ℓth hidden node and

vℓ ∈ R is the weight of the edge connecting the ℓth hidden

node to the output. Finally, φ ∶ R→ R denotes the activation

function applied to each hidden node. For more compact no-

tation we gather the weights wℓ/vℓ into larger matrices W ∈
R
k×d and v ∈ R

k of the form W = [w1 w2 . . . wk]T
and v = [v1 v2 . . . vk]T . We can now rewrite our

input-output model in the more succinct form

x↦ f(x;W ) ∶= vTφ(Wx). (4.4)

Here, we have used the convention that when φ is applied

to a vector it corresponds to applying φ to each entry of

that vector. In this paper we assume v ∈ R
k is fixed and

we train for the input-to-hidden weights W . Without loss

of generality we assume v ∈ R
k has unit Euclidean norm

i.e. ∥v∥ℓ2 = 1. The training problem then takes the form

min
W ∈Rk×d

L(W ) ∶= 1

2

n

∑
i=1
(vTφ (Wxi) − yi)2 . (4.5)

The theorem below provides global geometric convergence

guarantees for one-hidden layer neural networks in a simple

over-parametrized regime.

Theorem 4.3 Consider a data set of input/label pairs xi ∈
R
d and yi ∈ R for i = 1,2, . . . , n aggregated as rows/entries

of a matrix X ∈ R
n×d and a vector y ∈ R

n with n ≤ d. Also

consider a one-hidden layer neural network with k hidden

units and one output as in (4.4). We assume the activation

φ is strictly increasing with bounded derivatives i.e. 0 < γ ≤
φ′(z) ≤ Γ and φ′′(z) ≤M for all z, v is fixed with unit Eu-

clidean norm (∥v∥ℓ2 = 1) and train only over W . Starting

from arbitrary W0, run gradient descent on the loss (4.5)

with η ≤ 1

2Γ2∥X∥2 min (1, γ2

ΓM

σmin(X)2
∥X∥2,∞∥X∥

1

∥f(W0)−y∥ℓ2
).4

Then, all GD iterates obey

∥f(Wτ) − y∥ℓ2 ≤ (1 − ηγ2σ2

min
(X))τ ∥f(W0) − y∥ℓ2 .

This theorem demonstrates that the nice properties discussed

in this paper also holds for one-hidden-layer networks in

the regime where n ≤ d from arbitrary initialization and the

result is independent of number of hidden nodes k. This

result holds for strictly increasing activations where φ′ is

bounded away from zero. While this might seem restrictive,

we can obtain such a function by adding a small linear

component to any non-decreasing function i.e. φ̃(x) = (1 −
γ)φ(x)+γx. For instance, the commonly used leaky ReLU

is obtained from ReLU in this way. We focus on such

activations so as to ensure the result holds from arbitrary

initialization. As we discuss below it is possible to relax this

assumption when the algorithms are initialized at random.

We would like to emphasize that neural networks seem to

work with much less over-parameterization e.g. for one hid-

den networks like the above kd ≳ n seems to be sufficient.

As such there is a huge gap between the n ≤ d result above

and practical use. That said, our main theoretical guarantees

from Theorems 2.1 and 3.1 when combined with more intri-

cate techniques from random matrix theory and stochastic

processes continue to apply in this setting. In particular, in

a companion paper (Oymak & Soltanolkotabi, 2019) we

demonstrate that starting from a random initialization the

result above continues to hold without the need for strictly

increasing activations (including ReLU and softplus) and

with much more modest amounts of over-parameterization.

4∥X∥2,inf denotes the maximum ℓ2 norm of the rows of X .
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Figure 2. The normalized misfit-distance trajectory for MNIST

training for different layers of the network and different sample

sizes. The layers from input to output are Conv1, Conv2, FC1, and

FC2. Each curve represents the average normalized distance (for

each layer of the network) corresponding to a fixed normalized

misfit value over 20 independent realizations. The two standard

deviation around the mean is highlighted via the shaded region.

5. Numerical Experiments

To verify our theoretical claims, we conducted experiments

on MNIST classification and low-rank matrix regression.

To illustrate the tradeoffs between the loss function and the

distance to the initial point, we define normalized misfit and

normalized distance as follows.

misfit = ∥y − f(θ)∥ℓ2∥y − f(θ0)∥ℓ2
, distance = ∥θ − θ0∥ℓ2∥θ0∥ℓ2

.

5.1. MNIST Experiments

We consider MNIST digit classification task and use a stan-

dard LeNet model (LeCun et al., 1998) from Tensorflow

(Abadi et al., 2016). This model has two convolutional lay-

ers followed by two fully-connected layers. Instead of cross-

entropy loss, we use least-squares loss, without softmax

layer, which falls within our nonlinear least-squares frame-

work. We conducted two set of experiments with n = 500
and n = 5000. Both experiments use Adam with learning

rate 0.001 and batch size 100 for 1000 iterations. At each

iteration, we record the normalized misfit and distance to

obtain a misfit-distance trajectory similar to Figure 1. We

repeat the training 20 times (with independent initialization

and dataset selection) to obtain the typical behavior.

Since layers have distinct goals (feature extraction vs classi-

fication), we kept track of the behavior of individual layers.

Specifically, denote the weights of the ℓth layer of the neu-

ral network by W ℓ, we consider the per-layer normalized

distances
∥W ℓ−W ℓ

0
∥F

∥W ℓ
0
∥F where layer ℓ is either convolutional

(Conv1, Conv2) or fully-connected (FC1, FC2). In Figure 2,

we depict the normalized misfit-distance tradeoff for differ-

ent layers and sample sizes. Figure 2a illustrates the heavily

overparameterized regime which has fewer samples. During

the initial phase of the training (i.e. misfit ≤ 0.2) all layers

follow a straight loss-distance line which is consistent with

Iterations

E
rr

o
r

(a) MNIST, n = 500
Iterations

(b) MNIST, n = 5000

Normalized distance ( ∥Θ−Θ0∥F
∥Θ0∥F )
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(c) Low-rank regression

Figure 3. Figures 3a and 3b represent the test, training errors and

normalized misfit corresponding to Figure 2. The x-axis is the

number of iterations. Figure 3c highlights the loss-distance trajec-

tory for low-rank matrix regression with d = 100 and r = 4.

our theory (e.g. Figure 1). Towards the end of the training,

the lines slightly level off which is most visible for the out-

put layer FC2. This is likely due to the degradation of the

Jacobian condition number as the model overfits to the data.

Figure 3a plots the training and test errors together with

normalized misfit to illustrate this. While misfit is around

0.05 at iteration 1000, the in-sample (classification) error

hits 0 very quickly at iteration 200.

In Figure 2b and 3b we increase the sample size to n = 5000.

Similar to the first case, during the initial phase (misfit ≤ 0.4)

the loss-distance curve is a straight line and levels off later

on. Compared to n = 500, leveling off occurs earlier and

is more visible. For instance, at misfit = 0.2, output layer

FC2 has distance of 0.5 for n = 5000 and 0.25 for n = 500.

This is consistent with Theorem 2.1 which predicts (i) more

samples imply a Jacobian with worse condition number

and (ii) the global minimizer lies further away from the

initialization and it is less-likely that the Jacobian will be

well-behaved over this larger neighborhood.

5.2. Low-rank regression

We consider a synthetic low-rank regression setup to test

the predictions of Theorem 4.2. We generate input ma-
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trices with i.i.d. standard normal entries and labels with

i.i.d. Rademacher entries. We set r = 4 and d = 100 and

initialize Θ0 according to Theorem 4.2. We vary the sam-

ple size n ∈ {25,50,100,200} = {dr/16, dr/8, dr/4, dr/2}
and run gradient descent for 200 iterations with a constant

learning rate per Theorem 4.2. We observe a linear tradeoff

in terms of misfit-distance to initialization with a narrow

confidence interval consistent with our theoretical predic-

tions in Figure 1. In the large sample size (n = dr/2), the

problem is less over-parameterized and the confidence in-

tervals become notably wider especially when the misfit is

close to zero (i.e. by the time we reach a global minima). As

predicted by our main theorem, the distance to initialization

Θ0 increases gracefully as the number of labels n increases.

6. Prior Art

Here, we briefly discuss some closely related literature. See

the supplementary material for a more in depth discussion.

Implicit regularization: There is a growing interest in

understanding properties of overparameterized problems.

An interesting body of work investigate the implicit regu-

larization capabilities of (stochastic) gradient descent for

separable classification problems including (Azizan & Has-

sibi, 2018; Gunasekar et al., 2017; Nacson et al., 2018;

Neyshabur et al., 2014; 2017; Soudry et al., 2017; Wilson

et al., 2017). These results show that gradient descent does

not converge to an arbitrary solution, for instance, it has a

tendency to converge to the solution with the max margin or

minimal norm. Some of this literature apply to regression

problems as well (such as low-rank regression (Bhojanapalli

et al., 2016; Boumal et al., 2016; Burer & Monteiro, 2003;

Li et al., 2018)). However, for regression problems based

on a least-squares formulation the implicit bias/minimal

norm property is proven under the assumption that gradient

descent converges to a globally optimal solution which is

not rigorously proven in most of these papers.

Overparameterized neural networks: A few recent pa-

pers (Arora et al., 2018a; Brutzkus & Globerson, 2018;

Brutzkus et al., 2017b; Chizat & Bach, 2018; Ji & Telgarsky,

2018; Soltanolkotabi et al., 2018; Soudry & Carmon, 2016;

Venturi et al., 2018; Zhang et al., 2016; Zhu et al., 2018)

study the benefits of overparameterization for training neu-

ral networks and related optimization problems. Very recent

works (Allen-Zhu et al., 2018a;b; Du et al., 2018a;b; Li &

Liang, 2018; Zou et al., 2018) show that overparameterized

neural networks can fit the data with random initialization if

the number of hidden nodes are polynomially large in the

size of the dataset. Our results are not directly comparable

to each other. We assume n ≤ d and use an arbitrary initial-

ization where as these papers assume poly(n) ≲ k and start

from random initialization. The results further defer in terms

of other assumptions and conclusions. In contrast to these

papers on neural nets, we focus on general nonlinearities and

also on the gradient descent trajectory showing that among

all the global optima, gradient descent converges to one with

near minimal distance to the initialization. We would also

like to note that the importance of the Jacobian for over-

parameterized neural network analysis has also been noted

by other papers including (Du et al., 2018b; Soltanolkotabi

et al., 2018) and also (Chaudhari et al., 2016; Keskar et al.,

2016; Sagun et al., 2017) which investigate the optimization

landscape and properties of SGD for training neural net-

works. An equally important question to understanding the

convergence behavior of optimization algorithms for over-

parameterized models is understanding their generalization

capabilities this is the subject of a few interesting recent pa-

pers (Arora et al., 2018b; Bartlett et al., 2017; Belkin et al.,

2018a;b; Brutzkus et al., 2017a; Golowich et al., 2017; Li

et al., 2019; Liang & Rakhlin, 2018; Oymak, 2018; Song

et al., 2018). While our results do not directly address gen-

eralization, by characterizing the properties of the global

optima that (stochastic) gradient descent converges to it

may help demystify the generalization capabilities of over-

parametrized models.

7. Discussion and future directions

This work provides new insights and theory for overparame-

terized learning with nonlinear models. We first provided a

general convergence result for gradient descent and match-

ing upper and lower bounds showing that if the Jacobian of

the nonlinear mapping is well-behaved in a minimally small

neighborhood, gradient descent finds a global minimizer

which has a nearly minimal distance to the initialization.

Second, we extend the results to SGD to show that SGD

exhibits the same behavior and converges linearly without

ever leaving a minimally small neighborhood of initializtion.

Finally, we specialize our general theory to provide new re-

sults for overparameterized learning with generalized linear

models, low-rank regression and shallow neural network

training. A key tool in our results is that we introduce a po-

tential function that captures the tradeoff between the model

misfit and the distance to the initial point: the decrease in

loss is proportional to the distance from the initialization.

Our numerical experiments on real and synthetic data further

corroborate this intuition on the loss-distance tradeoff.

In this work we address important challenges surrounding

the optimization of nonlinear over-parametrized learning

via GD and SGD and some of its key features. The fact

that gradient descent finds a nearby solution is a desirable

property that hints as to why generalization to new data

instances may be possible. However, we emphasize that

this is only suggestive of the generalization capabilities of

such algorithms to new data. Indeed, developing a clear

understanding of the generalization capabilities of first or-

der methods when solving over-parameterized nonlinear

problems is an important future direction.
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