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Abstract— In large-scale and model-free settings, first-order
algorithms are often used in an attempt to find the optimal
control action without identifying the underlying dynamics.
The convergence properties of these algorithms remain poorly
understood because of nonconvexity. In this paper, we revisit the
continuous-time linear quadratic regulator problem and take
a step towards demystifying the efficiency of gradient-based
strategies. Despite the lack of convexity, we establish a linear
rate of convergence to the globally optimal solution for the
gradient descent algorithm. The key component of our analysis
is that we relate the gradient-flow dynamics associated with the
nonconvex formulation to that of a convex reparameterization.
This allows us to provide convergence guarantees for the
nonconvex approach from its convex counterpart.

Index Terms— Linear quadratic regulator, gradient descent,
gradient-flow dynamics, model-free control, nonconvex opti-
mization, Polyak-Lojasiewicz inequality.

I. INTRODUCTION

The design of feedback controllers that provide desired

performance of engineering systems has been an active area

since the 1940’s. There have been many developments aimed

at broadening the range of applications, improving the speed

and scalability of algorithms, and addressing important issues

of uncertainty in modeling and data acquisition. In spite of

these successes, a significant body of literature focuses on

known dynamics and asymptotic analysis. In practice, the

plant dynamics are often unknown and only a limited number

of input-output measurements may be available. Such chal-

lenges have led to the adaptation of Reinforcement Learning

(RL) approaches which can be broadly divided into model-

based [1], [2] and model-free [3], [4]. While model-based

RL relies on an approximation of the underlying dynamics,

its model-free counterpart prescribes control action based on

estimated values of a cost function without knowledge of

the plant. In spite of the impressive empirical success of

modern RL in a variety of domains, fundamental questions

surrounding algorithmic convergence and sample complexity

remain unanswered even for classical control problems,

including the Linear Quadratic Regulator (LQR). This is

mainly because of nonconvex nature of these algorithms.

The LQR problem is the cornerstone of control theory.

The globally optimal solution can be obtained by solving
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the Riccati equation and efficient numerical schemes with

provable convergence guarantees have been developed [5].

However, computing the optimal solution becomes challeng-

ing for large-scale problems, when prior knowledge is not

available, or in the presence of structural constraints on the

controller. This motivates the use of direct search methods for

controller synthesis. Unfortunately, the nonconvex nature of

this formulation complicates the analysis of first- and second-

order optimization algorithms. To make matters worse, struc-

tural constraints on the feedback gain matrix may result in a

disjoint search landscape limiting the utility of conventional

descent-based methods [6].

In this paper we take a step towards providing model-

free gradient-based strategies for solving the continuous-time

LQR problem by directly searching over the parameter space

of controllers. Despite the nonconvex nature of LQR formu-

lation, we establish exponential convergence of the gradient-

flow dynamics and linear convergence of the gradient descent

method. A salient feature of our analysis is that we connect

the gradient-flow dynamics of this nonconvex formulation

to that of a standard convex reparametrization of the LQR

problem [7], [8]. This connection allows us to provide a

simple convergence analysis for the nonconvex setting by

exploiting properties of its convex reparametrization.

For policy gradient methods applied to the discrete-time

LQR problem, global convergence guarantees were recently

provided for systems with known and unknown dynamics

in [9]. While this reference motivates our work, we study

the continuous-time LQR problem when the plant dynamics

are known. In a companion paper (that is currently under

preparation), we show how our results enable stronger guar-

antees in the model-free setting relative to [9].

The paper is structured as follows. In Section II, we revisit

the LQR problem and present continuous- and discrete-time

variants of the gradient descent algorithm. In Section III, we

highlight the main result of the paper. In Section IV, we

build on the convex characterization of the H2 optimal con-

trol problem and establish global convergence for gradient-

flow dynamics and its discretized variant with small-enough

stepsize. In Section V, we extend our analysis over the non-

convex landscape. In Section VI, we provide a computational

experiment to illustrate our theoretical developments. Finally,

we provide concluding thoughts in Section VII.

Notation: We use ‖ · ‖2 to denote the maximum sin-

gular value of linear operators and matrices, ‖M‖F =
trace (MTM) to denote the Frobenius norm, and 〈X,Y 〉 :=
trace (XTY ) to denote the standard matricial inner product.
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The smallest eigenvalues of the symmetric matrix M is

λmin(M) and we use E to denote the expected value.

II. PROBLEM FORMULATION AND GRADIENT METHODS

Consider the linear time-invariant system

ẋ = Ax + B u, x(0) = x0 (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input,

and A, B are constant matrices of appropriate dimensions.

The LQR problem associated with system (1) is given by

minimize
x, u

Ex0 ∼D

∫

∞

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt (2)

where Q and R are positive definite matrices and x0 is a ran-

dom initial condition with distribution D. For a controllable

pair (A,B), the solution to the LQR problem is given by

u = −K⋆x = −R−1BTP x

where P is the unique positive definite solution to the

algebraic Riccati equation (ARE)

ATP + P A + Q − P BR−1BTP = 0.

However, conventional approaches for solving ARE are not

applicable in the model-free setting. Furthermore, imposing

structural constraints (e.g., sparsity) on the feedback gain ma-

trix comes with additional challenges that require developing

customized optimization algorithms [10]–[12].

An alternative approach to solving ARE is to search for

the optimal solution over the set of stabilizing feedback gains

SK := {K ∈ R
m×n | A − BK is Hurwitz} (3)

which is known to be nonconvex [6]. Specifically, we can

minimize the LQR cost with respect to the gain matrix K as

minimize
K

f(K) (4)

where

f(K) :=

{

trace
(

(Q + KTRK)X
)

, K ∈ SK

∞, otherwise.

Here, the matrix X is given by

X :=

∫

∞

0

e(A−BK)t Ωe(A−BK)T t dt (5a)

and it can be obtained by solving the Lyapunov equation

(A − BK)X + X(A − BK)T + Ω = 0 (5b)

where Ω := Ex0 ∼D x0x
T
0 is the covariance of the initial

condition, which we assume to be positive definite. In (4),

K is the optimization variable, and (A, B, Q, R, Ω) are the

known problem parameters. We note that K ∈ SK if and

only if the solution X to Eq. (5b) is positive definite [13].

The gradient of the function f(K) is given by [14]

∇f(K) = 2 (RK −BTP )X (6)

where P is the unique positive definite solution to

(A − BK)TP + P (A − BK) = −Q −KTRK. (7)

In this paper, we study the convergence properties of the

gradient-flow dynamics associated with problem (4)

K̇ = −∇f(K), K(0) ∈ SK . (GF)

We also examine the convergence of a discretized version

of (GF), namely the gradient descent method

Kk+1 := Kk − α∇f(Kk), K0 ∈ SK (GD)

where α > 0 is the stepsize.

III. MAIN RESULTS

Our first result shows that (GF) converges exponentially

to the LQR solution K⋆ for any K(0) ∈ SK despite the

nonconvex optimization landscape.

Theorem 1: For any initial stabilizing feedback gain

K(0) ∈ SK , the solution K(t) to (GF) satisfies

f(K(t)) − f(K⋆) ≤ (f(K(0)) − f(K⋆)) e−ρ t

where the convergence rate ρ depends on f(K(0)) and the

parameters of optimization problem (4).

The proof of Theorem 1 along with explicit expressions for

convergence rate are provided in Section V-A. Moreover,

we show that for a sufficiently small stepsize α the discrete

analog (GD) also converges over SK with a linear rate.

Theorem 2: For any initial stabilizing feedback gain

K0 ∈ SK , the iterates of gradient descent (GD) satisfy

f(Kk) − f(K⋆) ≤ γk
(

f(K0) − f(K⋆)
)

where the convergence rate γ and the stepsize α depend on

f(K0) and the parameters of optimization problem (4).

We prove Theorem 2 and provide explicit expressions for

γ and α in Section V-B.

IV. CONVEX REPARAMETERIZATION

Because of the nonconvexity of problem (4), it is unclear

if gradient-based methods can be used to compute the LQR

solution. Indeed, gradient descent may not even converge

to local optima for nonconvex problems. Herein, we use

a standard change of variables to reparameterize (4) into a

convex problem, for which we can provide exponential/linear

convergence guarantees for gradient flow/descent. In the next

section, we connect the gradient flow on this convex repa-

rameterization to its nonconvex counterpart; this allows us to

prove global convergence for gradient flow/descent on (4).

A. Change of variables

The stability constraint on the closed-loop dynamics (X ≻
0) in problem (4) allows for a standard change of variables

Y := KX to reformulate the LQR synthesis as a convex

optimization problem [7], [8]. In particular, for any K ∈ SK

and the corresponding X given by (5a), we have

f(K) = h(X,Y )

where h(X,Y ) := trace (QX + Y TRYX−1) is a jointly

convex function of (X,Y ) for X ≻ 0. In the new set of
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variables, the Lyapunov equation (5b) takes the affine form

A(X) − B(Y ) + Ω = 0 (8)

where the linear maps A and B are given by

A(X) := AX + XAT , B(Y ) := B Y + Y TBT .

For an invertible map A, we can express the matrix X as an

affine function of Y

X(Y ) = A−1(B(Y ) − Ω)

and bring the LQR problem into the convex form

minimize
Y

h(Y ).

Here,

h(Y ) :=

{

h(X(Y ), Y ), Y ∈ SY

∞, otherwise

where SY is the set of matrices Y that correspond to

stabilizing feedback gains K = Y X−1,

SY := {Y ∈ R
m×n | A−1(B(Y ) − Ω) ≻ 0}.

We note that similar to SK , the positive definite condition in

SY is equivalent to A−BYX−1(Y ) being Hurwitz. When

the map A is not invertible, the change of variables Â :=
A−BK0, K̂ := K−K0, and Ŷ := K̂X can be alternatively

used without loss of generality; details are omitted for brevity

and will be reported elsewhere. Our convergence analysis

for gradient descent relies on lower and upper bounds on

the second-order approximation to the function h(Y ). We

next quantify these bounds by showing that h(Y ) is strongly

convex and smooth over its sub-level sets.

B. Strong convexity and smoothness of h(Y )

The gradient of h(Y ) is given by [12]

∇h(Y ) = 2RYX−1 − 2BTW (9)

where W is the solution to the Lyapunov equation

ATW + WA = −Q + X−1Y TRYX−1. (10)

While the gradient ∇h(Y ) is not Lipschitz continuous over

the set SY , we show Lipschitz continuity over sublevel sets

SY (a) := {Y ∈ SY | h(Y ) ≤ a}

of the function h(Y ). We also show that over any sublevel

set SY (a) the function h(Y ) is strongly convex. The next

lemma is borrowed from [12, Lemma 3] and it provides an

expression for the second-order approximation of h(Y ).

Lemma 1: The Hessian of the function h(Y ) satisfies
〈

Ỹ ,∇2h(Y ; Ỹ )
〉

= 2 ‖R
1

2 (Ỹ − KX̃)X−
1

2 ‖2F

where X̃ is the unique solution to

A(X̃) = B(Ỹ ). (11)

The following proposition provides expressions for Lips-

chitz continuity parameter L of ∇h(Y ) and strong convexity

module µ of h(Y ) over sublevel sets SY (a) in terms of a
and parameters of the LQR problem. These are obtained

by finding upper and lower bounds on the second-order

approximation of h(Y ) from Lemma 1.

Proposition 1: Over any non-empty sublevel set SY (a),
the gradient ∇h(Y ) is Lipschitz continuous with parameter

L =
2 a ‖R‖2

ν

(

1 +
a ‖A−1(B)‖2

ν
√

λmin(R)

)2

(12)

and the function h(Y ) is µ-strongly convex with

µ =
2λmin(R)λmin(Q)

a (1 + a2 η)
2 (13)

where the constants

η :=
‖B‖2

λmin(Q)λmin(Ω)
√

ν λmin(R)
(14a)

ν :=
λ2
min(Ω)

4

(

‖A‖2
√

λmin(Q)
+

‖B‖2
√

λmin(R)

)−2

(14b)

only depend on the problem parameters.

Proof: See Appendix A.

C. Exponential stability

The above results can be utilized to establish exponential

stability of the gradient-flow dynamics

Ẏ = −∇h(Y ), Y (0) ∈ SY (15)

and the gradient descent method

Y k+1 := Y k − α∇h(Y k), Y 0 ∈ SY . (16)

Proposition 2: The gradient flow dynamics (15) are ex-

ponentially stable, i.e.,

‖Y (t) − Y ⋆‖2F ≤ (L/µ) ‖Y (0) − Y ⋆‖2F e−2µ t

for Y (0) ∈ SY , where µ and L are strong convexity and

smoothness parameters over the sublevel set SY (h(Y (0))).

Proof: The time-derivative of the Lyapunov function

candidate V (Y ) := h(Y )− h(Y ⋆) satisfies

V̇

V
=

−‖∇h(Y )‖2

h(Y ) − h(Y ⋆)
≤ −2µ (17)

where Y ⋆ is the global minimizer. Inequality (17) fol-

lows from the strong convexity of h(Y ) and it yields [15,

Lemma 3.4]

V (Y (t)) ≤ V (Y (0)) e−2µ t. (18)

Thus, for any Y (0) ∈ SY , the objective function h(Y (t))
converges exponentially to h(Y ⋆). Moreover, since h(Y ) is

µ-strongly convex and L-smooth, V (Y ) can be upper and

lower bounded by quadratic functions. Based on this, the

exponential stability of (15) follows from standard Lyapunov

theory [15, Theorem 4.10].

Similarly, we can develop convergence guarantees for the

gradient descent method (16) with sufficiently small stepsize.
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K0

K

Fig. 1. Flow trajectories of (GF) (solid black) and Kind from Eq. (19)
(dashed blue) over sublevel sets SK(a) of the function f(K).

In particular, since the function h(Y ) is L-smooth over the

sublevel set SY (h(Y
0)), for any stepsize α ∈ [0, 1/L], the

iterates Y k remain within SY (h(Y
0)). Based on this and the

µ-strong convexity of h(Y ), we conclude that the iterates

Y k converge to the optimal solution Y ⋆ at a linear rate γ =
1 − αµ. We next use this result to prove convergence for

gradient flow/descent on the nonconvex formulation.

V. ANALYSIS OF THE NONCONVEX FORMULATION

The trajectories Y (t) of (15) defined over the set SY

induce the flow

Kind(t) := Y (t) (X(Y (t)))
−1

(19)

over the set of stabilizing feedback gains SK . The result es-

tablished in Proposition 2 implies that the objective function

f(Kind(t)) converges with the exponential rate

f(Kind(t)) − f(K⋆)

f(Kind(0)) − f(K⋆)
=

h(Y (t)) − h(Y ⋆)

h(Y (0)) − h(Y ⋆)
≤ e−2µ t.

This inequality follows from (18) where µ denotes the

strong-convexity module of the function h(Y ) over the

sublevel set SY (h(Y (0))); see Proposition 1.

Figure 1 illustrates a trajectory of the induced flow Kind(t)
and a trajectory K(t) of gradient-flow dynamics (GF) that

start from the same initial condition. Although the stable

flow Kind(t) traverses a different curve on SK than K(t),
we establish a relation between them which allows us to

show that K(t) also converges to the LQR solution K⋆.

A. Gradient flow dynamics: proof of Theorem 1

We start our analysis by relating the convex and nonconvex

formulations of the LQR objective function. Specifically, in

Lemma 2, we establish a relation between the gradients

∇f(K) and ∇h(Y ) over the sublevel sets SK(a).

Lemma 2: For any stabilizing feedback gain K ∈ SK(a),
X given by (5a), and Y := KX , we have

‖∇f(K)‖F ≥ c ‖∇h(Y )‖F (20)

where the constant c is given by

c :=
ν
√

ν λmin(R)

2 a2 ‖A−1‖2 ‖B‖2 + a
√

ν λmin(R)
(21)

and the scalar ν (Eq. (14b)), depends on the problem data.

Proof: See Appendix C.

We next consider the error in the objective value as a

Lyapunov function candidate V (K) := f(K)− f(K⋆). For

any initial condition K(0) ∈ SK(a), the time-derivative of

V (K) along the solutions of (GF) satisfies

V̇

V
=

−‖∇f(K)‖2F
f(K) − f(K⋆)

≤
−c2 ‖∇h(Y )‖2F
h(Y ) − h(Y ⋆)

≤ −2µ c.

(22)

Here, the first inequality follows from f(K) = h(Y )
combined with (20) and the second follows from (17) (which

in turn is a consequence of the strong convexity of h(Y )).
Following [15, Lemma 3.4], inequality (22) guarantees that

system (GF) converges exponentially in the objective value

at rate ρ = 2µ c2. This completes the proof of Theorem 1.

Remark 1 (Geometric interpretation): For any trajectory

Y (t) ∈ SY of (15), the LQR objective function satisfies

h(Y (t)) = f(Kind(t))

where Kind(t) = Y (t)(X(Y (t)))−1 denotes the trajectory

induced by Y (t) over the set SK . Differentiating both sides

of this equality with respect to time t yields

−‖∇h(Y )‖2 =
〈

∇f(Kind), K̇ind

〉

. (23)

Thus, Eq. (20) in Lemma 2 can be equivalently restated as

‖∇f(Kind)‖
2
F /
〈

−∇f(Kind), K̇ind

〉

≥ c2.

In words, the ratio between ‖∇f(Kind)‖F and the norm

of the projection of vector field K̇ind (associated with flow

Kind(t)) on vector field −∇f(Kind) (associated with (GF))

is bounded from below. Due to this feature, we can deduce

exponential convergence for the gradient-flow dynamics (GF)

from the convergence properties of its convex counterpart.

Remark 2 (Gradient domination): Expression (22) im-

plies that the objective function f(K) over any given sub-

level set SK(a) satisfies

‖∇f(K)‖2F ≥ 2µ c2 (f(K) − f(K⋆))

where the scalars µ and c are functions of a. This condition

is known as the Polyak-Łojasiewicz (PL) inequality [16] and

it has been recently used to show convergence for gradient-

based methods in the case of discrete-time LQR [9].

B. Gradient descent dynamics: proof of Theorem 2

The main challenge in analyzing gradient descent (GD)

compared to its continuous counterpart is to find a suitable

stepsize α that guarantees convergence. Lemma 3 provides a

Lipschitz parameter for the gradient ∇f(K), which is useful

in finding such a stepsize. The proof of Lemma 3 relies on

the bounds provided in Appendix B and follows a similar

line of argument as in [12, Appendix D], but is omitted due

to page limitation.

Lemma 3: Over any non-empty sublevel set SK(a), the

gradient ∇f(K) is Lipschitz continuous with the parameter
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Lf = Lf1 + Lf2 where Lf1 := a‖R‖2/λmin(Q),

Lf2 :=
4a3

λ2
min(Q)λmin(Ω)

(

‖B‖22
λmin(Ω)

+
‖B‖2‖R‖2
√

νλmin(R)

)

,

and the constant ν (Eq. (14b)) depends on problem data.

For any line segment in SK(a) with endpoints K and

K + αK̃, the Lf -smoothness of the function f(K) implies

f(K + α K̃) − f(K) ≤ α
〈

∇f(K), K̃
〉

+
α2Lf

2
‖K̃‖2F .

(24)

Let K̃ ∈ R
m×n be a decent direction of the function f(K)

for some K ∈ SK(a), i.e., f(K+αK̂)−f(K) < 0 for small

enough α > 0. If the right-hand side of (24) is negative for

all α ∈ (0, b] (for some scalar b), then inequality (24) follows

from the continuity of f(K). The negative gradient update

in (GD) is clearly a descent direction of the function f(K).
Now, let Lf be the Lipschitz parameter of ∇f(K) over the

sublevel set SK(f(K0)). It is easy to verify that the right-

hand side of (24) with K := Kk and K̃ := −∇f(Kk)
is negative for all α ∈ (0, 1/Lf ]. Therefore, from (24) it

follows that the iterates of gradient descent (GD) satisfy

f(Kk+1) − f(Kk) ≤ −
2α− Lf α

2

2
‖∇f(Kk)‖2F .

This inequality in conjunctions with the PL condition

‖∇f(Kk)‖2F ≥ 2µ c2
(

f(Kk) − f(K⋆)
)

established in (22) guarantees convergence for gradient de-

scent (GD) with the linear rate γ ≤ 1 − αµ c2 for all

α ∈ (0, 1/Lf ]. This concludes the proof of Theorem 2.

VI. AN EXAMPLE

We use a mass-spring-damper system with N masses to

compare the performance of gradient descent on K given

by (GD) and gradient descent on Y given by (16). We set all

spring and damping constants as well as masses to unity. In

state-space representation (1), the state vector x = [ pT vT ]T

contains the position and velocity of masses and the dynamic

and input matrices are given by

A =

[

0 I
−T −I

]

, B =

[

0
I

]

where O and I are zero and identity matrices of suitable

size, and T is a Toeplitz matrix with 2 on the main diagonal

and −1 on the first super and sub-diagonals.

We solve the LQR problem with Q = I +100 e1e
T
1 , R =

I+100 e4e
T
4 , and Ω = I for N = 10 and 50 masses (i.e., n =

2N states) where ei is the ith unit vector in the standard bases

of R
n. The algorithms were initialized with Y 0 = K0 = 0.

Figure 2 illustrates the convergence curves of both algorithms

with a stepsize selected using a backtracking procedure that

guarantees stability of the feedback loop. We observe that

the asymptotic rates of convergence for gradient descent on

SK and SY demonstrate similar trends.

(a) (b)

f
(K

k
)
−

f
(K

⋆
)

f
(K

0
)
−

f
(K

⋆
)

iteration iteration

Fig. 2. Convergence curves for gradient descent (blue) over the set SK , and
gradient descent (red) over the set SY . (a) and (b) correspond to N = 10
and N = 50 masses, respectively.

VII. CONCLUDING REMARKS

We prove exponential/linear convergence of gradient

flow/descent algorithms for solving the continuous-time LQR

problem based on a nonconvex formulation that directly

searches for the controller. A salient feature of our analysis is

that we relate the gradient-flow dynamics associated with this

nonconvex formulation to that of a convex reparameteriza-

tion. This allows us to deduce convergence of the nonconvex

approach from its convex reparameterization. While in this

paper we focus on known dynamics, in a companion paper

we extend our results to the model-free setting with unknown

A and B. Our efforts serve as a first step towards providing a

general sample-based framework for the learning and control

of large-scale dynamical systems. Some future directions in-

clude: (i) developing data-driven synthesis with convergence

guarantees that involves finite-time stochastic approximation

of the objective and its gradient; and (ii) providing theoretical

guarantees for the convergence of gradient-based methods for

structured control synthesis.

APPENDIX

A. Proof of Proposition 1

Here we only show that the function h(Y ) is µ-strongly

convex. See [12, Appendix D] for a proof of smoothness.

The proof relies on the bounds provided in Appendix B and

Lemma 4 that provides an upper bound on the norm of the

inverse Lyapunov operator for stable systems. The proof of

Lemma 4 is omitted due to page limitations.

Lemma 4: For any Hurwitz matrix F ∈ R
n×n, the linear

map F :Sn → Sn

F(W ) :=

∫

∞

0

eF t W eF
T t dt (25)

is well defined and for any Ω ≻ 0,

‖F‖2 ≤ trace (F(I)) ≤ trace (F(Ω))/λmin(Ω). (26)

We show that for any Ỹ ∈ R
m×n and Y ∈ SY (a), the

Hessian of h(Y ) satisfies
〈

Ỹ ,∇2h(Y ; Ỹ )
〉

≥ µ ‖Ỹ ‖2F
where µ is given by (13). Using Lemma 1, we can write

〈

Ỹ ,∇2h(Y ; Ỹ )
〉

= 2 ‖R
1
2 HX−

1
2 ‖2F ≥

2λmin(R)

‖X‖2
‖H‖2F

(27)
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where H := Ỹ −K X̃ . Next, we show that

‖H‖F /‖X̃‖F ≥ λmin(Ω)/trace(X) ‖B‖2. (28)

To do so, we substitute H + K X̃ for Ỹ in (11), which

yields

Γ = BH + HTBT , (29)

where Γ := (A − BK)X̃ + X̃(A − BK)T . Equation (29)

allows us to lower bound the norm of H as

‖H‖F ≥ ‖Γ‖F /‖B‖2. (30)

From the stability of the closed loop system, we have

X̃ = −

∫

∞

0

e(A−BK)t Γ e(A−BK)T t dt.

Now, we use Lemma 4 with F := A−BK to lower bound

the norm of Γ as follows

‖Γ‖F ≥
‖X̃‖F
‖F‖2

≥
λmin(Ω)‖X̃‖F
trace(F(Ω))

=
λmin(Ω) ‖X̃‖F

trace(X)
(31)

where the linear map F is defined in (25). Inequality (28)

follows from combining (30) and (31).

An upper bound on ‖Ỹ ‖F can thus be established as

‖Ỹ ‖F = ‖H + K X̃‖F ≤ ‖H‖F + ‖K‖F ‖X̃‖F

≤ ‖H‖F

(

1 +
a trace(X) ‖B‖2

λmin(Ω)
√

ν λmin(R)

)

≤ ‖H‖F
(

1 + a2 η
)

(32)

where η is given by (14a). Here, the second inequality

follows from (34c) and (28) and the last inequality follows

from (34a). Finally, inequalities (27) and (32) yield

〈

Ỹ ,∇2f(Y ; Ỹ )
〉

‖Ỹ ‖2F
≥

2λmin(R) ‖H‖2F
‖X‖2 ‖Ỹ ‖2F

≥
2λmin(R)

‖X‖2(1 + η)2
≥

2λmin(R)λmin(Q)

a (1 + a2 η)2
= µ (33)

where the last inequality follows from (34a). This completes

the proof.

B. Bounds on optimization variables

The following bounds on the variables X and K hold [12],

[14]. Over a sublevel set SK(a), we have

trace(X) ≤
a

λmin(Q)
(34a)

ν

a
≤ λmin(X) (34b)

‖K‖F ≤
a

√

ν λmin(R)
(34c)

where the constant ν is given by (14b).

C. Proof of Lemma 2

The gradients can be written as ∇f(K) = EX and

∇h(Y ) = E+2 (BT (P−W )), where E := 2(RK−BTP ),
and the matrices P and W are given by Eqs. (7) and (10),

respectively. Subtracting (10) from (7) yields

AT (P −W ) + (P −W )A = −
1

2

(

KTE + ETK
)

.

This equation gives us

‖P −W‖F ≤ ‖A−1‖2 ‖K‖F ‖E‖F ≤
a‖A−1‖2 ‖E‖F
√

ν λmin(R)

where the second inequality follows from (34c) in Ap-

pendix B. We thus have

‖∇h(Y )‖F /‖E‖F ≤ 1 + 2 a‖A−1‖2 ‖B‖2/
√

ν λmin(R).
(35)

On the other hand, using the lower bound (34b) on

λmin(X), it follows that

‖∇f(K)‖F = ‖EX‖F ≥
ν

a
‖E‖F .

Combining this inequality and (35) completes the proof.
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