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Abstract

Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image
generation, recovery, and restoration. This success is often attributed to large amounts of
training data. However, recent experimental findings challenge this view and instead suggest
that a major contributing factor to this success is that convolutional networks impose strong
prior assumptions about natural images. A surprising experiment that highlights this architec-
tural bias towards natural images is that one can remove noise and corruptions from a natural
image without using any training data, by simply fitting (via gradient descent) a randomly
initialized, over-parameterized convolutional generator to the single corrupted image. While
this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few
iterations of gradient descent one obtains the uncorrupted image. This intriguing phenomena
enables state-of-the-art CNN-based denoising and regularization of linear inverse problems such
as compressive sensing. In this paper we take a step towards demystifying this experimental
phenomena by attributing this effect to particular architectural choices of convolutional net-
works, namely convolutions with fixed interpolating filters. We then formally characterize the
dynamics of fitting a two layer convolutional generator to a noisy signal and prove that early-
stopped gradient descent denoises/regularizes. This results relies on showing that convolutional
generators fit the structured part of an image significantly faster than the corrupted portion.

1 Introduction

Convolutional neural networks are extremely popular for image generation. The majority of image
generating networks is convolutional, ranging from Deep Convolutional Generative Adversarial
Networks (DC-GANSs) [ ] to the U-Net | |. It is well known that convolutional neural
networks incorporate implicit assumption about the signals they generate, such as pixels that are
close being related. This makes them particularly well suited for representing sets of images or
modeling distributions of images. It is less known, however, that those prior assumptions build
into the architecture are so strong that convolutional neural networks are useful even without ever
being exposed to training data.

The latter was first shown in the Deep Image Prior (DIP) paper | ]. Ulyanov et al. | ]
observed that when ‘training’ an standard convolutional auto-encoder such as the popular U-
net [ | on a single noisy image and regularizing by early stopping, the network performs
image restoration such as denoising with state-of-the-art performance. This is based on the em-
pirical observation that un-trained convolutional auto-decoders fit a single natural image faster
when optimized with gradient descent than pure noise. A more recent paper | | proposed a
much simpler image generating network, termed the deep decoder. This network can be seen as
the relevant part of a convolutional generator architecture to function as an image prior, and can
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Figure 1: Fitting an over-parameterized Deep Decoder (DD-0O) and the deep image prior (DIP) to
a (a) noisy image, (b) clean image, and (c) pure noise. Here, MSE denotes Mean Square Error of
the network output with respect to the clean image in (a) and fitted images in (b) and (c). While
the network can fit the noise due to over-parameterization, it fits natural images in significantly
fewer iterations than noise. Hence, when fitting a noisy image, the image component is fitted faster
than the noise component which enables denoising via early stopping.

be obtained from a standard convolutional autoencoder by removing the encoder, the skip connec-
tions, and the trainable convolutional filters of spacial extent larger than one. The deep decoder
does not use learned or trainable convolutional filters like conventional convolutional networks do,
and instead only uses convolutions with fixed convolutional kernels to generate an image.

In this paper, we study a simple untrained convolutional network that only consists of convolutional-
like operations, such as the deep image prior and the deep decoder. We consider the over-
parameterized regime where the network has sufficiently many parameters to represent an arbitrary
image (including noise) perfectly and show that:

Fitting convolutional generators via early stopped gradient descent provably denoises “natural” images.

To prove this denoising capability we characterize how the network architecture governs the dy-
namics of fitting over-parameterzed networks to a single (noisy) image. In particular we prove:

Convolutional generators optimized with gradient descent fit natural images faster than noise.

Here, by complex images, we mean unstructured images that consist of a large number of edges or
variations such as noise.

We depict this phenomena in Figure 1 where we fit a randomly initialized over-parameterized
convolutional generator to a signal via running gradient descent on the objective £(C) = [|G(C) — y/|3.
Here, G(C) is the convolutional generator with weight parameters C, and y is either a noisy im-
age, a clean image, or noise. This experiment demonstrates that over-parameterized convolutional
networks fit a natural image (Figure 1b) much faster than noise (Figure 1c). Thus, when fitting
the noisy image (Figure la), early stopping the optimization enables image denoising. Interest-
ingly, this effect is so strong that it gives state-of-the-art denoising performance, outperforming
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Figure 2: Denoising with BM3D and various convolutional generators. The relative ranking of
algorithms in this picture is representative and maintained on a large test set of images. DIP and
DD-O are over-parameterized convolutional generators and with early stopping outperform the
BM3D algorithm, the next best method that does not require training data.
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Figure 3: The 1st, 2nt, 6th, and 21th trigonometric basis functions in dimension n = 300.

the BM3D algorithm [Dab-+07], which is the next-best method that requires no training data (see
Figure 2). Beyond denoising, this effect also enables significant improvements in regularizing a
variety of inverse problems such as compressive sensing [Vee - 18; Heel9].

1.1 Contributions and overview of results

In this paper we take a step towards demystifying why fitting a convolutional generator via early
stopped gradient descent leads to such surprising denoising and regularization capabilities.

o We first show experimentally that this denoising phenomena is primarily attributed to con-
volutions with fixed interpolation kernels, typically implicitly implemented by bi-linear up-
sampling operations in the convolutional network.

e We then study over-parameterized convolutional networks (with fixed convolutional filters)
theoretically. Specifically, we show that fitting such a network via early stopped gradient
descent to a signal provably denoises it. Specifically, let x € R™ be a smooth signal that can
be represented exactly as a linear combination of the p orthogonal trigonometric functions of
lowest frequency (defined in equation (5), see Figure 3 for a depiction), and suppose our goal
is to obtain an estimate of this signal from a noisy signal y = x 4+ z where z ~ N(0, %I)
Note that natural images are often smooth. Let § = G(C!) be the estimate obtained from
early stopping the fitting of a two-layer convolutional generator to y. We prove this estimate
achieves the denoising rate

. P
Iy — x5 < 053,

with ¢ a constant. We note that this rate is optimal up to a constant factor.



e Our denoising result follows from a detailed analysis of gradient descent applied to fitting
a two-layer convolutional generator G(C) with fixed convolutional filters to a noisy signal
y = x + z with x representing the signal and z the noise. Specifically, let x € R" and
z € R" be the coefficients of the signal and noise in terms of trigonometric basis functions
wi,..., W, € R" (precisely defined later, see Figure 3 for a depiction). We show that there is
a dual filter ¢ € R™, depending only on the convolutional filter used, whose entries typically
obey g1 > g9 > ... > 0, > 0 and can be thought of as weights associated with each of
those basis function. These weights in turn determine the speed at which the associated
components of the signal are fitted. Specifically, we show that the dynamics of gradient
descent are approximately given by

G(Cr) —x~ Y willi(1—no])"+ Y _ wiZ((1—nof)” - 1).
i=1 =1

N

error in fitting signal fit of noise

The filters commonly used are typically such that the dual filter decays rather quickly, im-
plying that low-frequency components in the trigonometric expansion are fitted significantly
faster than high frequency ones. So when the signal mostly consists of low-frequency compo-
nents, we can choose an early stopping time such that the error in fitting the signal is very
low, and thus the signal part is well described, whereas at the same time only a small part of
the noise, specifically the part aligned with the low-frequency components has been fitted.

2 Convolutional generators

A convolutional generator maps an input tensor By to an image only using upsampling and convo-
lutional operations, followed by channel normalization (a special case of batch normalization) and
applications of non-linearities, see Figure 4. All previously mentioned convolutional generator net-
works | ; ] including the networks considered in the DIP paper | | primarily
consist of those operations.

For motivating the architecture of the convolutional generators studied in this paper, we first
demonstrate in Section 2.1 that convolutions with fixed interpolation filters are critical to the
denoising performance with early stopping. Specifically, we empirically show that convolutions
with fized convolutional kernels are critical for convolutional generators to fit natural images faster
than noise. Finally, in Section 2.2 we formally introduce the class of convolutional generators
studied in this paper, and in Section 2.3 we introduce a minimal convolutional architecture which
is the focus of our theoretical results.

2.1 The importance of fixed convolutional filters

Convolutions with fixed convolutional kernels are critical for denoising with early stopping, because
they are critical for the phenomena that natural images are fitted significantly faster than noise.
To see this, consider the experiment in Figure 4 in which we fit an image and noise by minimizing
the least-squares loss via gradient descent with i) a convolutional generator with only fixed convo-
lutional filters (see Section 2.2 below for a precise description) and ii) a conventional convolutional
generator with trainable convolutional filters (essentially the architecture from the popular DC-
GAN generators, see Appendix A for details and additional numerical evidence). Figure 4 shows
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Figure 4: Left panel: Convolutional generators. The output is generated through repeated
convolutional layers, channel normalization, and applying ReLU non-linearities. Right panel:
Fitting the phantom MRI and noise with different architectures of depth d = 5, for different
number of over-parameterization factors (1,4, and 16). Gradient descent on convolutional generators
involving fixed convolutional matrixes fit an image significantly faster than noise.

that the convolutional network with fized filters fits the natural image much faster than noise,
whereas the network with learned convolutional filters, only fits it slightly faster, and this effect
vanishes as the network becomes highly overparameterized. Thus, fixed convolutional filters enable
un-trained convolutional networks to function as highly effective image priors. We note that the
upsampling operation present in most architectures implicitly incorporates a convolution with a
fized convolutional (interpolation) filter.

2.2 Architecture of convolutional generator with fixed convolutions

In this section, we describe the architecture of a convolutional network with fixed convolutional
operators only (i.e., the deep decoder | ]). In this architecture, the channels in the (i + 1)-th
layer are given by

Bi+1 = Cn(ReLU(U,'B,-Ci)), 1= 0, PN ,d — 1,

and finally, the output of the d-layer network is formed as
x =ByCyq1.

Here, the coefficient matrices C; € RF**F and Cyt1 € REXkout contain the weights of the network.
The number of channels, &k, determines the number of weight parameters of the network, given by
dk? + kouk. Each column of the tensor B,;C; € R™*¥ is formed by taking linear combinations of
the channels of the tensor B; in a way that is consistent across all pixels, and the ReLLU activation
function is given by ReLU(¢) = max(0,¢). Then, cn(-) performs the channel normalization operation
which normalizes each channel individually and can be viewed as a special case of the popular batch
normalization operation [IS15].

The operator U; € R™+1%™ ig a tensor implementing an upsampling and most importantly a
convolution operation with a fixed kernel. This fixed kernel was chosen in all experiments above as
a triangular kernel so that U performs bi-linear 2x upsampling (this is the standard implementation



in the popular packages pytorch and tensorflow). As mentioned earlier this convolution with a fized
kernel is critical for fitting natural images faster than complex ones.

2.3 Two layer convolutional generator studied theoretically in this paper

The simplest model to study the denoising capability of convolutional generators and the phenom-
ena that a natural image is fitted faster than a complex one theoretically is a network with only
one hidden layers and one output channel i.e., G(C) € R™. Then, the generator becomes

G(C) = ReLU(UB,Cy)cy,

where U € R™ " is a circulant matrix that implements a convolution with a filter u. In this paper
we consider the over-parameterized regime where k > n. In this regime, using that the input B is
random, with probability one, the matrix B; has full column rank and thus spans R™. It follows
that optimizing over C; and cs is equivalent to optimizing over the parameter C € R"*¥ in

G(C) = ReLU(UC)v, (1)

where v =[1,...,1,—1,...,—1]/Vk is fixed and C € R"** is the new coefficient matrix we optimize
over. Figure 11 in the appendix shows that even this simple two-layer convolutional network fits
a simple image faster than noise. This is the simplest model in which the phenomena that a
convolutional networks fits structure faster than noise can reliably observed. As a consequence, the
dynamics of training the model (1) are the focus of the remainder of this paper.

3 Warmup: Dynamics of gradient descent on least squares

As a prelude for studying the dynamics of fitting convolutional generators via a non-linear least
square problem, we study the dynamics of gradient descent applied to a linear least squares problem.
We demonstrate how early stopping can lead to denoising capabilities even with a simple linear
model. We consider a least-squares problem of the form

1
£(e) = 5lly - Jel,

and study gradient descent with a constant step size n starting at cg = 0. The updates are given
by
Cri1=c¢r —nVL(c,), VL(c)=I'(JTc—y).

The following simple proposition characterizes the trajectory of gradient descent.

Proposition 1. Let J € R™™™ be a matriz with left singular vectors wi,...,w, € R"™ and corre-
sponding singular values o1 > o9 > ... > o,. Then the residual after T steps, rr =y — Jcr, of
gradient descent starting at cg = 0 s

n
rr=Y wi(wi,y)(1—n0}).
i=1
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Figure 5:  Gradient descent on the least squares problem of minimizing ||y—JcTH2, where

J € R100%100 hag decaying singular values (left panel) and the observation is the sum of a signal
component, equal to the leading singular vector wi of J, and a noisy component z ~ N (0, (1/n)I),
i.e., y = wi + z. The signal component wy is fitted significantly faster than the other components
(right panel), thus early stopping enables denoising.

Suppose that the signal y lies in the column span of J, and that the stepsize is chosen sufficiently
small (i.c., 7 < 1/]|J||*). Then, by Proposition 1, gradient descent converges to a zero-loss solution
and thus fits the signal perfectly. More importantly, gradient descent fits the components of y
corresponding to large singular values faster than it fits the components corresponding to small
singular values.

To explicitly show how this observation enables regularization via early stopped gradient de-
scent, suppose our goal is to find a good estimate of a signal x from a noisy observation

y=x+z,

where the signal x lies in a signal subspace that is spanned by the p leading left-singular vectors of
J. Then, by Proposition 1, the signal estimate after 7 iterations, Jc., obeys

n

|3e, —xll, < (1= o?)" [xlly + E(@), E@) =, |3 (1 -nod) =12 (wiz)>.  (2)
i=1

Thus, after a few iterations most of the signal has been fitted (i.e., (1—nop)7 is small). Furthermore,
if we assume that the ratio 0, /0,41 is sufficiently large so that the spread between the two singular
values separating the signal subspace from the rest is sufficiently large, most of the noise outside
the signal subspace has not been fitted (i.e., ((1 — naf)T —1)2?=~0fori=p+1,...,n).

In particular, suppose the noise vector has a Gaussian distribution given by z ~ N (0, %I)

Then E(z) =~ g\/% so that after order 7 = log(e)/log(1 — no3) iterations, with high probability,

p
WQ—MESdmm+a¢%

This demonstrates, that provided the signal lies in a subspace spanned by the leading singular
vectors, early stoped gradient descent reaches the optimal denoising rate of ¢\/p/n after a few
iterations. See Figure 5 for a numerical example demonstrating this phenomena.



4 Dynamics of gradient descent on convolutional generators

We are now ready to study the implicit bias of gradient descent towards natural/structured images
theoretically. Consider a two-layer decoder network (introduced in Section 2.3) of the form

G(C) = ReLU(UC)v,

where v =[1,...,1,—1,...,—1]/Vk, and with weight parameter C € R"**, and recall that U is
a circulant matrix implementing a convolution with a kernel u € R™. We consider minimizing the
non-linear least squares objective

£(0) = 4lly - GO ®

with (early-stopped gradient) descent with a constant stepsize 7 starting at a random initialization
Cy of the weights. The iterates are given by

Cri1 = C,r — VL(C,). (4)

In our warmup section on linear least squares we saw that the singular vectors and values of
the matrix J determine the speed at which different components of the noisy signal y are fitted by
gradient descent. The main insight that enables us to extend this intuition to the nonlinear case is
that the role of the feature matrix J can be replaced with the Jacobian of the generator, defined as
J(C):= E,%G (C). Contrary to the linear least squares problem, however, in the nonlinear case, the
Jacobian is not constant and changes across iterations. Nevertheless, we show that the eigen-values
and vectors of the Jacobian at the random initialization govern the dynamics of fitting the network
throughout the iterative updates.

For the two-layer convolutional generator that we consider, the left eigenvectors of the Jacobian
mapping can be well approximated by the trigonometric basis functions, defined below, throughout
the updates. Interestingly, the form of these eigenvectors only depends on the network architecture
and not the convolutional kernel used.

Definition 1. The trigonometric basis functions wi,..., W, are defined as
1 k=0
1 |V2cos(2rji/n) k=1,...,n/2 -1
[wilj = N : : (5)
n | (=1)/ k=n/2
V2sin(2mji/n) k=n/24+1,...,n—1
Figure 3 depicts some of these eigenvectors.

In addition to the left eigenvectors we can also approximate the spectrum of the Jacobian
throughout the updates by an associated filter /kernel that only depends on the original filter /kernel
used in the network architecture.

Definition 2 (Dual kernel). Associated with a kernel u € R™ we define the dual kernel o € R™ as

1 —1 (4
o =lully | Fg <U® u) with g(t) = 3 (1 _ M) ‘

2
[[ally m

Here, for two vectors u,v € R™, u® v denotes their circular convolution, the scalar non-linearity
g is applied entrywise, and ¥ is the discrete Fourier transform matriz.
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Figure 6: Triangular and Gaussian kernels and the weights associated to low-frequency trigono-
metric functions they induce, for a generator network of output dimension n = 300. The wider the
kernels are, the more the weights are concentrated towards the low-frequency components of the
signal.

In Figure 6, we depict two commonly used interpolation kernels u, namely a triangular and a
Gaussian kernel (recall that the standard upsampling operator is a convolution with a triangle),
along with the induced dual kernel ¢. The figure shows that the dual filter ¢ induced by these
kernels has a few large values associated with the low frequency trigonometric functions, and the
other values associated with high frequencies are small. This in turn implies that the Jacobian
spectrum throughout training decreases rapidly.

With these definitions in place we are ready to state our main denoising result. A denoising
result requires a signal model—we assume a low-frequency signal x that can be represented as a
linear combination of the first p-trigonometric basis functions.

Theorem 1 (Denoising with early stopping). Let x € R™ be a signal in the span of the first p
trigonometric basis functions, and consider a noisy observation

y=x+z,

where z is Gaussian noise with distribution N (0, %I) To denoise this signal, we fit a two layer
generator network G(C) = ReLU(UC)v with, for some € > 0,

k> Cun/é*, (6)

channels and with convolutional kernel u of the convolutional operator U and associated kernel o,
to the noisy signaly. Here, Cy a constant only depending on the convolutional kernel u. Then, with
probability at least 1 —e ™% — 77127 the reconstruction error obtained after T = log(1—/p/n)/log(1—

770;2;“) iterations of gradient descent (4) with step size n < HF&HQ (Fu is the Fourier transform of

u) starting from Cq with i.i.d. N'(0,w?), entries, w %, is bounded by

T 2p
IG(Cr) = xlly < (1 —nop) lIx[ly + <4/ —te (7)

for C a fired numerical constant.



Note that for this choice of stopping time, provided that dual kernel decays sharply around the
p-th singular value, the first term in the bound (7) (i.e., (1 —no2)™ ~ 0) essentially vanishes and

the error bound becomes O(c\/% ). The dual kernel decays sharply around the leading eigenvalues

provided the kernel is for example a sufficiently wide triangular or Gaussian kernel (see Figure 6).

This result demonstrates that when the noiseless signal x is sufficiently structured (e.g. contains
only the p lowest frequency components in the trigonometric basis) and the convolutional gener-
ator has sufficiently many channels, then early stopped gradient descent achieves a near optimal
denoising performance proportional to g\/g . This theorem is obtained from a more general result
stated in the appendix which characterizes the evolution of the reconstruction error obtained by
the convolutional generator.

Theorem 2 (Reconstruction dynamics of convolutional generators). Consider the setting and as-

sumptions of Theorem 1 but now with a fized noise vector z, and without an explicit stopping time.

Then, for all iterates T obeying T < m% and provided that k > Cyuyn/e*, for some ¢ > 0, with
p

probability at least 1 — ek — ;17, the reconstruction error obeys

n

IG(Cr) = xlly < (1= nop)T IIxll, + 4| > (L =50)" = 1)? (w;,2)° + .
=1

This theorem characterizes the reconstruction dynamics of convolutional generators throughout
the updates. In particular, it helps explains why convolutional generators fit a natural signal
significantly faster than noise, and thus early stopping enables denoising and regularization. To
see this note that as mentioned previously each of the basis functions w; have a (positive) weight,
singular value, or dual kernel element o; > 0 associated with them that only depend on the
convolutional kernel used in the architecture (through the definition of the dual kernel). These
weights determine how fast the different components of the noisy signal is fitted by gradient descent.
As we demonstrated earlier in Figure 6 for typical convolutional filters those weights decay very
quickly from low to high frequency basis functions. As a result when the signal x is sufficiently
structured (i.e. lies in the range of the p trigonometric functions with lowest frequencies), after a
few iterations most of the signal is fitted (i.c., (1 —7o3)7 is small), while most of the noise has not
been fitted (i.e., ((1—n02)"—1)2 ~ 0 fori = p+1,...,n). Thus, early stopping achieves denoising.

4.1 The spectrum of the Jacobian for multilayer networks

Our theoretical results show that for single hidden-layer networks, the leading singular vectors of the
Jacobian are the trigonometric functions throughout all iterations, and that the associated weights,
singular values, or dual kernel values are concentrated towards the low frequency components. In
this section, we show that for a multilayer network, the spectrum of the Jacobian is concentrated
towards singular vectors/functions that are similar to the low-frequency components. We also
show that throughout training those functions do vary, albeit the low frequency components do not
change significantly and the spectrum remains concentrated towards the low frequency components.
This shows that the implications of our theory continue to apply to muli-layer networks.

In more detail, we take a standard one dimensional deep decoder with d = 4 layers with output
in R?'2 and with k = 64 channels in each layer. Recall that the standard one dimensional decoder

10
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Figure 7: The Singular value distribution of the Jacobian of a four-layer deep decoder after t = 50
and t = 3500 iterations of gradient descent (panel (f)), along with the corresponding singular
vectors/function. The singular functions corresponding to the large singular vectors are close to
the low-frequency Fourier modes and do not change significantly through training.

obtains layer ¢+1 from layer ¢ by linearly combining the channels of layer ¢ with learnable coefficients
followed by linear upsampling (which involves convolution with the triangular kernel [1/2,1,1/2]).
The number of parameters is d x k2 = 32 - 512, so the network is over-parameterized by a factor
of 32. In Figure 7, we display the singular values as well as the leading singular vectors/function
of the Jacobian at initialization (¢ = 1) and after ¢ = 50 and ¢ = 3500 iterations of gradient
descent. As can be seen the leading singular vectors (s = 1 —6) are close to the trigonometric basis
functions and do not change dramatically throughout training. The singular vectors corresponding
to increasingly smaller singular values (s = 20,50, 100, 150) contain increasingly higher frequency
components but are far from the high-frequency trigonometric basis functions.

5 Related literature

As mentioned before, the DIP paper [Uly+ 18] was the first to show that over-parameterized con-
volutional networks enable solving denoising, inpainting, and super-resolution problems well even
without any training data. Subsequently, the paper [[11119] proposed a much simpler image gener-
ating network, termed the deep decoder. The papers [Vee+18; Hecl9; JHI19] have shown that the
DIP and the deep decoder also enable solving or regularizing compressive sensing problems and
other inverse problems.

Since the convolutional generators considered here are image-generating deep networks, our work

11



is also related to methods that rely on trained deep image models. Deep learning based methods are
either trained end-to-end for tasks ranging from compression | ; ; ; ;

| to denoising [ : |, or are based on learning a generative image model (by
training an autoencoder or GAN | ; |) and then using the resulting model to solve
inverse problems such as compressed sensing [ : |, denoising [ : |, or
phase retrieval [ ; |, by minimizing an associated loss. In contrast to the method
studied here, where the optimization is over the weights of the network, in all the aforementioned
methods, the weights are adjusted only during training and then are fixed upon solving the inverse
problem.

A large body of work focuses on understanding the optimization landscape of the simple non-
linearities or neural networks [ : : : : : : | when the
labels are created according to a planted model. Our proofs rely on showing that the dynamics of
gradient descent on an over-parameterized network can be related to that of a linear network or a
kernel problem. This proof technique has been utilized in a variety of recent publication [ ;

; ; ; ; ; ]. Two recent publication have used this proof
technique to show that functions are learned at different rates: Basri et al. | | have shown
that functions of different frequencies are learned at different speeds, and Arora et al. | | has
provided a theoretical explanation of the empirical observation that a simple 2-layer network fits
random labels slower than actual labels in the context of classification. A recent publication [ ]
focuses on demonstrating how early stopping leads to robust classification in the presence of label
corruption under a cluster model for the input data. Neither of the aforementioned publication
however, does address denoising in a regression setting or fitting convolutional generators of the
form studied in this paper.

Code

Code to reproduce the experiments is available at https://github.com/MLI-1ab/overparameterized_
convolutional _generators.
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A A numerical study of the implicit bias of convolutional networks

In this section, we empirically demonstrate that convolutions with fized convolutional kernels are
critical for convolutional generators to fit natural images faster than noise. Towards this goal,
we study numerically the following four closely related architectural choices, which differ in the
upsampling /no-upsampling and convolutional operations which generate the activations in the (i +
1)-st layer, Bj;41, from the activations in the i-th layer, B;:

i) Bilinear upsampling and linear combinations. Layer i+1 is obtained by linearly combin-
ing the channels of layer i with learnable coefficients (i.e., performing one-times-one convolu-
tions), followed by bi-linear upsampling. This is the deep decoder architecture from | ].

ii) Fixed interpolation kernels and linear combinations. Layer i + 1 is obtained by
linearly combining the channels of layer ¢ with learnable coefficients followed by convolving
each channel with the same 4x4 interpolation kernel that is used in the linear upsampling
operator.

iii) Parameterized convolutions: Layer i + 1 is obtained from layer ¢ though a convolutional
layer.

iv) Deconvolutional network: Layer i + 1 is obtained from layer i though a deconvolution
layer. This is essentially the DC-GAN | | generator architecture.

To emphasize that architectures i)-iv) are structurally very similar operations, we recall that each
operation consists only of upsampling and convolutional operations. Let T(c): R” — R" be the
convolutional operator with kernel ¢, let u the linear upsampling kernel (equal to u = [0.5,1,0.5]
in the one-dimensional case), and let U: R® — R?" be an upsampling operator, that in the
one dimensional case transforms [z1,z2,...,2y] to [z1,0,22,0,...,2,,0]. In each of the archi-
tectures i)-iv), the ¢-th channel of layer i 4+ 1 is obtained from the channels in the i-th layer as:

bit1,, = ReLU (Z?:l M(Cijg)bi> , where the linear operator M is defined as follows for the four

architectures

i) M(c) = ¢T(w)U, ii) M(c) = ¢T(u), iii) M(c) = T(c), iv) M(c) = T(c)U.
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Figure 8: Fitting the phantom MRI and noise with different architectures of depth d = 5, for
different number of over-parameterization factors (1,4, and 16). Gradient descent on convolutional
generators involving fixed convolutional matrixes fit an image significantly faster than noise.

The coefficients associated with the i-th layer are given by C; = {c;;¢}, and all coefficients of the
networks are C = {c;;¢}. Note that here, the coefficients or parameters of the networks are the
weights and not the input to the network.

A.1 Demonstrating implicit bias of convolutional generators

We next show that convolutional generators with fized convolutional operations fit natural or simple
images significantly faster than complex images or noise. Throughout this section, for each image
or signal x* we fit weights by minimizing the loss

L(C) = [|IG(C) — x|l

with respect to the network parameters C using plain gradient descent with a fixed stepsize.

In order to exemplify the effect, we fit the phantom MRI image as well as noise for each of
the architectures above for a 5-layer network. We choose the number of channels, &, such that the
over-parameterization factor (i.e., the ratio of number of parameters of the network over the output
dimensionality) is 1,4, and 16, respectively. The results in Figure 8 show that for architectures i)
and ii) involving fixed convolutional operations, gradient descent requires more than one order of
magnitude fewer iterations to obtain a good fit of the phantom MRI image relative to noise. For
architectures ii) and iii), with trainable convolutional filters, we see a smaller effect, but the effect
essentially vanishes when the network is highly over-parameterized.

This effect continues to exist for natural images in general, as demonstrated by Figure 10 which
depicts the average and standard deviation of the loss curves of 100 randomly chosen images from
the imagenet dataset.

We also note that the effect continues to exist in the sense that highly structured images with a
large number of discontinuities are difficult to fit. An example is the checkerboard image in which
each pixel alternates between 1 and 0; this image leads to the same loss curves as noise.

In our next experiment, we highlight that the distance between final and initial network weights
is a key feature that determines the difference of fitting a natural image and noise. Towards this goal,
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Figure 9: The relative distances of the weights in each layer from its random initialization. The
weights need to change significantly more to fit the noise, compared to an image, thus a natural
image lies closer to a random initialization than noise.
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Figure 10: The loss curves for architecture i), a convolutional generator with linear upsampling
operations, averaged over 100 3 x 512 x 512 (color) images from the Imagenet dataset. The error
band is one standard deviation. Convolutional generators fit natural images significantly faster

than noise.

we again fit the phantom MRI image and noise for the architecture i) and an over-parameterization
factor of 4 and record, for each layer i the relative distance HCZ@ - CEO) H/HCZ(-O) ||, where CEO) are the
weights at initialization (we initialize randomly), and Cl(t) are the weights at the optimizer step t.
The results, plotted in Figure 9, show that to fit the noise, the weights have to change significantly,
while for fitting a natural image they only change slightly.

B The spectrum of the Jacobian of the deep decoder and deep
image prior

Our theoretical results predict that for over-parameterized networks, the parts of the signal that
is aligned with the leading singular vectors of the Jacobian at initialization is fitted fastest. In
this section we briefly show that natural images are much more aligned with the leading singular
vectors than with Gaussian noise, which is equally aligned with each of the singular vectors.
Towards this goal, we compute the norm of the product of the Jacobian at a random initalization,
Cy, with a signal y as this measures the extent to which the signal is aligned with the leading
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Figure 11: Fitting a step function and noise with a two-layer deep decoder: Even for a two-layer
network, the simple image (step function) is fitted significantly faster than the noise.

singular vectors, due to

|77 (Coly|” = [VEWTy|* =3 0? (wi,y)?,

where J(Cp) = WX VT is the singular value decomposition of the Jacobian.

Figure 12 depicts the distribution of the norm of the product of the Jacobian at initialization,
J(Cyp), with an image y* or noise z of equal norm (||y*|| = ||z||). Since for both the deep decoder
and the deep image prior, the norm of product of the Jacobian and the noise (i.e., ||J T(CO)ZH) is
significantly smaller than that with a natural image (i.e., |77 (Cq)y*||), it follows that a structured
image is much better aligned with the leading singular vectors of the Jacobian than the Gaussian
noise, which is approximately equally aligned with any of the singular vectors. Thus, the Jacobian
at random initialization has an approximate low-rank structure, with natural images lying in the
space spanned by the leading singularvectors.
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Figure 12: The distribution of the fo-norm of the inner product of the Jacobian of a deep decoder
(a) and a deep image prior (b) at a random initialization, with an image y = x* and noise y = z,
both of equal norm. For both deep decoder and deep image prior, this quantity is significantly
smaller for noise than for a natural image. Thus, a natural image is better aligned with the
leading singular vectors of the Jacobian than noise. This demonstrates that the Jacobian of the
networks is approximately low-rank, with natural images lying in the space spanned by the leading
singularvectors.
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C Proofs and formal statement of results

The results stated in the main text are obtained from a slightly more general result which applies
beyond convolutional networks. Specifically, we consider neural network generators of the form

G(C) = ReLU(UC)v, (8)

with C € R™** and U € R"*" an arbitrary fixed matrix, and v € R*, with half of the entries of v
equal to +1/vk and the other half equal to —1/v/k.

The (transposed) Jacobian of ReLU(Uc) is U7 diag(ReLU’(Uc)). Thus the Jacobian of G(C)
is given by

v1UTdiag(ReLU’(Ucy))
J7(C) = z e R, ©)
v, Ul diag(ReLU’(Ucy))

where ReLLU’ is the derivative of the activation function. Next we define the neural tangent kernel
associated with this generator.

Definition 3 (Neural Tangent Kernel (NTK)). Associated with a generator G(C) = ReLU(UC)v,
we define the neural tangent kernel

B(U) =E[7(C)J(C)],
where expectation is over C with iid N'(0,1) entries.

Consider the eigenvalue decomposition of the NTK given by
n
3(U) = Z oiwiw!.
i=1

Our results depend on the largest and smallest eigenvalue of the NTK, defined throughout as

a=o,, f=oi=|Ul

With these definitions in place we are now ready to state our result about neural generators.

Theorem 3. Consider a noisy signal’ y € R™ given by

y=x+z,
where x € R™ is assumed to lie in the signal subspace spanned by the p leading singular vectors
Wi,...,wy of 2(U), and z € R" is an arbitrary noise vector. Suppose that the number of channels
obeys
k> 2%n(8/a)¢ 7 (B/a +€T)? (10)

for an error tolerance parameter 0 < ¢ < 1/8log (27") and for a constant T’ obeying 1 < T < 16%.
We fit the neural generator G(C) to the noisy signal y € R™ by minimizing a loss of the form

£(0) = 516(0) ~ vl (1)
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via running gmdient descent with iterations Cr41 = C,—nVL(C,), starting from Cq with i.i. d /\/(0, w?)
[yl

entries, w = Em, and step size obeying n < 1/B2. Then, with probability at least 1 —e™*" —§,

for all itemtzons T<T,

I = G(Cr)lly < (1 =nop)TIIxlly + | D (1= nof)™ = 1) {wi,z) +2£ \/810g (2n/0) Iy l,-
=1
(12)

C.1 Proof of Theorem 2

Theorem 2 stated in the main text follow directly from Theorem 3 above as follows. We first note
that for a convolutional generator (where U implements a convolution and thus is circulant) the
eigenvectors of the NTK are given by the trigonometric basis functions per Definition 1 and the
eigenvalues are the square of the entries of the dual kernel (Definition 2). To see this, we note that
as detailed in Section G, the neural tangent kernel is given by

=), = (1 cost () /) ). (13)

2 [ | [[uy |

Because the matrix U implements a convolution with a kernel u that is equal to its first column, the
neural tangent kernel X(U) is again a circulant matrix and is also Hermitian. Thus, its spectrum
is given by the Fourier transform of the first column of the circulant matrix, and its left-singular
vectors are given by the trigonometric basis functions defined in equation (5) and depicted in

Figure 3.
Furthermore, using the fact that the eigenvalues of a circulant matrix are given by its discrete
Fourier transform we can substitute 5 = ||U|| = ||Ful|,, and a = 0, to conclude that Cy o

30
<%) , where Fu is the discrete Fourier transform of u. This yields Theorem 2.

On

C.2 Proof of Theorem 1

Finally, we note that to obtain the simplified final expression in Theorem 1 from Theorem 2 we
also used the fact that for a Gaussian vector z, the vector W'z is also Gaussian. Furthermore, by
the concentration of Lipschitz functions of Gaussians with high probability we have
n n
> (1= no?)T = 1) (wiz)® ~E [ D 2((1 = no?)” = 1) (wi,2)’ |
i=1 =1
2 n

22 (et - 1)

Here, equation (i) follows from (w;,z) being zero mean Gaussian with variance ¢2/n (since z ~
N(0, (s%2/n)1), and ||w;||, = 1). Finally, (ii) follows by choosing the early stop time so that it obeys
T <log(1—/p/n)/log(l — 77(734-1) which in turn implies that (1 —no?)” > 1 —,/p/n, for all i > p,
yielding that ((1 — no?)™ — 1)? < p/n?, for all i > p.
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D The dynamics of linear and nonlinear least-squares

Theorem 3 builds on a more general result on the dynamics of a non-linear least squares problem
which applies beyond convolutional networks that is stated and discussed in this section. Consider
a nonlinear least-squares fitting problem of the form

£) = 51760) ~ v

Here, f: RP — R"™ is a non-linear model with parameters 8 € RP. To solve this problem, we run
gradient descent with a fixed stepsize 7, starting from an initial point 6y, with updates of the form

0,01 =0, —nVL(O,) where VL) =TT (0)(f(0) —y). (14)

Here, J(0) € R™*P is the Jacobian associated with the nonlinear map f with entries given by

(T(0))i; = %9(],9). In order to study the properties of the gradient descent iterates (14), we relate

the non-linear least squares problem to a linearized one in a ball around the initialization 6y. We

note that this general strategy has been utilized in a variety of recent publications [ ; ;
|. The associated linearized least-squares problem is defined as

Lin(0) = 51(00) + 36— 60) ~ v (15)

Here, J € R™"*P refered to as the reference Jacobian, is a fixed matrix independent of 6 that
approximates the Jacobian mapping at initialization, J(6p), and is formally defined later. Starting
from the same initial point 6y, the gradient descent updates of the linearized problem are

Ors1 = 0 =037 (f(00) + 3(6 — 00) — ¥
=0 =3T3 (0 — 09) — 03" (£(00) ~ ¥). (16)

To show that the non-linear updates (14) are close to the linearized iterates (16), we make the
following assumptions:

Assumption 1 (Bounded spectrum). We assume the singular values of the reference Jacobian
obey

a<o, <o <p. (17)
Furthermore, we assume that the Jacobian mapping associated with the nonlinear model f obeys
T <pB forall 6¢cRP. (18)

Assumption 2 (Closeness of the reference and initialization Jacobians). We assume the reference
Jacobian and the Jacobian of the nonlinearity at initialization J () are ep-close in the sense that

17 (00) 77 (00) = 337\ < &, and [T (60) — I < eo. (19)
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Assumption 3 (Bounded variation of Jacobian around initialization). We assume that within a
radius R around the initialization, the Jacobian varies by no more than € in the sense that

T O0) — T(0)| <=, forall 6 Bgr(b), (20)

| o

where Br(0o) = {0: ||0 — 6p|| < R} is the ball with radius R around 0.

Our first result shows that under these assumptions the nonlinear iterative updates (14) are
intimately related to the linear iterative updates (16). Specifically, we show that the residuals
associated with these two problems defined below

nonlinear residual: r,:= f(0;) —y (21)

linear residual: r.=(I- nJJT)T ro. (22)
are close in the proximity of the initialization.

Theorem 4 (Closeness of linear and nonlinear least-squares problems). Assume the Jacobian
mapping J(0) € R™*P associated with the function f(0) obeys Assumptions 1, 2, and 3 around an
initial point 0y € RP with respect to a reference Jacobian J € R™*P and with parameters o, 3, €y, €,
and R. Furthermore, assume the radius R is given by

2o

k({1
2+5(§+wﬂnmu (23)

with k and T constants obeying k > 0 and 1 < T < 2, and J¥ the pseudo-inverse of J. Also
assume that o, 5, €y, €, and Kk obey

1 ka? 1 [1ra?
e < S5 and €0 < min na (24)
8 /32 8 5

We run gradient descent with stepsize n < 6_12 on the linear and non-linear least squares problem,
starting from the same initialization 0y. Then, for all = < T the iterates of the original and the
linearized problems and their corresponding residuals obey

~ 1k
[r7 — - < 55 [Irolly, (25)
k(1
| = (= +07) Il (26)
Moreover, for all iterates T < T,
R
16~ — 6ol < bR (27)

The above theorem formalizes that in a (small) radius around the initialization, the non-linear
problem behaves similarly as its linearization. Thus to characterize the dynamics of the nonlinear
problem, it suffices to characterize the dynamics of the linearized problem. This is the subject of
our next theorem.
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Theorem 5. Consider a linear least squares problem (15) and let J = WXVT ¢ R™P =
Yoy oiwinT be the singular value decomposition of the matriz J. Then the residual T, after T
iterations of gradient descent with updates (16) is

n
T, = Z (1- 7702-2)7 w; (W;, 1) . (28)
i=1
Moreover, using a step size satisfying n < 0—12, the linearized iterates (16) obey
1
In the next section we will show we can combine these two general theorems to provide guar-
antees for denoising using general neural networks.

0

57—90”2 < i (<Wi;r0> Mf- (29)
i=1

D.1 Proof of Theorem 4 (closeness of linear and non-linear least-squares)

The proof is by induction. We suppose the statement, in particular the bounds (25), (26), and (27)
hold for iterations ¢ < 7 — 1. We then show that they continue to hold for iteration 7 in four steps.
In Step I, we show that a weaker version of (27) holds, specifically that |6, — 6p||, < R. In Steps
IT and IIT we show that the bounds (25) and (26) hold, respectively. Finally, in Step IV we utilize
Steps I-III to complete the proof of equation (27).

Step I: Next iterate obeys 0, € Br(6y). To prove 0, € Br(6), first note that by the triangle
inequality and the induction assumption (27) we have

16 — olly <107 — Or—1lly + 16-—1 — bolls,

R
SHQT - 91’—1“2 + 5

So to prove ||, — 6p||, < R it suffices to show that ||0; — 6,_1], < R/2. To this aim note that

16~ — 97—1“2 = TIHVﬁ(QT—l)”Q
= UHJT(QT—l)rT—lHQ
< (| T Or— )T |, + 1T Or—)] £r—1 — Frally)
<0 (|[7Fr 1|y + 1T Or—1) = I Fr—1lly + [T Or—0)ll [Irr—1 — Fr1ll,)
(i) - _ B
< |37 —1 ]|, + n(e + eo) [Fr-tlly + nBlrr—1 — Fro1ll
(ii) - 1 _ 1
< [ 37% [, + g slFealls + ngslvoll,
(iii) :
< [t + nslioll,

< (30)

|
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In the above (i) follows from Assumptions 1, 2, and 3, (ii) from ey +¢€ < %F\? (which is a consequence
of (24)) combined with with the induction hypothesis (25), and (iii) follows from ||r;—_1]| < [|ro| as
well as from the bound

[37F |, = |37 (T - nJJT)T—lr()H2

= ||=@- 7722)7_1WT1'0H2

n
> o3 {wj.ro)?
j=1

=7l
2

I

IN

Finally, the last inequality follows by definition of R in (23) together with the fact that 7" > 1.

Step II: Original and linearized residuals are close: In this step, we bound the deviation
of the residuals of the original and linearized problem defined as

e =r; —T,.
This step relies on the following lemma from | ]

Lemma 1 (Bound on growth of perturbations, | , Lem. 6.7]). Suppose that Assumptions 1,
2, and 3 hold and that 0,0, 11 € Br(0y). Then, provided the stepsize obeys n < 1/32, the deviation
of the residuals obeys

lertilly < (6§ + €B) I[Frlly + (1 +n¢®) lerl,. (31)

By the previous step, 0, 0,11 € Br(6p). We next bound the two terms on the right hand side

of (31). Regarding the first term, we note that an immediate consequence of Theorem 5 is the

following bound on the residual of the linearized iterates:
IF7 ]l < (1 —na?)" fIroll. (32)

In order to bound the second term in (31), namely, |||y, we used the following lemma, proven
later in Section D.1.1.

Lemma 2. Suppose that for positive scalars o, n,p,& >0, n < 1/a?, the sequences T, and e, obey
rr < (1 — 77042)Tp (33)
er < (L+n€%) er—1 + nérr_s (34)

Then, for all T < 27]%, we have that

p
er < 215 (35)

With these lemmas in place we now have all the tools to prove that the original and linear
residuals are close. In particular, from Step I, we know that 6, € Br(6p) so that the assumptions
of Lemma 1 are satisfied. Lemma 1 implies that the assumption (34) of Lemma 2 is satisfied with
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¢ = €3 + ¢B and the bound (32) implies that the assumption (33) of Lemma 2 is satisfied with
p = ||rol||,. Thus, Lemma 2 implies that for all 7 < 277%

(€6 +<B)
s < 27 , 36
lerll, < 22025 ol < 55 ol (36)
2
where in the last inequality we used the assumption that 2(6?;65 ) < % This concludes the proof

of (25).

Step III: Original and linearized parameters are close: First note that by the triangle
inequality and Assumption 3 we have

17(0-) = I < [|T7(7) — T (0o)]| + 11T (00) = I|| < €0+ (37)

The difference between the parameter of the original iterate 6 and the linearized iterate ] obey

1 . T—1 »
—|0- =0+, < > VL(0:) — VLin(0y)
=0 2
T—1
= JE0)r, — ITT,
t=0 2
T—1

(760 = IE, + [T 00 (e = Fo)

<> (eo +O)lrelly + Blleell,

t=0

i T—1 T7—1

(i) o\T—1

<@+ (1102 frall, + 8 lledl
t=0 t=0
1—(1—na?)" =

= (0 + = e, 8 el

t=0

(i) (eg + €) KT
< o
< L0 g, + o,

(iv) KT
< M 2” ol + ||r0||2,

where (i) follows from (37) combined with Assumption 1, (ii) from (32), (iii) from 7 < 1/4% which
implies (1 — na?®) > 0 and (36). Finally, (iv) follows from the fact that ¢ < 1 and g < 1k per
(24). This concludes the proof of (26).
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Step IV: Completing the proof of (27): By the triangle inequality

10~ 6ol < |6

-~

2

] k(1
T i
s]Jm2+2(M+wQumm

(i)
< R/2,

where inequality (i) follows from the bound (26), which we just proved, and the fact that, from
equation (38) in Theorem 5,

Pl RN s (1—(1—naf)")?
97—90H2=Z(Wi,ro> 5

Moreover, inequality (ii) follows from 7 < T, by assumption as well as from the definition of R in
equation (23).
D.1.1 Proof of Lemma 2

We prove the result by induction. Assume equation (35) holds true for some 7. We prove that then
it also holds true for 7 + 1. By the two assumptions in the lemma,

eryl —€r < 776267 + nérr
< nefer +né(1 —na®)Tp
) 92p
<n£<e =5+ (1—na®)" p>

where (i) follows from the induction assumption (35). Summing up the difference of the errors gives

7'—1

Cr Z €t+1 - €t

t=0

< Tne —+77pz 177704

2p 1 — (1 —na®)"
= Tne’ =5 +np ;
« na
P 2
< ﬁ(n%'e +1)
p
S 2@7

where the last inequality follows from the assumption that 7 < 2%
ne
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D.2 Proof of Theorem 5

The proof of identity (28) is equivalent to the proof of Proposition (1). Regarding inequality (29),
note that

~ ~ T—1 . T—1 T—1 . <u17r0>
Or — 0o =-n> Viin(0) =-n> I =-nV <Z > (I-1n%?) ) :
t=0 t=0 t=0 (u,, o)
Thus
AN = NA DS 1—(1—nod)”
<Vi, ;- 0> = —no; (U4, ro) z::(l —no;)" | = —no; (ug, ro) T. (38)

This in turn implies that

E Proofs for neural network generators (proof of Theorem 3)

ST . 1—(1—no2)™\?
97—00H2§;(<ui7r0)M>’

aj

The proof of Theorem 3 relies on the fact that, in the overparameterized regime, the non-linear least
squares problem is well approximated by an associated linearized least squares problem. Studying
the associated linear problem enables us to prove the result.

We apply Theorem 4, which ensures that the associated linear problem is a good approximation
of the non-linear least squarest problem, with the nonlinearity G(C) = ReLU(UC)v and with the
parameter given by § = C. Recall that v is a fixed vector with half of the entries 1/v/k, and the
other half —1/ V'k. As the reference Jacobian in the associated linear problem, we choose

1
J=(E[7(C)TT(0)])>,

so that it obeys JJT = E [J(C)J*(C)]. We apply the theorem with parameters

ot _ lylly o

U PO (1 JA WY et E R 4 Y
n 9 ) /37 0 k 9 8 /847 \/E/B /82'

We next verify by applying a series of Lemmas proven in Appendix H that the conditions of
Theorem 4 are satisfied (specifically, Assumptions 1, 2, 3 and (24) on the Jacobians of the non-
linear map and the associated linearized map, to be bounded and sufficiently close to each other).

Bound on initial residual: We start with bounding the initial residual by applying the following
lemma.

Lemma 3 (Initial residual). Consider G(C) = ReLU(UC)v, and let C € R™ ¥ be generated at
random with i.i.d. N'(0,w?) entries. Suppose half of the entries of v are u/\/E and the other half
are —V/\/E, for some constant v > 0. Then, with probability at least 1 — 9,

IG(C)lly < vwv/8log(2n/9) [[U]| -
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Now, the initial residual can be upper bounded as

[rolly < [lylly + IG(Co)lly < 2llylla; (39)

where we used that, by Lemma 3,

2
«
1G(Co)ll < wv/Blog(2n/0) U]l p < [Iyll€ 57 v 8log(2n/0) < |[yll5- (40)
Here, the last inequality follows from & < 1/,/8log(2n/d) and o/ < 1.

Verifying Assumption 1: To verify Assumption 1, note that by definition JJ7 = 3(U) thus

trivially o, (3(U)) > a holds. Furthermore, Lemma 4 below combined with the fact that ||v|, =1

implies that ||J|| < 8 and ||[J(C)|| < S for all C. This completes the verification of Assumption 1.
In the next lemma we show that the Jacobian has bounded spectrum.

Lemma 4 (Spectral norm of Jacobian). Consider G(C) = ReLU(UC)v with v € R¥ and U € R**¥
and associated Jacobian J(C) (9), and let J be any matriz obeying JI* =E [T (C)JT(C)|, where

the expectation is over a matriz C with iid N'(0,w?) entries. Then

1T < lvll U] and 3] < [lvily [U]-

Verifying Assumption 2: Verification of the two condition of the assumption requires the
following two lemmas.

Lemma 5 (Concentration lemma). Consider G(C) = ReLU(UC)v with v € R* and U € R"*k
and associated Jacobian J(C) (9). Let C € R™F be generated at random with i.i.d. N(0,w?)
entries. Then,

k
2n
9©57(© -2 (V)] < U 1og (5) Dt
=1
holds with probability at least 1 — 9.

Note that Lemma 5 only ensures the first condition in (19). To see that it also implies the
second condition in (19), we use the following lemma which establishes that the first condition
implies the second.

Lemma 6 ([ , Lem. 6.4]). Let X € R™P, p > n and let B be n x n psd matriz obeying
HXXT — BH < €2, for a scalar € > 0. Then there exists a matric Y € R™ P obeying B = YYT
such that

Y — X|| < 2e.

We begin by verifying the first condition of the assumption, inequality (19). To this aim note
that using the fact that Zf vf = % by Lemma 5 we have

og (2
|7(CnT (o)~ =) < upty ) < g (41)

holds with probability at least 1 — ¢. Thus, the first condition in (19) is satisfied. Furthermore,
combining the first inequality in (41) with Lemma 6 we conclude that the second condition in (19)
also holds for the chosen value of €y, concluding the proof of Assumption 2 being satisfied.
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Verifying Assumption 3: Verification of the assumption requires us to control the perturbation
of the Jacobian matrix around a random initialization.

Lemma 7 (Jacobian perturbation around initialization). Let Co be a matriz with i.i.d. N(0,w?)
entries. Then, for all C obeying

~ ~ 1
|C = Co|| <wR  with Rggx/E,

the Jacobian mapping (9)associated with the generator G(C) = ReLU(UC)v obeys

I7(C) = T(Co)ll < IVl 2(kB)* U],

with probability at least 1 — ne~ 3RYIKTS

In order to verify Assumption 3, first note that the radius in the theorem, defined in equa-
tion (23), obeys

1
4 (g +or) ol

W /2 K
<|—+—= T
< (24 L4t Il

Here, (i) follows from the fact that HJEI’O H2 < Lylroll,, (ii) from the bound on the initial residual (39)

a?

and r = {%, and finally (iii) follows from the assumption (10).

Note that since A = 2%%—1; < % for this choice of radius by Lemma 7 we have

0[4

= §
I7(C) = T(Co)ll < IVl 2(kR)* U = 16 101l pY
holds with probability at least

_ 1 40180576 (1)
1 —ne 227> 516 >1-9,

where in (i) we used (10) together with ¢ < 4/8log (%T") Therefore, Assumption 3 holds with high
probability by our choice of € = % U] g—:.
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Verifying the conditions of (24): We now turn our attention to verifying that the bounds on €
and €p in (24) are satisfied. We begin by showing the bound on € holds. To this aim note that our
choice of € can alternatively be written as ¢ = g@ so that the condition € < 5 on ¢ is satisfied

(recall that k = 5%2) To verify the second condition in (24) note that

(1) ii 2
e = 20U 4/10g(2n/5) 4/10g 2n/6 S 1 RO l/{ 1 ka
k 4 3 [3

where inequality (i) holds by (10) which implies 8+/log(2n/J)/k < §g—§ = 5 (ii) holds by the
assumption £ < 2.

Verifying the bound on number of iterations: Finally we note that the constraint on the
number of iterations, T, T < e i from Theorem 4 is satisfied under the number of constraints of

> 16-4

Theorem 3 by 27]62 =16

77£2 aS 7752 a8

Concluding the proof of Theorem 3: Now that we have verified the conditions of Theorem 4
we can apply this theorem. This allows us to conclude that

IG(Cr) — xlly = IG(Cr) + 2~ v,
= [lr; + 2,

=t +z+r; — T,
i ~
< |lrr + 2z, + HrT - rT“Q

(i)
< [lrr + 2, +

52 H roll;

(111

27w 1 O‘_2
HW %) W P0+ZH2+ 2562”[.0“2

2
2 |[W (L 53" W (G(Co) ) — (W (L n22) WT = 1) g, + 3651

|rol,

© . . ,
< [[(T=n=?)" Wikl + [[(T-027)" 1) Wa|, + ||G(Co)||2+§§%||1“0||2

n

(vi)
< (L =nop)lIxlly + 4| (1 =n0d)" = 1) (w;,2)° + 2||.YH2§ \/810g 2n/9).

i=1

Here, (i) follows from the triangular inequality, (ii) from Theorem 4 equation (25), (iii) from
Theorem 5, (iv) from ro = G(Cp) —y = G(Cp) —x —z, (v) from the triangular inequality, (vi) from
the fact that x € span{wj, wo,...,w,} combined with the fact that HW (I — T]EQ)TWTH < 1.
Finally, (vi) follows by bounding the last two terms with the bounds (39) and (40), respectively.
This proves the final bound (12), as desired.
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F Proof of Proposition 1 and equation (2)

The residual of gradient descent at iteration 7 is
rr=y—Jc;
=y = I(xro1 =13 (Jer1 —y))
= (I—nJIT)(y = Jerm1)
= (I—nJI7)(y — Jeo)
= I-n33")7y
= I - Wx*W)Ty
where we used that ¢g = 0 and the SVD A = WXV, Expanding y in terms of the singular

vectors w; (i.e., the columns of W), as 'y = 3. w; (w;,y), and noting that (I — nWX2WT)7 =
(1 —nod) wyw!l we get

1
rr = (1—no?) wi (w;,y),
i

as desired.
Proof of equation (2): By proposition 1 and using that x and lies in the signal subspace
p n
x —Jc; = Zwi(l —no?)T (wi, x) + Zwi((l —no?)T — 1) (w;,z) .
i=1 i=1
By the triangle inequality,

llx — JCT||2 <

p
D will — o) (wi, x)
=1

+
2

D o wil(1=nof)” = 1) (wi, 2)
=1

2

n

< (L=nop)TlIxlly + | D (1= no)™ = 1) (wi.z)%,
i=1

where the second inequality follows by using orthogonality of the w; and by using (1 — 7702-2) <1,
from n < 1/02,.. This concludes the proof of equation (2).

max-*

G The neural tangent kernel for convolutional generators

We first prove the closed form expression of the neural tangent kernel, i.e., equation (13). By the
expression for the Jacobian in equation (9), we have that

k
J(C)T"(C) =) vidiag(o'(Uc,))UU" diag(o'(Ucy))
/=1

k

v}o' (Uey)o’ (Uey)” @ UUT
/=1
o/ (UC)diag(v?, ..., v2)0’(UC)" o UUT,
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where ® denotes the entrywise product of the two matrices. Then,

k
E[7(C)TT(C)] =3 viE [al(Ucz)J’(Uc@)T] o uuT. (42)
(=1
Next, we have with [ , Sec. 4.2] and using that the derivative of the ReLU function is the

step function,

[E [ol(Uce)al(UCz)T”ij - % (1 — cos™! (%) /W) :

Using that ||v]|, = 1, we get
T 1 1 (u;,u;) ) > o
[E [j(())j (C)Hm = _2 (1 — COS <—|| z||2|| j||2 /7r (11“"J>7

where u; are the rows of U. This concludes the proof of equation (13).

We next briefly comment on the singular value decomposition of a circulant matrix and explain
that the singular vectors are given by Definition 1. Recall, that U € R™*" is a circulant matrix,
implementing the convolution with a filter. Assume for simplicity that n is even. It is well known
that the discrete Fourier transform diagonalizes U, i.e.,

U =F 'UF,
where F € C™"*" is the DFT matrix with entries
[Fj, = e2km §k=0,...,n—1,

and U is a diagonal matrix with diagonal Fu, where u is the first column of the circulant matrix
U. From this, we can compute the singular value decomposition of U by using that @ = Fu is
conjugate symmetric (since u is real) so that

[ﬁ]n—k—i-Q:ﬁ*a k':2,,’l7/2

Let U = WXV be the singular value decomposition of U. The entries of the left singular vectors
are given by the trigonometric basis functions defined in (5), and the singular values are given by
the absolute values of 1.

H Proofs of Lemmas for neural network denoisers (Proofs of aux-
iliary lemmas in Section E)

H.1 Proof of Lemma 7: Jacobian perturbation around initialization
The proof follows that of | , Lem. 6.9].

1. We start by relating the perturbation of the Jacobian to a perturbation of the activation
patterns. For any C, C’, we have that

17(C) = T (€] < IVl U]l max |o' (ul'C) — o/ (u )" (43)
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To see this, first note that, by (9),
J(C) = J(C') = [...v;(diag(c"(Uc;)) — diag(c’ (Uc;)))U.. .
This in turn implies that
|7(€) - 7@ = |(7(©) - gEeNI© - T(C)|
:H@KUC%wﬂUC%m%w%”qﬁmﬂUC%wﬂUC%TQUUﬂf

@) . 2
< | UJP max | (o' (u]'C) — o' (u] O)ding(v)|

2
)

< HVHioHUHmeX o’ (u} C) — o’ (uj C)

where for (i) we used that for two positive semidefinite matrices A, B, Apax(A © B) <
Amax(A) max; B;. This concludes the proof of equation (43).

. Step one implies that we only need to control o/(Uc;) around a neighborhood of c;-. Since o
is the step function, we need to count the number of sign flips between the matrices UC and
UC'. Let |v|;(qg) be the ¢g-th smallest entry of v in absolute value.

Lemma 8. Suppose that, for all i, and q < k,

|u’ircl|7r(q)

Cc-C < g9,
f | <vi—ia

Then
max ||o’ (u] C) — o’ (u] C')|| < /2¢

Proof. Suppose that ¢/(u] C) and o’(ul'C’) have 2¢ many different entries, then the conclu-
sion of the statement would be violated. We show that this implies the assumption is violated
as well, proving the statement by contraction. By the contradiction hypothesis,

2 T 2 2
|C =" = [[ui(C =)/l
T V(2
. u; C/‘W(q)
= P] 9
[Jag |
where the last inequality follows by noting that at least 2¢ many entries have different signs,

thus their difference is larger than their individual magnitudes, and at least ¢ many individual
magnitudes are lower bounded by the ¢-th smallest one. O

. Next, we note that, with probability at least 1—ne—ka*/ 2 the g-th smallest entry of u;fFC’ € RF
obeys

u/C'l ) _ ¢
———=>—v foralli=1,... n. 44
Tall = 2k 4
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We note that it is sufficient to prove this result for v = 1. This follows from anti-concentration
of Gaussian random variables. Specifically, with the entries of C’ being iid NV(0, 1) distributed,
the entries of g = u} C’/||u;|| € R* are iid standard Gaussian random variables as well. We
show that with probability at least 1 — e~ka*/ 2 at most ¢ entries are larger than %. Let ~s
be the number for which P [|ge| < 5] < 0, where g is a standard Gaussian random variable.
Note that 5 > \/7r—/25 > §. Define the random variable

5= J 1 iflaed <,
= .
0 otherwise.

with § = &&. With E [§,] = ¢, by Hoeffding’s inequality,

k
Py 6>m|= Z‘Se E [5] >m/2] < e 2hm/2? = gmhm?/2, (45)
/=1
Thus, with probability at least 1 — ke —k¢®/2 116 more than m entries are smaller than Y5 >
§ = 5. The results now follows by taking the union bound over all i =1,...,n.

We are now ready to conclude the proof of the lemma. By equation (43),

[7(©) = 7€) < Wl U] max|o’ (] ©) = o’ (u] )|

< [Vl IlUllv2g

provided that
q
C-C| < Va=—
lo- ol < vals
with probability at least 1 — neka*/2, Setting ¢ = (2kR)?/3 concludes the proof (note that the
assumption R < % k ensures ¢ < k).

H.2 Proof of Lemma 4: Bounded Jacobian

By the expression of the Jacobian in equation (9),
I7©)I? = ||7(@7(©)

2
- Ha’(UC)diag(vf, ) ue)T e UUTH

(i)
§||U||2m]axHo TC)dlag H2

2 2
< [Ivliz 0117

where for (i) we used that for two positive semidefinite matrices A, B, Apax(A®B) < Apax(A) max; By;.
To prove the second inequality note that

1337 = I=(U)|
Ecnr(o,1) [ReLU’(Uc)ReLU’(Uc)T} ® (UUT)H

2
=[v13|

(i)
<|lv|3 |uu?||
=[v|l3 U™
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Here, (i) follows from the fact that for two positive semidefinite matrices A, B, Apax(A ©@ B) <
)\max(A) max; B“

H.3 Proof of Lemma 5: Concentration lemma
We begin by defining the zero-mean random matrices
2 1(TT 1T T 1T /(T T rrr1]
S, = vf (o' (Uey)o' (Ten)” —E [o'(Ten)o' (Ten)'] ) © (TTT).

With this notation,

M-

J(C)JT(C) — £(U) V2 (a'(ﬁw)o—’(ﬁcm —E [a'(ﬁq)a'(ﬁcﬁ)ﬂ) ® (fJfJT)

(=1

= |l

S,.
1

&~
Il

To show concentration we use the matrix Hoeffding inequality. To this aim note that the summands
are centered in the sense that E [Sg] = 0. Next note that

(¢'(Ten)o’(Ten)™ ~ E [0/ (Tey)o' (Te)T| ) © (UUT) = (o (Ten)o'(Te)”) © (TUT)
=diag (O’l(ijg)T) UU  diag (0’(6%))
<B*UU”

Similarly,
(¢'(Ten)o! (Te)™ — B [0'(TUey)o! (Ue)T| ) © (UUT) =~ E |o/ (Tey)o'(Ue)"| @ (TUT)
- B*Uu”.

Y

Thus,
2 BPTUT < 8, < 2 BHUTT.
Therefore, using Ay := U?B266T we have
S7 < A2,

and

k k
~ |14
=)< ot (34t o]
(=1 =1

To continue we will apply matrix Hoeffding inequality stated below.
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Theorem 6 (Matrix Hoeffding inequality, Theorem 1.3 | ). Consider a finite sequence Sy of
independent, random, self-adjoint matrices with dimension n, and let {A,} be a sequence of fized
self-adjoint matrices. Assume that each random matriz satisfies

E[S)] =0 and S?<A? almost surely.

Then, for allt > 0,

k

D A}

(=1

k 2
t
Z Syl| > t] < 2ne 82  where o :=

(=1

p

Therefore, applying matrix Hoeffding inequality we get that
P [

H.4 Proof of Lemma 3 (bound on initial residual)

k

DS

(=1

+2

>t < 277,6734”""2”6“47

which concludes the proof.

Without loss of generality we prove the result for v = 1. First note that by the triangle inequality
[rolly = [lo(UC)v —yll; < lo(UC)vlly + [lyll,-

We next bound ||lo(UC)v||,. Consider the i-th entry of the vector ¢(UC)v € R", given by

o(uf'C)v, and note that ¢; = (o(ulc;) — o(ulc,—;))/|lull, is sub-Gaussian with parameter 2,

i.e., P[lg| > 1] < 2¢72. Tt follows that

k/2

2
P> g =8VE| <20 5.

Jj=1

Thus,
82

P [[o(uf C)v| = |lu;],65] < 2¢7 %,
where we used that |v;| = £/v/k. Taking a union bound over all n entries,

_8?
P[lo(UC)vI} > |UJ}€262] < 2ne™ .

Choosing = 1/8log(2n/J) concludes the proof.
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