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Abstract

Modern neural networks are typically trained in an over-parameterized regime where the parameters
of the model far exceed the size of the training data. Due to over-parameterization these neural
networks in principle have the capacity to (over)fit any set of labels including pure noise. Despite this
high fitting capacity, somewhat paradoxically, neural network models trained via first-order methods
continue to predict well on yet unseen test data. In this paper we take a step towards demystifying this
phenomena. In particular we show that first order methods such as gradient descent are provably robust
to noise/corruption on a constant fraction of the labels despite over-parametrization under a rich dataset
model. In particular: i) First, we show that in the first few iterations where the updates are still in the
vicinity of the initialization these algorithms only fit to the correct labels essentially ignoring the noisy
labels. ii) Secondly, we prove that to start to overfit to the noisy labels these algorithms must stray rather
far from from the initial model which can only occur after many more iterations. Together, these show
that gradient descent with early stopping is provably robust to label noise and shed light on empirical
robustness of deep networks as well as commonly adopted heuristics to prevent overfitting.

1 Introduction

1.1 Motivation

Deep neural networks (DNN) are ubiquitous in a growing number of domains ranging from computer vision
to healthcare. State-of-the-art DNN models are typically overparameterized and contain more parameters
than the size of the training dataset. It is well understood that in this overparameterized regime, DNNs
are highly expressive and have the capacity to (over)fit arbitrary training datasets including pure noise [56].
Mysteriously however neural network models trained via simple algorithms such as stochastic gradient
descent continue to predict well on yet unseen test data. In such over-parametrized scenarios there maybe
infinitely many globally optimal network parameters consistent with the training data, the key challenge is to
understand which network parameters (stochastic) gradient descent converges to and what are its properties.
Indeed, a recent series of papers [16,52,56], suggest that solutions found by first order methods tend to have
favorable generalization properties. As DNNs begin to be deployed in safety critical applications, the need for
foundational understanding of their noise robustness and their unique prediction capabilities intensifies.
This paper focuses on an intriguing phenomena: overparameterized neural networks are surprisingly robust
to label noise when first order methods with early stopping is used to train them. To observe this phenomena
consider Figure 1 where we perform experiments on the MNIST data set. Here, we corrupt a fraction of the
labels of the training data by assigning their label uniformly at random. We then fit a four layer model via
stochastic gradient descent and plot various performance metrics in Figures 1a and 1b. Figure la (blue curve)
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Figure 1: In these experiments we use a 4 layer neural network consisting of two convolution layers followed by two
fully-connected layers to train a data set of 50,000 samples from MNIST with various amounts of random corruption on
the lables. In this architecture the convolutional layers have width 64 and 128 kernels, and the fully-connected layers
have 256 and 10 outputs, respectively. Overall, there are 4.8 million trainable parameters. We depict the training
accuracy both w.r.t. the corrupted and uncorrupted labels as well as the test accuracy. (a) Shows the performance
after 200 epochs of Adadelta where near perfect fitting to the corrupted data is achieved. (b) Shows the performance
with early stopping. We observe that with early stopping the trained neural network is robust to label corruption.

shows that indeed with a sufficiently large number of iterations the neural network does in fact perfectly fit
the corrupted training data. However, Figure 1a also shows that such a model does not generalize to the
test data (yellow curve) and the accuracy with respect to the ground truth labels degrades (orange curve).
These plots clearly demonstrate that the model overfits with many iterations. In Figure 1b we repeat the
same experiment but this time stop the updates after a few iterations (i.e. use early stopping). In this case
the train accuracy degrades linearly (blue curve). However, perhaps unexpected, the test accuracy (yellow
curve) remains high even with a significant amount of corruption. This suggests that with early stopping the
model does not overfit and generalizes to new test data. Even more surprising, the train accuracy (orange
curve) with respect to the ground truth labels continues to stay around %100 even when %50 of the labels
are corrupted. That is, with early stopping overparameterized neural networks even correct the corrupted
labels! These plots collectively demonstrate that overparameterized neural networks when combined with
early stopping have unique generalization and robustness capabilities. As we detail further in Section 4 this
phenomena holds (albeit less pronounced) for reacher data models and architectures.

This paper aims to demystify the surprising robustness of overparameterized neural networks when early
stopping is used. We show that gradient descent is indeed provably robust to noise/corruption on a constant
fraction of the labels in such over-parametrized learning scenarios. In particular, under a fairly expressive
dataset model and focusing on one-hidden layer networks, we show that after a few iterations (a.k.a. early
stopping), gradient descent finds a model (i) that is within a small neighborhood of the point of initialization
and (ii) only fits to the correct labels essentially ignoring the noisy labels. We complement these findings
by proving that if the network is trained to overfit to the noisy labels, then the solution found by gradient
descent must stray rather far from the initial model. Together, these results highlight the key features of a
solution that generalizes well vs a solution that fits well.

Our theoretical results further highlight the role of the distance between final and initial network weights as
a key feature that determines noise robustness vs. overfitting. This is inherently connected to the commonly
used early stopping heuristic for DNN training as this heuristic helps avoid models that are too far from
the point of initialization. In the presence of label noise, we show that gradient descent implicitly ignores
the noisy labels as long as the model parameters remain close to the initialization. Hence, our results help
explain why early stopping improves robustness and helps prevent overfitting. Under proper normalization,



the required distance between the final and initial network and the predictive accuracy of the final network is
independent of the size of the network such as number of hidden nodes. Our extensive numerical experiments
corroborate our theory and verify the surprising robustness of DNNs to label noise. Finally, we would like to
note that while our results show that solutions found by gradient descent are inherently robust to label noise,
specialized techniques such as ;1 penalization or sample reweighting are known to further improve robustness.
Our theoretical framework may enable more rigorous understandings of the benefits of such heuristics when
training overparameterized models.

1.2 Prior Art

Our work is connected to recent advances on theory for deep learning as well as heuristics and theory
surrounding outlier robust optimization.

Robustness to label corruption: DNNs have the ability to fit to pure noise [56], however they are also
empirically observed to be highly resilient to label noise and generalize well despite large corruption [44].
In addition to early stopping, several heuristics have been proposed to specifically deal with label noise
[26,30,36,42,47,57]. See also [23,37,43,48] for additional work on dealing with label noise in classification tasks.
When learning from pairwise relations, noisy labels can be connected to graph clustering and community
detection problems [1,14,54]. Label noise is also connected to outlier robustness in regression which is a
traditionally well-studied topic. In the context of robust regression and high-dimensional statistics, much of
the focus is on regularization techniques to automatically detect and discard outliers by using tools such as ¢
penalization [6,10,15,17,22,32,35]. We would also like to note that there is an interesting line of work that
focuses on developing robust algorithms for corruption not only in the labels but also input data [19,31,41].
Overparameterized neural networks: Intriguing properties and benefits of overparameterized neural
networks has been the focus of a growing list of publications [4,11,12,18,28,49,51,53,56,58]. A recent line
of work [2,3,20,21,33,38,59] show that overparameterized neural networks can fit the data with random
initialization if the number of hidden nodes are polynomially large in the size of the dataset. Recently in [40]
we showed that this conclusion continues to hold with more modest amounts of overparameterization and as
soon as the number of parameters of the model exceed the square of the size of the training data set. This
line of work however is not informative about the robustness of the trained network against corrupted labels.
Indeed, such theory predicts that (stochastic) gradient descent will eventually fit the corrupted labels. In
contrast, our focus here is not in finding a global minima, rather a solution that is robust to label corruption.
In particular, we show that with early stopping we fit to the correct labels without overfitting to the corrupted
training data. Our result also defers from this line of research in another way. The key property utilized in
this research area is that the Jacobian of the neural network is well-conditioned at a random initialization if
the dataset is sufficiently diverse (e.g. if the points are well-separated). In contrast, in our model the Jacobian
is inherently low-rank with the rank of the Jacobian corresponding to different clusters/classes within the
dataset. We harness this low-rank nature to prove that gradient descent is robust to label corruptions. We
further utilize this low-rank structure to explain why neural networks can work with much more modest
amounts of overparameterization where the number of parameters in the model exceeds the number of
clusters raised to the fourth power and is independent of the number of data points. Furthermore, our
numerical experiments verify that the Jacobian matrix of real datasets (such as CIFAR10) indeed exhibit
low-rank structure. This is closely related to the observations on the Hessian of deep networks which is
empirically observed to be low-rank [45]. We would also like to note that the importance of the Jacobian
for overparameterized neural network analysis has also been noted by other papers including [21,39,49] and
also [16,29] which investigate the optimization landscape and properties of SGD for training neural networks.
An equally important question to understanding the convergence behavior of optimization algorithms for
overparameterized models is understanding their generalization capabilities. This is the subject of a few
interesting recent papers [5,7-9,13,24,34,50]. While in this paper we do not tackle generalization in the
traditional sense, we do show that solution found by gradient descent are robust to label noise/corruption
which demonstrates their predictive capabilities and in turn suggests better generalization.
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Figure 2: Visualization of the input/label samples and classes according to the clusterable dataset model in
Definition 1.1. In the depicted example there are K = 6 clusters, K = 3 classes. In this example the number
of data points is n = 30 with each cluster containing 5 data points. The labels associated to classes 1, 2, and
3 are a; = -1, az = 0.1, and a3 = 1, respectively so that § = 0.9. We note that the placement of points are
exaggerated for clarity. In particular, per definition the cluster center and data points all have unit Euclidean
norm. Also, there is no explicit requirements that the cluster centers be separated. The depicted separation

is for exposition purposes only.

1.3 Models
We first describe the dataset model used in our theoretical results. In this model we assume that the input
samples T, xo, ..., T, € R come from K clusters which are located on the unit Euclidian ball in RY. We also

assume our data set consists of K < K classes where each class can be composed of multiple clusters. We
consider a deterministic data set with n samples with roughly balanced clusters each consisting on the order
of n/K samples.! Finally, while we allow for multiple classes, in our model we assume the labels are scalars
and take values in [-1,1] interval. We formally define our dataset model below and provide an illustration in
Figure 2.

Definition 1.1 (Clusterable dataset) Consider a data set of size n consisting of input/label pairs
{(zi,y)}1y € RY x R. We assume the input data have unit Fuclidean norm and originate from K clusters
with the Cth cluster containing ny data points. We assume the number of points originating from each cluster
is well-balanced in the sense that cipw g < Ne < Cupge With Clow and cyp two numerical constants obeying
0 < Clow < cup < 1. We use {Cg}fil c R? to denote the cluster centers which are distinct unit Euclidian norm
vectors. We assume the input data points x that belong to the £-th cluster obey

|z - e, < eo,

with €9 > 0 denoting the input noise level. -
We assume the labels y; belong to one of K < K classes. Specifically, we assume y; € {a1,a,..., a5}

with {ag}£1 € [-1,1] denoting the labels associated with each class. We assume all the elements of the same
cluster belong to the same class and hence have the same label. However, a class can contain multiple clusters.
Finally, we assume the labels are separated in the sense that

lor —ag| 20 for r=s, (1.1)

with 6 >0 denoting the class separation.

IThis is for ease of exposition rather than a particular challenge arising in the analysis.



In the data model above {c;}£, are the K cluster centers that govern the input distribution. We note that
in this model different clusters can be assigned to the same label. Hence, this setup is rich enough to model
data which is not linearly separable: e.g. over R?, we can assign cluster centers (0,1) and (0,-1) to label 1
and cluster centers (1,0) and (-1,0) to label —1. Note that the maximum number of classes are dictated by
the separation 6. In particular, we can have at most K < % + 1 classes. We remark that this model is related
to the setup of [33] which focuses on providing polynomial guarantees for learning shallow networks. Finally,
note that, we need some sort of separation between the cluster centers to distinguish them. While Definition
1.1 doesn’t specifies such separation explicitly, Definition 2.1 establishes a notion of separation in terms of
how well a neural net can distinguish the cluster centers. Next, we introduce our noisy/corrupted dataset
model.

Definition 1.2 ((p,e0,d) corrupted dataset) Let {(x;,7;)}; be an (0,0) clusterable dataset with aq,
Qg, ...,ax denoting the K possible class labels. A (p,eg,0) noisy/corrupted dataset {(x;,y;)}, is generated
from {(@:,7:) vy as follows. For each cluster 1 <£ < K, at most sg < png of the labels associated with that
cluster (which contains ng points) is assigned to another label value chosen from {cay}lX,. We shall refer to
the initial labels {F;}7., as the ground truth labels.

We note that this definition allows for a fraction p of corruptions in each cluster.

Network model: We will study the ability of neural networks to learn this corrupted dataset model. To
proceed, let us introduce our neural network model. We consider a network with one hidden layer that maps
R? to R. Denoting the number of hidden nodes by k, this network is characterized by an activation function
&, input weight matrix W e R¥*¢ and output weight vector v € RF. In this work, we will fix output v to
be a unit vector where half the entries are 1/ Vk and other half are —1 / Vk to simplify exposition.? We will
only optimize over the weight matrix W which contains most of the network parameters and will be shown
to be sufficient for robust learning. We will also assume ¢ has bounded first and second order derivatives,
ie. [¢'(2)],1¢" ()| <T for all z. The network’s prediction at an input sample @ is given by

x> f(W,z)=v ¢p(We), (1.2)
where the activation function ¢ applies entrywise. Given a dataset {(x;,y;)}i,, we shall train the network
via minimizing the empirical risk over the training data via a quadratic loss

1 n
L(W) = §Z(yi_f($i7w))2‘ (1.3)
i=1

In particular, we will run gradient descent with a constant learning rate n, starting from a random initialization
W via the following updates

Wit = W, —VL(W,). (1.4)

2 Main results

Throughout, |- | denotes the largest singular value of a given matrix. The notation O(-) denotes that a
certain identity holds up to a fixed numerical constant. Also, ¢, ¢, C, Cy etc. represent numerical constants.

2.1 Robustness of neural network to label noise with early stopping

Our main result shows that overparameterized neural networks, when trained via gradient descent using
early stopping are fairly robust to label noise. The ability of neural networks to learn from the training data,
even without label corruption, naturally depends on the diversity of the input training data. Indeed, if two
input data are nearly the same but have different uncorrupted labels reliable learning is difficult. We will
quantify this notion of diversity via a notion of condition number related to a covariance matrix involving the
activation ¢ and the cluster centers {c,}K ;.

2If the number of hidden units is odd we set one entry of v to zero.



Definition 2.1 (Neural Net Cluster Covariance and Condition Number) Define the matriz of clus-
ter centers

C=[c ... cK]T e RE*d,

Let g ~N(0,1;). Define the neural net covariance matriz X(C) as

2(C) = (CCT) OLy[¢'(Cg)¢'(Cg)" ).

Here ©® denotes the elementwise product. Also denote the minimum eigenvalue of 3(C') by M(C) and define
the following condition number associated with the cluster centers C

oy JLleL
K \C)

One can view X(C) as an empirical kernel matrix associated with the network where the kernel is given
by K(¢;,¢;j) =3;;(C). Note that X(C) is trivially rank deficient if there are two cluster centers that are
identical. In this sense, the minimum eigenvalue of X(C) will quantify the ability of the neural network
to distinguish between distinct cluster centers. Therefore, one can think of x(C') as a condition number
associated with the neural network which characterizes the distinctness/diversity of the cluster centers. The
more distinct the cluster centers, the larger A\(C') and smaller the condition number x(C') is. Indeed, based
on results in [40] when the cluster centers are maximally diverse e.g. uniformly at random from the unit
sphere k(C') scales like a constant. Throughout we shall assume that A\(C) is strictly positive (and hence
k(C') < 00). This property is empirically verified to hold in earlier works [55] when ¢ is a standard activation
(e.g. ReLU, softplus). As a concrete example, for ReLU activation, using results from [40] one can show if the
cluster centers are separated by a distance v > 0, then A(C) > 15¢%=- We note that variations of the A\(C') >0
assumption based on the data points (i.e. A(X) > 0 not cluster centers) [20,21,40] are utilized to provide
convergence guarantees for DNNs.Also see [3,59] for other publications using related definitions.

Now that we have a quantitative characterization of distinctiveness/diversity in place we are now ready to
state our main result. Throughout we use cr, Cr, etc. to denote constants only depending on I'. We note
that this Theorem is slightly simplified by ignoring logarithmic terms and precise dependencies on I'. We
refer the reader to Theorem 6.13 for precise statement including logarithmic terms.

Theorem 2.2 (Robust learning with early stopping-simplified) Consider an (s,e0,9) clusterable cor-
rupted data set of input/label pairs {(x;,y;)}1-; € R x R per Definition 1.2 with cluster centers {c,}L,
aggregated as rows of a matriz C € RE*. Furthermore, let {7} be the corresponding uncorrupted ground
truth labels. Also consider a one-hidden layer neural network with k hidden units and one output of the form
x> v o (Wa) with W e R and v e RF the input-to-hidden and hidden-to-output weights. Also suppose
the activation ¢ obeys |p(0)| < T and |¢'(2)|,|¢" (2)| < T for all z and some T > 1. Furthermore, we set half of
the entries of v to 1/\/E and the other half to —1/\/E3 and train only over W . Starting from an initial weight
matriz Wy selected at random with i.i.d. N'(0,1) entries we run Gradient Descent (GD) updates of the form
Wi = W, =nVL(W,) on the least-squares loss (1.3) with step size n = Ep%ﬁ with ¢r. Furthermore,
assume the number of parameters obey
4

kd > Cm“(C)%,
with k(C) the neural net cluster condition number pre Definition 2.1. Then as long as ey <¢p/K? and p < g
with probability at least 1 -3/ K%, after Ty = CF§/\(C)/<;2(C) log(%) iterations, the neural network f(-, W)
found by gradient descent assigns all the input samples x; to the correct ground truth labels 7j;. That is,

arg min |f(Wr, ;) - | =7, (2.1)
apl<l<K

31f k is odd we set one entry to zero [%J to 1/Vk and [%J entries to —1/v/k.



holds for all 1 <i <n. Furthermore, for all 0 <7 < 79, the distance to the initial point obeys

2
HW-,— — WOHF < ér (\/?4- |IC<”27’80).

Theorem 2.2 shows that gradient descent with early stopping has a few intriguing properties. We further
discuss these properties below.

Robustness. The solution found by gradient descent with early stopping degrades gracefully as the label
corruption level p grows. In particular, as long as p < 0/8, the final model is able to correctly classify all
samples including the corrupted ones. In our setup, intuitively label gap obeys § ~ %, hence, we prove
robustness to

Total Number of corrupted labels %

This result is independent of number of clusters and only depends on number of classes. An interesting future
direction is to improve this result to allow on the order of n corrupted labels. Such a result maybe possible
by using a multi-output classification neural network.
Early stopping time. We show that gradient descent finds a model that is robust to outliers after a few
iterations. In particular using the maximum allowed step size, the required number of iterations is of the
order of %A(C)/{Q(C) log(%) which scales with K/d up to condition numbers.
Modest overparameterization. Our result requires modest overparemetrization and apply as soon as the
number of parameters exceed the number of classes to the power four (kd > K*). Interestingly, under our
data model the required amount of overparameterization is essentially independent of the size of the training
data n(ignoring logarithmic terms) and conditioning of the data points, only depending on the number of
clusters and conditioning of the cluster centers. This can be interpreted as ensuring that the network has
enough capacity to fit the cluster centers {CE}ZIi , and the associated true labels.
Distance from initialization. Another feature of Theorem 2.2 is that the network weights do not stray far
from the initialization as the distance between the initial model and the final model (at most) grows with the
square root of the number of clusters (v/K). This /K dependence implies that the more clusters there are,
the updates travel further away but continue to stay within a certain radius. This dependence is intuitive as
the Rademacher complexity of the function space is dictated by the distance to initialization and should grow
with the square-root of the number of input clusters to ensure the model is expressive enough to learn the
dataset.

Before we end this section we would like to note that in the limit of ¢g - 0 where the input data set is
perfectly clustered one can improve the amount of overparamterization. Indeed, the result above is obtained
via a perturbation argument from this more refined result stated below.

Theorem 2.3 (Training with perfectly clustered data) Consier the setting and assumptions of Theo-
rem 2.3 with €g = 0. Starting from an initial weight matriz Wy selected at random with i.i.d. N'(0,1) entries
we run Gradient Descent (GD) updates of the form W..1 = W, —nVL(W.,) on the least-squares loss (1.3)

with step size n < W Furthermore, assume the number of parameters obey
up

kd > CT*k*(C)K?,
with k(C) the neural net cluster condition number per Definition 2.1. Then, with probability at least 1-2/K°°
over randomly initialized Wy b N(0,1), the iterates W, obey the following properties.

o The distance to initial point Wy is upper bounded by

Klog K
W, - Wo|p <Dy [ —o
I olr<c NC)

) iterations, the entrywise predictions of the learned network with

K N log K
o After > 719 := oA () log( npog

respect to the ground truth labels {7;}7, satisfy
[f(Wr,2:) - Ti| < 4p,



for all 1 < i <n. Furthermore, if the noise level p obeys p < 0/8 the network predicts the correct label for
all samples i.e.

arg min _|f(W,,x;)—ay|=7; for i=1,2,... n. (2.2)
apl<l<K

This result shows that in the limit ¢y — 0 where the data points are perfectly clustered, the required amount
of overparameterization can be reduced from kd 2 K* to kd 2 K2. In this sense this can be thought of a
nontrivial analogue of [40] where the number of data points are replaced with the number of clusters and the
condition number of the data points is replaced with a cluster condition number. This can be interpreted
as ensuring that the network has enough capacity to fit the cluster centers {cz}ﬁ 1 and the associated true
labels. Interestingly, the robustness benefits continue to hold in this case. However, in this perfectly clustered
scenario there is no need for early stopping and a robust network is trained as soon as the number of iterations
are sufficiently large. Infact, in this case given the clustered nature of the input data the network never
overfits to the corrupted data even after many iterations.

2.2 To (over)fit to corrupted labels requires straying far from initialization

In this section we wish to provide further insight into why early stopping enables robustness and generalizable
solutions. Our main insight is that while a neural network maybe expressive enough to fit a corrupted dataset,
the model has to travel a longer distance from the point of initialization as a function of the distance from
the cluster centers €y and the amount of corruption. We formalize this idea as follows. Suppose

1. two input points are close to each other (e.g. they are from the same cluster),
2. but their labels are different, hence the network has to map them to distant outputs.

Then, the network has to be large enough so that it can amplify the small input difference to create a large
output difference. Our first result formalizes this for a randomly initialized network. Our random initialization
picks W with i.i.d. standard normal entries which ensures that the network is isometric i.e. given input x,

E[f(W,2)*] = O(|[7,).

Theorem 2.4 Let x1,xo € R? be two wvectors with unit Euclidean norm obeying |2 —a:1|\52 < €y. Let
f(W,x) = vT¢p(Wa) where v is fivzed, W € RF*Y and k > cd with ¢ > 0 a fized constant. Assume
|#'],]1¢"| < T. Let y1 and ya be two scalars satisfying |yz —y1| > 6. Suppose W - N(0,1). Then, with
probability at least 1 — 2~ *+d) _ 2e‘§, for any W e R**4 such that |W - Wy ||, < vk and

JW,x1)=y1 and f(W,x2) =y,

holds, we have

é t

W -W,| > L
” ol CTey 1000

In words, this result shows that in order to fit to a data set with a single corrupted label, a randomly initialized
network has to traverse a distance of at least 0/cg. The next lemma clarifies the role of the corruption amount
s and shows that more label corruption within a fixed class requires a model with a larger norm in order to
fit the labels. For this result we consider a randomized model with €3 input noise variance.

Lemma 2.5 Let c € R? be a cluster center. Consider 2s data points {x;}5_, and {&;}5_, in R generated
1.4.d. around c according to the following distribution

2
ctg with g~N(0, %Ord).



Assign {x;};_, with labels y; =y and {Z;}5_; with labels §; =T and assume these two labels are & separated
i.e. [y -] > 0. Also suppose s <d and |¢'| <T. Then, any W e R*¢ satisfying

f(Wawz):yZ and f(WﬂAEJZ):@’Z fOT’ izlv"‘vsv

obeys |W g = 5\1/12 with probability at least 1 - e~%2,

Unlike Theorem 2.4 this result lower bounds the network norm in lieu of the distance to the initialization Wj.
However, using the triangular inequality we can in turn get a guarantee on the distance from initialization
W) via triangle inequality as long as |[Wy|r $ O(\/sd/e0) (e.g. by choosing a small ).
The above Theorem implies that the model has to traverse a distance of at least
oo
HWT WOHFZ KEO’

to perfectly fit corrupted labels. In contrast, we note that the conclusions of the upper bound in Theorem
2.2 show that to be able to fit to the uncorrupted true labels the distance to initialization grows at most
by Teg after 7T iterates. This demonstrates that there is a gap in the required distance to initialization for
fitting enough to generalize and owverfitting. To sum up, our results highlight that, one can find a network
with good generalization capabilities and robustness to label corruption within a small neighborhood of the
initialization and that the size of this neighborhood is independent of the corruption. However, to fit to the
corrupted labels, one has to travel much more, increasing the search space and likely decreasing generalization
ability. Thus, early stopping can enable robustness without overfitting by restricting the distance to the
initialization.

3 Technical Approach and General Theory

In this section, we outline our approach to proving robustness of overparameterized neural networks. Towards
this goal, we consider a general formulation where we aim to fit a general nonlinear model of the form
x — f(0,x) with 0 € RP denoting the parameters of the model. For instance in the case of neural networks 0
represents its weights. Given a data set of n input/label pairs {(z;,v;)}", c R? x R, we fit to this data by
minimizing a nonlinear least-squares loss of the form

£0) = 5 3= 1(0.2))"

which can also be written in the more compact form

f(0,$1)

£(8,2,)

To solve this problem we run gradient descent iterations with a constant learning rate 7 starting from an
initial point @y. These iterations take the form

5(9):%\|f(0)—y\|52 with  f(6) =

0,1 =0, -1VL(O;) with VLO)=T"(0)(f(0)-y). (3.1)

Here, J(0) is the n x p Jacobian matrix associated with the nonlinear mapping f defined via

x| x, T
J(0) = [21O@z) 01Oz ] (3.2)



3.1 Bimodal jacobian structure

Our approach is based on the hypothesis that the nonlinear model has a Jacobian matrix with bimodal
spectrum where few singular values are large and remaining singular values are small. This assumption is
inspired by the fact that realistic datasets are clusterable in a proper, possibly nonlinear, representation
space. Indeed, one may argue that one reason for using neural networks is to automate the learning of such a
representation (essentially the input to the softmax layer). We formalize the notion of bimodal spectrum
below.

Assumption 1 (Bimodal Jacobian) Let 8> a>e¢>0 be scalars. Let f:RP - R"™ be a nonlinear mapping
and consider a set D c RP containing the initial point 0y (i.e. Og € D). Let Sy ¢ R™ be a subspace and S- be
its complement. We say the mapping f has a Bimodal Jacobian with respect to the complementary subpspaces
S and 8- as long as the following two assumptions hold for all @ € D.

e Spectrum over S,: For all v € S, with unit Fuclidian norm we have
o< ||JT(9)U|‘£2 <B.
e Spectrum over S_: For all v € S_ with unit Euclidian norm we have

||jT(0)v||€2 <e.

We will refer to S, as the signal subspace and S- as the noise subspace.

When € << a the Jacobian is approximately low-rank. An extreme special case of this assumption is where
€ = 0 so that the Jacobian matrix is exactly low-rank. We formalize this assumption below for later reference.

Assumption 2 (Low-rank Jacobian) Let 8 > a > 0 be scalars. Consider a set D c RP containing the
initial point O (i.e. O € D). Let S, c R"™ be a subspace and S- be its complement. For all @ € D, ve S, and
w e S_ with unit Fuclidian norm, we have that

a<|7"@)w], <p and |TT(O)w], =0.

Our dataset model in Definition 1.2 naturally has a low-rank Jacobian when €y = 0 and each input example is
equal to one of the K cluster centers {c,}2,. In this case, the Jacobian will be at most rank K since each

row will be in the span of Bf%cé’e) }Zl. The subspace S, is dictated by the membership of each cluster as
follows: Let Ay c {1,...,n} be the set of coordinates i such that x; = ¢y. Then, subspace is characterized by

S+:{U€[R"|Ui1:vi2 for all 41,i5€ Ay and 1<l<K}.

When ¢y > 0 and the data points of each cluster are not the same as the cluster center we have the bimodal
Jacobian structure of Assumption 1 where over S_ the spectral norm is small but nonzero.

In Section 4, we verify that the Jacobian matrix of real datasets indeed have a bimodal structure i.e. there
are few large singular values and the remaining singular values are small which further motivate Assumption
2. This is inline with earlier papers which observed that Hessian matrices of deep networks have bimodal
spectrum (approximately low-rank) [45] and is related to various results demonstrating that there are flat
directions in the loss landscape [27].

3.2 Meta result on learning with label corruption

Define the n-dimensional residual vector r» where r(0) = [f(zcl, 0)-y1 ... f(z,,0)- yn]T. A key idea
in our approach is that we argue that (1) in the absence of any corruption r(0) approximately lies on the
subspace S, and (2) if the labels are corrupted by a vector e, then e approximately lies on the complement
space. Before we state our general result we need to discuss another assumption and definition.
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Assumption 3 (Smoothness) The Jacobian mapping J(0) associated to a nonlinear mapping f : RP - R™
is L-smooth if for all 0,05 € R? we have | J(02) - T (61)] < L]0z -61],,.*

Additionally, to connect our results to the number of corrupted labels, we introduce the notion of subspace
diffusedness defined below.

Definition 3.1 (Diffusedness) S, is vy diffused if for any vector v € S,

lvle. < VA/nlv]e,,

holds for some v > 0.

The following theorem is our meta result on the robustness of gradient descent to sparse corruptions on
the labels when the Jacobian mapping is exactly low-rank. Theorem 2.3 for the perfectly clustered data
(€0 = 0) is obtained by combining this result with specific estimates developed for neural networks.

Theorem 3.2 (Gradient descent with label corruption) Consider a nonlinear least squares problem
of the form L(0) = % [f(8) —y)H?2 with the nonlinear mapping [ : RP - R™ obeying assumptions 2 and 3

over a unit Euclidian ball of radius Alroley around an initial point Oy and y =[y1 ... yn] € R™ denoting the

corrupted labels. Also let § = [71 ... Un] € R® denote the uncorrupted labels and e =y — g the corruption.
Furthermore, suppose the initial residual f(60g) — Y with respect to the uncorrupted labels obey f(0g) — Y € Sy.

Then, running gradient descent updates of the from (3.1) with a learning rate n < ﬁ min (1 all

af
? Lrol,, )’
iterates obey

10, - 0y, < HToles.

Furthermore, assume v > 0 is a precision level obeying v > |Ils, (€)|e.. Then, after T > m%log(%)

iterations, 0, achieves the following error bound with respect to the true labels
1£(6:) = Flle., <2v.
Furthermore, if e has at most s nonzeros and Sy is v diffused per Definition 3.1, then using v = |ILs, (€)||e..

5

17(8:) = Fle. <2|1s. ()] < D]
This result shows that when the Jacobian of the nonlinear mapping is low-rank, gradient descent enjoys two
intriguing properties. First, gradient descent iterations remain rather close to the initial point. Second, the
estimated labels of the algorithm enjoy sample-wise robustness guarantees in the sense that the noise in the
estimated labels are gracefully distributed over the dataset and the effects on individual label estimates are
negligible. This theorem is the key result that allows us to prove Theorem 2.3 when the data points are
perfectly clustered (¢y = 0). Furthermore, this theorem when combined with a perturbation analysis allows us
to deal with data that is not perfectly clustered (ey > 0) and to conclude that with early stopping neural
networks are rather robust to label corruption (Theorem 2.2).

Finally, we note that a few recent publication [3,21,39] require the Jacobian to be well-conditioned to fit
labels perfectly. In contrast, our low-rank model cannot perfectly fit the corrupted labels. Furthermore, when
the Jacobian is bimodal (as seems to be the case for many practical data sets and neural network models) it
would take a very long time to perfectly fit the labels and as demonstrated earlier such a model does not
generalize and is not robust to corruptions. Instead we focus on proving robustness with early stopping.

4Note that, if &gée) is continuous, the smoothness condition holds over any compact domain (albeit for a possibly large L).
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Figure 3: We depict the training accuracy of a LENET model trainined on 3000 samples from MNIST as
a function of relative distance from initialization. Here, the x-axis keeps track of the distance between the
current and initial weights of all layers combined.

3.3 To (over)fit to corrupted labels requires straying far from initialization

In this section we state a result that provides further justification as to why early stopping of gradient descent
leads to more robust models without overfitting to corrupted labels. This is based on the observation that
while finding an estimate that fits the uncorrupted labels one does not have to move far from the initial
estimate in the presence of corruption one has to stray rather far from the initialization with the distance
from initialization increasing further in the presence of more corruption. We make this observation rigorous
below by showing that it is more difficult to fit to the portion of the residual that lies on the noise space
compared to the portion on the signal space (assuming a > ¢).

Theorem 3.3 Denote the residual at initialization 8y by ro = f(0y) —y. Define the residual projection over
the signal and noise space as

Ey = |Ts, (ro)e, and E-=[Tls_(r0)]e,-

Suppose Assumption 1 holds over an Fuclidian ball D of radius R < max(%, %) around the initial point
0y with o > €. Then, over D there exists no 0 that achieves zero training loss. In particular, if D = RP, any

parameter @ achieving zero training loss (f(0) = y) satisfies the distance bound

E, E_
0-6 2max(—+,—).
600, S
This theorem shows that the higher the corruption (and hence E_) the further the iterates need to stray from
the initial model to fit the corrupted data.

4 Numerical experiments

We conduct several experiments to investigate the robustness capabilities of deep networks to label corruption.
In our first set of experiments, we explore the relationship between loss, accuracy, and amount of label
corruption on the MNIST dataset to corroborate our theory. Our next experiments study the distribution of
the loss and the Jacobian on the CIFAR-10 dataset. Finally, we simulate our theoretical model by generating
data according to the corrupted data model of Definition 1.2 and verify the robustness capability of gradient
descent with early stopping in this model.
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Figure 4: Histogram of the cross entropy loss of individual data points based on a model trained on 50,000
samples from CIFAR-10 with early stopping. Plot depicts 5000 random samples from these 50,000 samples.
The loss distribution of clean and corrupted data are separated but gracefully overlap as the corruption level
increases.

In Figure 3, we train the same model used in Figure 1 with n = 3,000 MNIST samples for different amounts
of corruption. Our theory predicts that more label corruption leads to a larger distance to initialization. To
probe this hypothesis, Figure 3a and 3b visualizes training accuracy and training loss as a function of the
distance from the initialization. These results demonstrate that the distance from initialization gracefully
increase with more corruption.

Next, we study the distribution of the individual sample losses on the CIFAR-10 dataset. We conducted
two experiments using Resnet-20 with cross entropy loss®. In Figure 4 we assess the noise robustness of
gradient descent where we used all 50,000 samples with either 30% random corruption or 50% random
corruption. Theorem 2.3 predicts that when the corruption level is small, the loss distribution of corrupted vs
clean samples should be separable. Figure 4 shows that when 30% of the data is corrupted the distributions
are approximately separable. When we increase the shuffling amount to 50% the training loss on the clean
data increases as predicted by our theory and the distributions start to gracefully overlap.

As described in Section 3, our technical framework utilizes a bimodal prior on the Jacobian matrix (3.2) of
the model. We now further investigate this hypothesis. For a multiclass task, the Jacobian matrix is essentially
a 3-way tensor where dimensions are sample size (n), total number of parameters in the model (p), and the
number of classes (K). The neural network model we used for CIFAR 10 has around 270,000 parameters in
total. In Figure 5 we illustrate the singular value spectrum of the two multiclass Jacobian models where we
form the Jacobian from all layers except the five largest (in total we use p ~ 90,000 parameters).® We train
the model with all samples and focus on the spectrum before and after the training. In Figure 5a, we picked
n = 1000 samples and unfolded this tensor along parameters to obtain a 10,000 x 90,000 matrix which verifies
our intuition on bimodality. In particular, only 10 to 20 singular values are larger than 0.1x the top one.
This is consistent with earlier works that studied the Hessian spectrum. However, focusing on the Jacobian
has the added advantage of requiring only first order information [25,45]. A disadvantage is that the size of
Jacobian grows with number of classes. Intuitively, cross entropy loss focuses on the class associated with
the label hence in Figure 5b, we only picked the partial derivative associated with the correct class so that
each sample is responsible for a single (size p) vector. This allowed us to scale to n = 10000 samples and
the corresponding spectrum is strikingly similar. Another intriguing finding is that the spectrums of before
and after training are fairly close to each other highlighting that even at random initialization, spectrum is
bimodal.

5We opted for cross entropy as it is the standard classification loss however least-squares loss achieves similar accuracy.
6We depict the smaller Jacobian due to the computational cost of calculating the full Jacobian.
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Figure 5: Spectrum of the Jacobian obtained by plotting the singular values. (a) is obtained by forming the
Jacobian by taking partial derivatives of all classes associated with a sample for 1000 samples. (b) is obtained
by taking the class corresponding to the label for 10000 samples.

# >0.1x top singular | At initialization | After training
All classes 4 14
Correct class 15 16

Table 1: Jacobian of the network has few singular values that are significantly large i.e. larger than 0.1x the
spectral norm. This is true whether we consider the initial network or final network.

In Figure 6, we turn our attention to verifying our findings for the corrupted dataset model of Definition
1.2. We generated K = 2 classes where the associated clusters centers are generated uniformly at random on
the unit sphere of R%2, We also generate the input samples at random around these two clusters uniformly
at random on a sphere of radius ¢¢ = 0.5 around the corresponding cluster center. Hence, the clusters are
guaranteed to be at least 1 distance from each other to prevent overlap. Overall we generate n = 400 samples
(200 per class/cluster). Here, K = K =2 and the class labels are 0 and 1. We picked a network with & = 1000
hidden units and trained on a data set with 400 samples where 30% of the labels were corrupted. Figure 6a
plots the trajectory of training error and highlights the model achieves good classification in the first few
iterations and ends up overfitting later on. In Figures 6b and 6¢, we focus on the loss distribution of 6a at
iterations 80 and 4500. In this figure, we visualize the loss distribution of clean and corrupted data. Figure
6b highlights the loss distribution with early stopping and implies that the gap between corrupted and clean
loss distributions is surprisingly resilient despite a large amount of corruption and the high-capacity of the
model. In Figure 6¢, we repeat plot after many more iterations at which point the model overfits. This plot
shows that the distribution of the two classes overlap demonstrating that the model has overfit the corruption
and lacks generalization/robustness.

5 Conclusions

In this paper, we studied the robustness of overparameterized neural networks to label corruption from a
theoretical lens. We provided robustness guarantees for training networks with gradient descent when early
stopping is used and complemented these guarantees with lower bounds. Our results point to the distance
between final and initial network weights as a key feature to determine robustness vs. overfitting which is
inline with weight decay and early stopping heuristics. We also carried out extensive numerical experiments
to verify the theoretical predictions as well as technical assumptions. While our results shed light on the
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Figure 6: We experiment with the corrupted dataset model of Definition 1.2. We picked K =2 classes and
set n =400 and g¢ = 0.5. Trained 30% corrupted data with & = 1000 hidden units. Each corruption has 50%
chance to remain in the correct class hence around 15% of the labels are actually flipped which corresponds

to the dashed green line.

intriguing properties of overparameterized neural network optimization, it would be appealing (i) to extend
our results to deeper network architecture, (ii) to more complex data models, and also (iii) to explore other
heuristics that can further boost the robustness of gradient descent methods.

6 Proofs
6.1 Proofs for General Theory

We begin by defining the average Jacobian which will be used throughout our analysis.

Definition 6.1 (Average Jacobian) We define the average Jacobian along the path connecting two points

xz,yeRP as
1
Iy.2)= [ T(@+aly-a)da. (6.1)
Lemma 6.2 (Linearization of the residual) Given gradient descent iterate 6 = 6 —nVL(8), define
C(6)=7(0,6)7(6)".
The residuals 7 = f(é) —y, r=[f(0)-y obey the following equation
#=(I-nC(0))r.
Proof Following Definition 6.1, denoting f(8) —y = # and f(8) —y = r, we find that

F=r—f(60)+f(8)
Dyt 7(6,0)(6-0)

Oy _17(6,6)7(6)7r
= (I-1C(0))r. (6.2)

Here (a) uses the fact that Jacobian is the derivative of f and (b) uses the fact that V£(0) = J(8)Tr. m

Using Assumption 3.1, one can show that sparse vectors have small projection on S,.
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Lemma 6.3 Suppose Assumption 3.1 holds. If r € R™ is a vector with s nonzero entries, we have that

Vs (6.3)

B
I, () e, < ==l

Proof First, we bound the ¢; projection of r on S, as follows

T
v'r 5 s
ITs, (7)]le, = sup < \/jl\r\lel </ lrlle.
ves, [|v]e, n n

where we used the fact that |v;] < \/7|v]e,/v/n. Next, we conclude with

gl s
s (e < \/ 21T (e € 5

6.1.1 Proof of Theorem 3.2

Proof The proof will be done inductively over the properties of gradient descent iterates and is inspired
from the recent work [39]. In particular, [39] requires a well-conditioned Jacobian to fit labels perfectly. In
contrast, we have a low-rank Jacobian model which cannot fit the noisy labels (or it would have trouble
fitting if the Jacobian was approximately low-rank). Despite this, we wish to prove that gradient descent
satisfies desirable properties such as robustness and closeness to initialization. Let us introduce the notation
related to the residual. Set r, = f(0,) —y and let 7o = f(0y) — y be the initial residual. We keep track of the
growth of the residual by partitioning the residual as r, = ¥, + &, where

éT = HS, (rT) 5 'F‘r = HS+ (TT)'

We claim that for all iterations 7 > 0, the following conditions hold.

e -&, (6.4)
2 T
— 2 no — 12
i1 <127 I, ©5)
1 _ _
L1, - 60l,, 171, < ol < ol (6.5)

Assuming these conditions hold till some 7 > 0, inductively, we focus on iteration 7+ 1. First, note that these

conditions imply that for all 7> ¢ >0, 8; € D where D is the Euclidian ball around 68 of radius %. This
directly follows from (6.6) induction hypothesis. Next, we claim that 6,1 is still within the set D. This can
be seen as follows:

Claim 1 Under the induction hypothesis (6.4), 6,,1 € D.

Proof Since range space of Jacobian is in S, and 7 < 1/32, we begin by noting that

10711 = 0: e = 1|TT(0:) (f(Br) = 9)es (6.7)
Wl (0,) (s, ((67) - 9)) e, (6.8)
QT (O:)7 (6.9)
< 0Bl 1 (6.10)
@ ”7775“2 (6.11)
Q [7rle (6.12)
a
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In the above, (a) follows from the fact that row range space of Jacobian is subset of S; via Assumption 2. (b)
follows from the definition of 7. (c) follows from the upper bound on the spectral norm of the Jacobian over
D per Assumption 2, (d) from the fact that n < %, (e) from a < 8. The latter combined with the triangular
inequality and induction hypothesis (6.6) yields (after scaling (6.6) by 4/«)

HF‘FHEQ 4HTOHZ2

16741~ B0l < 1811~ 8-l + 100 — O e, < 6~ Bl + 22 < ZOL2,

concluding the proof of 8.1 € D. |

To proceed, we shall verify that (6.6) holds for 7+ 1 as well. Note that, following Lemma 6.2, gradient descent
iterate can be written as
rr1=(I-C(6;))r,.

Since both column and row space of C(0,) is subset of S, we have that

érv1=1ls (I-C(6;))r;) (6.13)
=IIs (7;) (6.14)
=é,, (6.15)

This shows the first statement of the induction. Next, over S,, we have

Frot = Is, (I - C(6,)r,) (6.16)
- s, (I - C(6:)7>) +Ts. (I - C(6,))e,) (6.17)
- I, (I - C(6,))7r) (6.18)
- (I-C(6,))F, (6.19)

where the second line uses the fact that €, € S_ and last line uses the fact that 7, € S,. To proceed, we need
to prove that C'(0,) has desirable properties over S,, in particular, it contracts this space.

Claim 2 let Ps, € R™" be the projection matrix to Sy i.e. it is a positive semi-definite matriz whose
etgenvectors over Sy is 1 and its complement is 0. Under the induction hypothesis and setup of the theorem,
we have that”

Oé2

2
Proof The proof utilizes the upper bound on the learning rate. The argument is similar to the proof of
Lemma 9.7 of [39]. Suppose Assumption 3 holds. Then, for any 61,05 € D we have

3°Ps, = C(6,) z J(0:)T(0,)" = —Ps,. (6.20)

17 (02,00 -7 @)1 =] [ (7 01+ (02 -00)) - T @) at].

< [11701 418 -00) - T (@),

gftL 62— 64, dt < g 162641, (6.21)
Thus, for n < m,
|T(0+41,07) =T (0:)] < H 1= 0-,, (6.22)
- f||JT(07><f<eT>—y>||b LR (6.23)
@By, € 2. (6:2)

"We say A > B if A- B is a positive semi-definite matrix in the sense that for any real vector v, vT (A - B)v > 0.
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where for (a) we utilized the induction hypothesis (6.6) and (b) follows from the upper bound on 1. Now
that (6.24) is established, using following lemma, we find

C(@T) :J(eﬂlve'r)j(a‘r)T z (1/2)j(97)~7(07)T-

The 32 upper bound directly follows from Assumption 2 by again noticing range space of Jacobian is subset
of S,.

Lemma 6.4 (Asymmetric PSD perturbation) Consider the matrices A,C € R™P obeying |A - C| <
/2. Also suppose CCT > o2 Ps, . Furthermore, assume range spaces of A,C' lies in S,. Then,

CCT 2

ACT » > L ps
2 2

Proof For r € S, with unit Euclidian norm, we have
rTACTr = |CTr|f, + " (A-C)CTr > |CTrf, = |CT |, 77 (A - O) e,

=(ICTr|e, = 7" (A= C)e)ICT 7|,
> (|CT e, ~a/2)|C e,

> |CTr|Z, /2.
Also, for any 7, by range space assumption rZ ACTr =1, (r)T ACT1ls, (r) (same for CCT). Combined
with above, this concludes the claim. |
|

What remains is proving the final two statements of the induction (6.6). Note that, using the claim above
and recalling (6.19) and using the fact that |7 (0,41,0;)| < 3, the residual satisfies

7, = (1 =nC (O, = |7 17, - 207, Coy 40P FE CL O,
<77, =77 T(0:)T (0:)" 7 +0* 5777 T (6:)T (8,) "7
< |71, - (=877 (6:)" 7 17,
< |71, - 51707 [,

where we used the fact that n < Now, using the fact that 7 (0,)7(0,)T > a*Ps,, we have

2[32

2 2
. U . net o no” a1y 2
1712, = 1T (0717, < (1= )7+ 12, < (1= =) 7oz,

which establishes the second statement of the induction (6.6). What remains is obtaining the last statement
of (6.6). To address this, completing squares, observe that

T
[Freale /1713, = TLT@NTT R, < 7l - T H 2

4 e,
On the other hand, the distance to initial point satisfies

He‘r+1 _HOHZQ < H07'+1 _07'H€z + HOT _QOHZQ < HOT - 00H22 +77H~7(07')FTHZ2-
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Combining the last two lines (by scaling the second line by %a) and using induction hypothesis (6.6), we find
that

1 _ 1 _ o nlae)TE
ZO‘ [0++1 - 0o H£2 + Hrﬂl”eg < ZO‘(HGT = 6ole, + T (0-)7r]le,) + |77 e, — Z_—Z (6.29)
HTT Hfz
1 _ N (T
< [fo16. - 00l 1]+ 2ol 7@ b - TEOTE | o)
i i 7.1
1 _ B NVICAA
< [Fo16. -0l 15+ 2T 0)r i [o - O ) o)
4 4 HTT Hb
1
< ZOKHBT = 0olle, + [T+ e, (6.32)
< |7olle, < lmolle,- (6.33)

This establishes the final line of the induction and concludes the proof of the upper bound on |0, - 6g|¢,. To
proceed, we shall bound the infinity norm of the residual. Using Ils_(e) =IIs (7o) = €., note that

1£(02) -y —ele, = rr el
<|7rllen +lle—exr e
=7 lee + e —11s_(e) e,
= |77l + s, (e) [ -

What remains is controlling |7 |, . For this term, we shall use the naive upper bound |7, |.,. Using the
rate of convergence of the algorithm (6.6), we have that

2
_ no
I7elles < (1= ) Irole.

We wish the right hand side to be at most v > 0 where v > |Is, (€)]¢.. This implies that we need

a? ., a? v
(1= ) Irolles < v = Tlog(1 - 1) <log(7——) (6.38)
1 [role
1
= rlog(——) > log( 1Tl (6.39)
1- 19 v

To conclude, note that since % <1/8 (as n < 1/253?), we have

1

2
_ ne”
1 4

2 2
na na
>log(l+ —) > —.
) > log( 4) 5

log(

Consequently, if 7 > m% log(%), we find that |7,|le.. < |7r]e, < v, which guarantees
[ —e]e. <2v.
which is the advertised result. If e is s sparse and S, is diffused, applying Lemma 3.1 we have

S
s, (@) < 1Y

lelle,-
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6.1.2 Proof of Generic Lower Bound — Theorem 3.3

Proof Suppose 0 € D satisfies y = f(0). Define J, = J((1-7)0 +70y) and J = J(6,0,) = fol J.dr. Since
Jacobian is derivative of f, we have that

£(8) - £(80) = [01 J, (0 -60)dr = J(6 - 6y).

Now, define the matrices J, =1IIs, (J) and J_ =I5 (J). Using Assumption 1, we bound the spectral norms
via
[T = sup [JTwle<B . |If= sup [TTofg <

veS,, vy <1 veS_,||lvfe,<1

To proceed, projecting the residual on S, we find for any 6 with f(0) =y
[1Ls, (f(0) — f(60)) e,

Is, (f(0) - f(60)) = Is, (J)(6 —8g) == [6~6q]c, > > %,

B
The identical argument for S_ yields |0 — 6q]¢, > % Together this implies
E_FE
16 - 60, > max(—, —"). (6.40)
e p
If R is strictly smaller than right hand side, we reach a contradiction as 8 ¢ D. If D = RP, we still find (6.40).

This shows that if € is small and E_ is nonzero, gradient descent has to traverse a long distance to find a
good model. Intuitively, if the projection over the noise space indeed contains the label noise, we actually
don’t want to fit that. Algorithmically, our idea fits the residual over the signal space and not worries about
fitting over the noise space. Approximately speaking, this intuition corresponds to the ¢y regularized problem

min£(8) 0~ 6o, < R.

If we set R = £+ we can hope that solution will learn only the signal and does not overfit to the noise. The
next section builds on this intuition and formalizes our algorithmic guarantees.

6.2 Proofs for Neural Networks

Throughout, omin(-) denotes the smallest singular value of a given matrix. We first introduce helpful
definitions that will be used in our proofs.

Definition 6.5 (Support subspace) Let {x;}}, be an input dataset generated according to Definition 1.1.
Also let {Z;}1, be the associated cluster centers, that is, &; = c¢ iff x; is from the Lth cluster. We define
the support subspace S, as a subspace of dimension K, dictated by the cluster membership as follows. Let
Ay c{1,...,n} be the set of coordinates i such that &; = ¢;. Then, Sy is characterized by

Si={veR" | v, =v;, forall i1,ixelA, and forall1<{<K}.
Definition 6.6 (Neural Net Jacobian) Given input samples (x;)™,, form the input matriz X =[xy ... ,]T
R™d. The Jacobian of the learning problem (1.3), at a matriz W is denoted by J(W,X) e R™* gnd is
given by

€

TJW,X)" = (diag(v)e'(WXT)) » X7
Here % denotes the Khatri-Rao product.

The following theorem is borrowed from [40] and characterizes three key properties of the neural network
Jacobian. These are smoothness, spectral norm, and minimum singular value at initialization which correspond
to Lemmas 6.6, 6.7, and 6.8 in that paper.
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Theorem 6.7 (Jacobian Properties at Cluster Center) Suppose X =[x ... x,]7 € R™? be an input
dataset satisfying A\(X) > 0. Suppose |¢'|,|¢"”| <T. The Jacobian mapping with respect to the input-to-hidden
weights obey the following properties.

o Smoothness is bounded by

— T — — .
|7(W,X)-T(W,X)]| < NG | X[ |W -W|, forall W,WeR™.

o Top singular value is bounded by

lg(W, X)| <T[X].

e Let C >0 be an absolute constant. As long as
2 2
ks CT?logn | X|
A(X)

At random Gaussian initialization Wy ~ N'(0,1)%*4 with probability at least 1 -1/K*°°, we have

omin (J (W0, X)) 2 VA(X)/2.

In our case, the Jacobian is not well-conditioned. However, it is pretty well-structured as described previously.
To proceed, given a matrix X € R”*? and a subspace S ¢ R”, we define the minimum singular value of the
matrix over this subspace by omin(X,S) which is defined as

Omin(X,S) = sup [v"UT X4,
H'UHgQZI,UUT:PS

Here, Ps € R™" is the projection operator to the subspace. Hence, this definition essentially projects the
matrix on S and then takes the minimum singular value over that projected subspace. The following theorem
states the properties of the Jacobian at a clusterable dataset.

Theorem 6.8 (Jacobian Properties at Clusterable Dataset) Let input samples (x;)I, be generated

according to (g9,0) clusterable dataset model of Definition 1.1 and define X =[x ... :can. Let S, be the
support space and (&;);, be the associated clean dataset as described by Definition 6.5. Set X = [Z1 ... 2,]T.

Assume |¢'|,|¢"| < T and A(C) > 0. The Jacobian mapping at X with respect to the input-to-hidden weights
obey the following properties.

o Smoothness is bounded by
|7(W,X)-g(W.X)| <D\[“22 (O [W - W], forall W, W RN

o Top singular value is bounded by

[7w, X)] <\/==TIC]

2 2
k> CT*log K ||C|
AC)

o As long as

At random Gaussian initialization Wy ~ N'(0,1)%*4 with probability at least 1 - 1/K°°, we have

ClownA(C)

Omin (j(WOaX)aSJr)Z 29K
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o The range space obeys range(J (Wy, X)) c¢ Sy where S, is given by Definition 6.5.

Proof Let J(W,C) be the Jacobian at the cluster center matrix. Applying Theorem 6.7, this matrix
already obeys the properties described in the conclusions of this theorem with desired probability (for the
last conclusion). We prove our theorem by relating the cluster center Jacobian to the clean dataset Jacobian
matrix J (W, X).

Note that X is obtained by duplicating the rows of the cluster center matrix C. This implies that
J(W, X ) is obtained by duplicating the rows of the cluster center Jacobian. The critical observation is that,
by construction in Definition 1.1, each row is duplicated somewhere between c¢;o,n/K and ¢, p,n/K.

To proceed, fix a vector v and let p = j(W,X)v eR" and p= J(W,C)v € RE. Recall the definition of
the support sets Ay from Definition 6.5. We have the identity

pi=pe forall ieAy.

This implies p € S; hence range(J (W,X )) ¢ S;. Furthermore, the entries of p repeats the entries of p
somewhere between ¢jo,n/K and c¢,pn/K. This implies that,

CupT

K

ClowN

K

Iple, 2 [B]e, 2 Iplle.
and establishes the upper and lower bounds on the singular values of J (W,X ) over S, in terms of the
singular values of J(W,C). Finally, the smoothness can be established similarly. Given matrices W, W,

the rows of the difference . .
|7(W, X)-T(W,X)]

is obtained by duplicating the rows of ||J(W, C)-J(w, C)H by at most ¢,,n/K times. Hence the spectral
norm is scaled by at most \/c,pn/K. ]

Lemma 6.9 (Upper bound on initial misfit) Consider a one-hidden layer neural network model of the
form x — vT ¢ (Wx) where the activation ¢ has bounded derivatives obeying |#(0)|,|¢’'(2)] < T. Suppose
entries of v € RF are half 1)k and half —1/\/k so that |v|e, = 1. Also assume we have n data points
X1, X, ..., %, € R with unit euclidean norm (|x; l,, =1) aggregated as rows of a matriz X € R™? and the
corresponding labels given by y € R™ generated accoring to (p,eo = 0,9) noisy dataset (Definition 1.2). Then
for Wy € R**@ with i.i.d. N'(0,1) entries

”'ngi) (WoXT) _ yHZZ <O(T'y/nlogK),
holds with probability at least 1 — K190,

Proof This lemma is based on a fairly straightforward union bound. First, by construction |yll¢, < /7.
What remains is bounding [v”'¢ (WoX™)|,. Since eg = 0 there are K unique rows. We will show that
each of the unique rows is bounded with probability 1 — K~ '%' and union bounding will give the final result.
Let w be a row of Wy and x be a row of X. Since ¢ is I Lipschitz and |¢(0)| < T', each entry of ¢ (Xw)
is O(I')-subgaussian. Hence vT¢(Wyx) is weighted average of k i.i.d. subgaussians which are entries of
#»(Wox). Additionally it is zero mean since Y1 v; = 0. This means v’ ¢(Woyz) is also O(T") subgaussian
and obeys
P(jo” ¢(Wox)| 2 cT'\/log K) < K01,

for some constant ¢ > 0, concluding the proof. [ ]
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6.2.1 Proof of Theorem 2.3
We first prove a lemma regarding the projection of label noise on the cluster induced subspace.

Lemma 6.10 Let {(x;,y;)}1, be an (p,e0 = 0,8) clusterable noisy dataset as described in Definition 1.2.
Let {g;}7-, be the corresponding noiseless labels. Let J(W,C') be the Jacobian at the cluster center matriz
which is rank K and S, be its column space. Then, the difference between noiseless and noisy labels satisfy
the bound

s, (y = 9) e < 2p-

Proof Let e =y —y. Observe that by assumption, /th cluster has at most sy = pny errors. Let Z, denote the
membership associated with cluster £ i.e. Z, c {1,...,n} and i € Z, if and only if &; belongs to £th cluster. Let
1(¢) € R™ be the indicator function of the £th class where ith entry is 1 if i € Z, and 0 else for 1 < ¢ < n. Then,
denoting the size of the ¢th cluster by ng, the projection to subspace S, can be written as the P matrix where

K1
P=> —1(0)1(0)".
=1
Let ey be the error pattern associated with fth cluster i.e. ey is equal to e over Z, and zero outside. Since
cluster membership is non-overlapping, we have that
51
Pe=> —1(0)1(¢)"e,.
=1

Similarly since supports of 1(¢) are non-overlapping, we have that
1
Pe|,. = —1(0)1(0) ey
[Pefe. = max ——1(O1(0) er

Now, using |le],. <2 (max distance between two labels), observe that

1110 eclee. <2|1(O) e Necle, = 2lec]e, -
Since number of errors within cluster ¢ is at most np, we find that

oyl T leclle,
|Pefe. = 3 | —1(D)L(0)" erle., < —+ < 2p.
=1 T nyg

The final line yields the bound

|Ps.(y = 9)lew = [Ps, ()] = [Pele. <2p.

|

With this, we are ready to state the proof of Theorem 2.3.
Proof The proof is based on the meta Theorem 3.2, hence we need to verify its Assumptions 2 and 3 with
proper values and apply Lemma 6.10 to get |Ps, (e)]e.. We will also make significant use of Corollary 6.8.

Using Corollary 6.8, Assumption 3 holds with L = I'y/522 |C| where L is the Lipschitz constant of

Jacobian spectrum. Denote r, = f(W,) —y. Using Lemma 6.9 with probability 1 - K% we have that
Irolle, = |y — f(Wo)|e, < T\/conlog K/128 for some ¢y > 0. Corollary 6.8 guarantees a uniform bound for S,

hence in Assumption 2, we pick
CupT
<\/ —T|C]|.
s/

We shall also pick the minimum singular value over S, to be

0= Where ag=y/ e ME)
2 2K
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We wish to verify Assumption 2 over the radius of

o OV ~yle,  TVenlogKS . [conlogk2 . [aRIogK
N « B o - ClownA(C) Clow/\(C)’

2K

neighborhood of W{,. What remains is ensuring that Jacobian over S, is lower bounded by a. Our choice of
k guarantees that at the initialization, with probability 1 — K719 we have

Umin(j(W07X),S+) > Q.

Suppose LR < « = ag/2. Using triangle inequality on Jacobian spectrum, for any W € D, using |[W - Wy|F <
R, we would have
Omin(T(W,X),84) > omin (T (W, X),S:) - LR > ag— a = .

Now, observe that

Cuplt coKlog(K) cupconlog K« ClownA(C)
LR=T C|T\| ———————==T7|C —— <=\, 6.41

ri €1 oA (C) ICN aine) 2 "V~ sk (6.41)

as k satisfies y )
cupK log(K) I Klog(K)||C|
k> OO =5—"557) 2 O( )-
2 MNC)? A(C)?
Finally, since LR = 4L|ro ¢,/ < o, the learning rate is
af 1 K

)

1
7 < —= min(1 = —0=—————5.
232 28%  2¢,,n2?|C|?

"Lrol,,
Overall, the assumptions of Theorem 3.2 holds with stated a, 3, L with probability 1-2K % (union bounding
initial residual and minimum singular value events). This implies for all 7 > 0 the distance of current iterate

to initial obeys
|W- - Wo|F <R

The final step is the properties of the label corruption. Using Lemma 6.10, we find that

ITs, (9 - y)e. <2p.

Substituting the values corresponding to «, 8, L yields that, for all gradient iterations with

I\/conlog K /32 K I'v/nlog K

5 1og( L7 ) - O s o

5
5 pogdroley 5
o og( 2% ) o og(

) <7,

denoting the clean labels by y and applying Theorem 3.2, we have that, the infinity norm of the residual
obeys (using |Is, ()] <2p)
IF(W) =9lle.. <4p.

This implies that if p < §/8, the network will miss the correct label by at most §/2, hence all labels (including
noisy ones) will be correctly classified. [ ]
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6.2.2 Proof of Theorem 2.4
Consider
fW.z)=v"¢ (W)
and note that
Vaf(W,z) = Wdiag (¢ (W) v
Thus
a%f(W, x)u =v’ diag (¢ (Wx)) Wu

k
= Z v ((wy, x)) wgu
=1

Thus
0

Vo (2 FW. Y1) - 0 (07 (w2 ] ) + a7 )

Thus, denoting vectorization of a matrix by vect(-)
_ 0 9
Ovect(W) Oz

k

oW, a:)) w=3 v (¢ (wl2)(wlu)(ulz) + ¢ (wlz)(ulw))

=
=uTWTdiag (v) diag (¢"" (We)) Uz + v' diag (¢' (Wz)) Uu

vect(U)T(

Thus by the general mean value theorem there exists a point (W, Z) in the square (W, @1 ), (W, @2), (W, 21)
and (W, x3) such that

(f(W,z2) - f(Wo,22)) - (f(W,21) - f(Wo, 21))
= (z2 - x1)T W diag (v) diag (¢" (W) ) (W - Wy)& + v diag (¢' (WZ)) (W - Wy)(z2 - x1)

Using the above we have that
| (F(W,@2) = (Wo,22)) = (F(W,@1) = f(Wo, 1))

(g) |($2 - 1) W7 diag (v) diag ((;S”(Wi)) (W - WO)5|
+[v" diag (¢ (WZ)) (W - W) (a2 - 1)

®) e
< (lle 12, [W] + ol T 122 =z, [W - W

1 . P
ENE 1)r s - s, |W - Wo

L) 1)r s 1, [W - Wo

1 —
Wal s 2 W= Wal, 01|l -l [W - Wl

1 = d
N ||W—W()||F+3+2ﬁ)PIwz—wllfg W - W

1~
(2 1Wal s T2 [ - Wal 1) s, [ W - i
CT |2 - 1], |W - Wl (6.42)
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Here, (a) follows from the triangle inequality, (b) from simple algebraic manipulations along with the fact
that |¢'(2)| <T and |¢”(2)| <T, (c) from the fact that v, = ﬂ:ﬁ, (d) from [z2|,, = [21],, =1 which implies
|1Z[,, <1, (e) from triangular inequality, (f) from the fact that Frobenius norm dominates the spectral norm,
() from the fact that with probability at least 1 - 2e™(4%) W[ < 2(Vk +/d), and (h) from the fact that

|W - Wo| < |W - Wy <&Vk and k > cd.
Next we note that for a Gaussian random vector g ~ N(0,I;) we have
[6(g" x2) = 6(g" 1) v, =[0(g" ®2) = 6(g" @1)
=[¢" (tg"xa + (1 -t)g 1) g7 (w2 —21) |y,
<Tlg" (22 - 1) v,
<l |z - x4, - (6.43)
Also note that
F(Wo,m2) = f(Wo, 1) =0 (¢ (Woas) = 6 (Wom1))

k
N;W (¢(gf m2) - ¢(gi 1))

where g1,g2,...,gx are i.i.d. vectors with N'(0,1,) distribution. Also for v obeying 17w = 0 this random
variable has mean zero. Hence, using the fact that weighted sum of subGaussian random variables are
subgaussian combined with (B.2) we conclude that f(Wy,x2) — f(Wy,x1) is also subGaussian obeying
I f(Wo,z2) = f(Wo, 1)y, < ' |v],, |22 —21],,. Thus

[f(Wo,@2) = f(Wo,z1)| < etT o], @2 = 21, = AT |22 — 21|, , (6.44)

t2
with probability at least 1 —e” 2.
Now combining (B.1) and (B.3) we have

6 <|y2 — yol
=|f(W,z1) - f(W, )
=[o" (¢(Waz) - p(Wa1))|
<|(F(W,zs) = f(Wo,@2)) = (fF(W, 1) - f(Wo,x1))| +|v” (¢(Woz2) — p(Wox1))|
<CT [y - 1, [W - Wo + T |2 - 21,

1
<CTe, (||W _Wo|+ 71:)
1000

Thus

t
CTey 1000

W - W, >
with high probability.

6.3 Perturbation analysis for perfectly clustered data (Proof of Theorem 2.2)

Denote average neural net Jacobian at data X via

1
J(Wy, Wy, X) = [O T(@W, + (1 - a)Ws, X)da.
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Lemma 6.11 (Perturbed Jacobian Distance) Let X =[x ... ]’ be the input matriz obtained from

Definition 1.1. Let f( be the noiseless inputs where ®; is the cluster center corresponding to x;. Given weight
matrices Wy, Wo, W1, Wy, we have that

- Wi|p+ |Wo - Wa|p .
2k

o W
| T (W, W, X) — T (Wi, Wa, X) | < /(1 o).

Proof Given W, W, we write
We first bound

|7(W,X)-J(W,X)| = |diag(v)¢'(WXT) + XT - diag(v)¢/(WX") « X" | (6.45)
_L / TN /(XX T % T
= ﬂnw (WXT)-¢/(WXT))+» XT| (6.46)

To proceed, we use the results on the spectrum of Hadamard product of matrices due to Schur [46]. Given
A e R¥*4 B e R™? matrices where B has unit length rows, we have

|A+B|=V[(A*B)T(AxB)|=|(ATA) e (BTB)| </|ATA| = | A].
Substituting A = ¢/(WXT) - ¢/(WXT) and B = X", we find
[(@'(WXT)-¢'(WXT))« XT| <|¢'(WXT) - ¢/ (WXT)| <T[(W - W)X | p <TV/n|W - W .
Secondly,
L

! (YA Ty 4 Y
e WXy« (X - X

where reusing Schur’s result and boundedness of |¢'| <T'

|7(W,X) -7 (W, X)| =

lo'(WXT) % (X - X)| <TVE|X - X| < TVkneo.
Combining both estimates yields

|T(W,X)-T(W,X)| < rﬁ('w;g"”fv N

To get the result on | T (Wy, Wy, X) — J(W1, Wa, X)|, we integrate

80).

| T (W1, Ws, X) —j(WhVVLX)H < fol 'v/n( o (W = W) + (\1/%04)(W1 “ W)l +ep)da (6.47)
<Tv/n( [W1 - Wi |FQ;|EW2 ~Walr , £0). (6.48)
[

Theorem 6.12 (Robustness of gradient path to perturbation) Generate samples (x;,y;)I, accord-
ing to (p,e0,9) noisy dataset model and form the concatenated input/labels X € R™" y e R™. Let X be
the clean input sample matriz obtained by mapping x; to its associated cluster center. Set learning rate
n< m and maximum iterations T satisfying

I'v/nlog K

K
TOZCln)\(C) log( )-
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where Cy > 1 is a constant of our choice. Suppose input noise level €y and number of hidden nodes obey

202 O( AC) ) and kro@oICH L DVl K )
T2 log( T/ 2K NGE
Set Wy - N(0,1). Starting from Wy = W, consider the gradient descent iterations over the losses
Wois = W, —nVL(W,)  where L(W) = ;Zn;(y (W) (6.49)
Woui = W, - VE(W.) where L(W) - ;f;(y (W, a0)? (6.50)

Then, for all gradient descent iterations satisfying T < 19, we have that

| f(Wr, X) = f(Wr, X)|e, < corneol*n®?\/log K,

and

PVIToER o,

~ IMKn
W, -W.|r<O 1
I (F3 (Tne0 2C) og(

Proof Since W, are the noiseless iterations, with probability 1 — 2K 1%, the statements of Theorem 2.3
hold on W... To proceed with proof, we first introduce short hand notations. We use

ri= f(W;, X) -y, 7 = f(W;, X;) -y (6.51)
Ji= I (Wi, X), Jisri =T Wi, Wi, X), Ji = T(Wi, X), Jis1,i = T (Wi, W, X) (6.52)
d; = |W; = Wi|p, pi=|ri—#|r, B=D|C|\cun/K, L=T|C|\/cyyn/Kk. (6.53)

Here f is the upper bound on the Jacobian spectrum and L is the spectral norm Lipschitz constant as in
Theorem 6.8. Applying Lemma 6.11, note that

|T(W., X)) = T(W,, X)| < L|W - W | +T/ney < Ld, + T\/neg (6.54)
| T(Wei, Wr, X) = T (W1, Wy, X)| < L(dr + dri1) /2 + T/, (6.55)

Following this and using that noiseless residual is non-increasing and satisfies |7 ]¢, < |7o[¢,, note that
parameter satisfies

Wi =W, —nJiri , Wi =W, -nJ# (6.56)
[Wii1 = Wil p < [Wi = Wil g + 0| T; = FilllFill ey + 0l Tl Iri = il (6.57)
d¢+1 < dl + ’I]((Ldl + Fﬁé‘o)”fo ||g2 + 6])1‘), (658)

and residual satisfies (using I > Ji11.:7, /8% = 0)
ri =1~ T Ji T = (6.59)
Tiv1 — Ti+l = (7'1' - Fi) - 77(3141,1’ - \.7i+1,i)\71'T7'i - 77ji+1,i(~7iT - ZT)Ti - 77\71‘+1,¢ZT(7‘1' - fi)~ ( )
rist —Fir1 = (L= 0Tie1i T ) (1 = 7) = 0(Tivr,i = Tinr,i) T i = 0Tiw,i (T = T )i (6.61)
[7ie1 = Fivilley < |7 = Filley +nBrille, (L(3dr + dri1) /2 + 2TV nep). (6.62)
|7ic1 = Ficilley < |7 = Fille, + nB(IT0 ey + Pi) (L(3dr + drs1)/2 + 2D \/ngg). (6.63)

where we used |;]¢, < pi + |Tolle, and |(I = nTis1.:T )v|le, < |v]e, which follows from (6.28). This implies

pir1 <pi +nB([7olle, + i) (L(3dr + dri1)/2 + 2T/ o). (6.64)
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Finalizing proof: Next, using Lemma 6.9, we have |7, <© := CoI'v/nlog K. We claim that if

1 1 2 1
<O < d L< < , 6.65
<0 (TOnFQn) 81onBT\/n o 570mO(1 + 8n1o32) ~ 30(79nB)20 (6.65)
(where we used 132 > 1), for all t < 7, we have that
pe <8tNI\/neg®B <O ,  dy < 2tnT\/negO(1 + 87 32). (6.66)

The proof is by induction. Suppose it holds until ¢ <79 - 1. At ¢t +1, via (6.58) we have that

i = s < Ldy© + T'\/neg® + 819n3°T'/neg® < 2T'/negO (1 + 8179 32).
7

Right hand side holds since L < 2ni09. This establishes the induction for d;, 1.

Next, we show the induction on p;. Observe that 3d; + dyy1 < 10monI'/nee©(1 + 8n795%). Following (6.64)
and using p; < O, we need

- ?
Per TPt 3O (L(3d, + dyar) +ATVneo) < STV/ME0Of <= (6.67)
n
?
L(3d, +dys1) + AT\/neo < 8T\/neg <= (6.68)
?
L(3d, +dr1) <4T\/ney < (6.69)
?
10L7on(1 + 8n1pB*)0 < 4 — (6.70)
? 2
L< . 6.71
57on(1 + 81752)O (6.7)
Concluding the induction since L satisfies the final line. Consequently, for all 0 <t < 7, we have that
pe < 8tnl'\/negOB = cotneof‘3n3/2\/log K.
Next, note that, condition on L is implied by
k > 1000T2n(ronB)* 02 (6.72)
K* I'v/nlog K
= O(T"'n— =7 log( ) (ICITV/n/K) (T/nlog K)?) (6.73)
n*A(C) p
K?|C|* I'v/nlog K
oo ICICT  (EVRIoe K yay o k) (6.74)
AC)* p
which is implied by k > O(I0 5O jog (VoK )6
Finally, following (6.66), distance satisfies
MK I'v/nlog K
dy < 200’ 7T \/ngo O < O(tneo (07)1 log (—Y 108 42y
|

6.3.1 Completing the Proof of Theorem 2.2

Theorem 2.2 is obtained by the theorem below when we ignore the log terms, and treating I', A(C') as

constants. We also plug in 7 = W
up
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Theorem 6.13 (Training neural nets with corrupted labels) Let {(x;,y;)}, be an (s,e0,0) cluster-
able noisy dataset as described in Definition 1.2. Let {g;}, be the corresponding noiseless labels. Suppose
|6(0)],|¢'],|0"| < T for some T > 1, input noise and the number of hidden nodes satisfy
I'/nlog K

AC) K2jc|

g0 < O( ) and k>O(TY log( )6).
FzKlog(Fi\/”lOgK) AC)H*
P
where C € RE*? is the matriz of cluster centers. Set learning rate n < W and randomly wnitialize
up

W, “h® N(0,1). With probability 1 - 3/K*°°, after T = (’)(Tmff(c) ) log(F Y n;OgK) iterations, for all 1 <i<mn,
we have that

o The per sample normalized {2 norm bound satisfies

[f(Wr, X) -9, €0F3K\/10gK1
Vn (&)

F\/nlogK)

og(

<4dp+c
e Suppose p < §/8. Denote the total number of prediction errors with respect to true labels (i.e. not
satisfying (2.2)) by err(W'). With same probability, err(W.) obeys

err(W,) <c€0K 1"3\/10gK10 (I‘\/nlogK
n 8 aC) B

).

SA(C)?
5 -2 I'y/nlog K y3
IS K2 log(————)

truth labels §; i.e. (2.2) holds for all 1 <i<n.

e Suppose p< /8 and gg < ¢ , then, W assigns all input samples x; to correct ground

e Finally, for any iteration count 0 <t <7 the total distance to initialization is bounded as

Klog K IMKn I'\/nlog K 4
W, -Wyllrp <O/ —Z—+t 1 . 6.75
W~ Wil < Oy [ 508+ tmeo s s Tou( ) (6.75)

Proof Note that proposed number of iterations 7 is set so that it is large enough for Theorem 2.3 to achieve
small error in the clean input model (g9 = 0) and it is small enough so that Theorem 6.12 is applicable. In
light of Theorems 6.12 and 2.3 consider two gradient descent iterations starting from Wj, where one uses
clean dataset (as if input vectors are perfectly cluster centers) X and other uses the original dataset X.
Denote the prediction residual vectors of the noiseless and original problems at time 7 with respect true
ground truth labels g by 7, = f(WT, X) -y and r, = f(W,, X) - g respectively. Applying Theorems 6.12
and 2.3, under the stated conditions, we have that

[77]e. <4p and (6.76)
K I'v/nlog K
7 =77, < ceo ) log( s Y3032\ /log K (6.77)
n p

IMK/nlog K I'/nlog K
= 20 A(C’f)og log(—Y 1082y (6.78)
P

First statement: The latter two results imply the ¢ error bounds on 7. = f(W,, X) - 9.

Second statement: To assess the classification rate we count the number of entries of r. = f(W,, X) -y
that is larger than the class margin §/2 in absolute value. Suppose p < §/8. Let Z be the set of entries obeying
this. For ¢ € Z using |7, ¢, < 4p < /4, we have

Irril 20/2 == |reil +|rri=Tril 20/2 = |rr; —774| 2 /4.
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Consequently, we find that
|77 =7+ le, 2[Z16/4.

Converting ¢, upper bound on the left hand side to ¢, we obtain

eI K+/nlog K o I'\/nlog K
P

A T7e)

8( ) 2 [Z]o/4.

Hence, the total number of errors is at most

,eonK I3\/log K o
5 AMO)

Z]<c g(

F\/nlogK)
p

Third statement — Showing zero error: Pick an input sample x from dataset and its clean version Z.
We will argue that f(W,,x) - f(W,, &) is smaller than §/4 when £¢ is small enough. We again write
|f(WT7w) _f(W’MJN:)' < |f(WT7$) _f(WTaw)|+ |f(W—,—,J3) _f(WT7':E)|

The first term can be bounded via

|f (W, @) - f(W,, )| = o p(Wrz) —v" ¢(W,)| < |[v]e, | ¢(Wra) = (W) e, (6.79)
<T|W, -W,|r (6.80)

57172 1o i
30(60)1:(5)2 log (L1108 K 45 (6.81)

Next, we need to bound
(W, @) - (W, &)| < 7 6(Wy) - 0T 6(W, )| (6.82)

H (0, I). Consequently, using by assumption

where [W, - W[ r < O(0\/ 55, | @ — &|e, < 20 and Wy

we have
o KlogK

(o)

and applying an argument similar to Theorem 2.4 (detailed in Appendix B), with probability at 1 - 1/n'%,
we find that

k> O(IW - Wol2) = O(T

),

|f (W, ) - f(W,,&)| < C'Teo(| Wy = Wy +/logn) (6.83)
CTeo(T K)\l(og)K ++/logn). (6.84)

Combining the two bounds above we get

F(W..2) = F(W,. )| 200(5 gy los( 52 o 1(ry [ S8 « Viogm) (659)
< 200( AF (55)22 log(LY M98 K y5y (6.86)

SA(C)?
5 K2 log( Y258 )3

Hence, if g < ¢/ , we obtain that, for all 1 <i<n,

- - 1)
lf(Wr,2i) =0l <[f(Wr, &) = f(We )|+ |f(We, &) - §alts] <4p + T
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If p < 0/8, we obtain
[f(Wr, i) = il < 6/2

hence, W, outputs the correct decision for all samples.
Fourth statement — Distance: This follows from the triangle inequality

W, = Wolp < |[Wr - W,|p+|W, - Wo|p

We have that right hand side terms are at most O(F\/K)\l(og)K) and O(tneg 1:\4([((7;’ log(Fv nplogK)z) from

Theorems 6.12 and 2.3 respectively. This implies (6.75). ]
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A  Proof of Lemma 2.5

Create two matrices X € R**¢ and X e R®*¢ by concatenating the input samples. Note that the matrix
X - X has i.i.d. N(0,2¢2/d) entries. Thus, using standard results regarding the concentration of the spectral
norm with probability at least 1 —e~%2, we have

\|X—X\|£\/§(\/§+2)60§550.

Define the vectors y,y € R® with entries given by y; and g;, respectively. Suppose W fits these labels perfectly.
Using the fact that ||v|,, = 1, we can conclude that

Vs <y =gle, = [f(W,X) - f(W, X)]e,,
= [v" (W X) - d(W X))o
<Tlvfle, [W(X - X)) F,
<T|X -~ X||W | <5Teo|W | .

This implies the desired lower bound on |W | E.

B Single label perturbation

Note that
If(W,z) - f(W,E)|=|[v" (¢ (Wz) - ¢ (WE))|
<o’ (¢ (Wa) - ¢ (WE)) - v" (¢ (Woz) — ¢ (WoE))| + [v" (¢ (Woz) - ¢ (Wo@))|

To continue note that by the general mean value theorem there exists a point (W,Z) in the square
(Wo,z), Wy, Z), (W ,x), and (W, Z) such that

(f(W,z) - f(Wy,z)) - (f(W,Z) - f(W,,T))
= (z-a) W diag (v)diag (¢" (W) ) (W - W) + v diag (¢/ (W) ) (W - Wo)(z - %)
Using the above we have that
|(FW.2) ~ [(Wo.2)) - (FW.Z) - f(Wo. )| € |(2 - )" W ding (v) ding (6" (Wa)) (W - Wo)a]
+ [T diag (¢ (WE)) (W - Wo)(z - F))|

(2) (

ol 1@, [W] + [01,,) T o - @I, W - Wl

o
V3
j — ~

S 1w 1) e -al,, W - Wl

=1, [W] + 1)r o3, W - W

1 _
- Wal + < [W - Wal .+ 1)r|w—wu2 W - Wy

- d _
— |[W - W, +3+2\/;)F|:1:—w|e2 W - W,

1 1 — .
( |W0|+\/EHW—WOHJJ)F”QC—M@ W - W
CT o -, [W - Wo (B.1)
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Here, (a) follows from the triangle inequality, (b) from simple algebraic manipulations along with the fact

that |¢'(2)| < T and |¢""(2)| < T, (c¢) from the fact that v, = iﬁ, (d) from |z|,, = |#],, = 1 which implies

|Z[,, <1, (e) from triangular inequality, (f) from the fact that Frobenius norm dominates the spectral norm,

(g) from the fact that with probability at least 1 - 2e~(4**) Wy < 2(Vk +V/d), and (h) from the fact that
W -Wo | < |[W - W <&k and k > cd.
Next we note that for a Gaussian random vector g ~ N(0,I;) we have

l¢(g" @) - 3(g" &) |, =l d(g" @) — D(g" T) |,
=|¢' (tg"x+ (1-1)g" &) g" (x - T) |,
<Tg" (z - &)y,
<l |z -2, - (B.2)

Also note that
FWo, ) - f(Wo, &) =0 (¢ (Woz) - ¢ (WoT))

k
~Z_Zlve (o(gi =) - d(g; ®))

where g1,go,...,gx are i.i.d. vectors with A'(0,I;) distribution. Also for v obeying 17v = 0 this random
variable has mean zero. Hence, using the fact that weighted sum of subGaussian random variables are
subgaussian combined with (B.2) we conclude that f(Wy,x) — f(Wy,Z) is also subGaussian obeying
|f(Wo, ) = f(Wo,Z) |y, < T [0, |@ -2, Thus

[f(Wo,z) - f(Wo,®)| < et |[v], |@ - |, = ctT' |2 - Z],, , (B.3)

t2
with probability at least 1 — e~ 2. Thus, using t = 2\/logn for n data points

|f(Wo,x;) = f(Wo,&;)| < 2cT'\/logn |x; - &, ,

holds for all 4 =1,2,...,n with probability at least
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