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Abstract

Modern neural networks are typically trained in an over-parameterized regime where the parameters
of the model far exceed the size of the training data. Due to over-parameterization these neural
networks in principle have the capacity to (over)fit any set of labels including pure noise. Despite this
high fitting capacity, somewhat paradoxically, neural network models trained via first-order methods
continue to predict well on yet unseen test data. In this paper we take a step towards demystifying this
phenomena. In particular we show that first order methods such as gradient descent are provably robust
to noise/corruption on a constant fraction of the labels despite over-parametrization under a rich dataset
model. In particular: i) First, we show that in the first few iterations where the updates are still in the
vicinity of the initialization these algorithms only fit to the correct labels essentially ignoring the noisy
labels. ii) Secondly, we prove that to start to overfit to the noisy labels these algorithms must stray rather
far from from the initial model which can only occur after many more iterations. Together, these show
that gradient descent with early stopping is provably robust to label noise and shed light on empirical
robustness of deep networks as well as commonly adopted heuristics to prevent overfitting.

1 Introduction

1.1 Motivation

Deep neural networks (DNN) are ubiquitous in a growing number of domains ranging from computer vision
to healthcare. State-of-the-art DNN models are typically overparameterized and contain more parameters
than the size of the training dataset. It is well understood that in this overparameterized regime, DNNs
are highly expressive and have the capacity to (over)fit arbitrary training datasets including pure noise [56].
Mysteriously however neural network models trained via simple algorithms such as stochastic gradient
descent continue to predict well on yet unseen test data. In such over-parametrized scenarios there maybe
infinitely many globally optimal network parameters consistent with the training data, the key challenge is to
understand which network parameters (stochastic) gradient descent converges to and what are its properties.
Indeed, a recent series of papers [16, 52, 56], suggest that solutions found by first order methods tend to have
favorable generalization properties. As DNNs begin to be deployed in safety critical applications, the need for
foundational understanding of their noise robustness and their unique prediction capabilities intensifies.

This paper focuses on an intriguing phenomena: overparameterized neural networks are surprisingly robust
to label noise when first order methods with early stopping is used to train them. To observe this phenomena
consider Figure 1 where we perform experiments on the MNIST data set. Here, we corrupt a fraction of the
labels of the training data by assigning their label uniformly at random. We then fit a four layer model via
stochastic gradient descent and plot various performance metrics in Figures 1a and 1b. Figure 1a (blue curve)
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the required distance between the final and initial network and the predictive accuracy of the final network is
independent of the size of the network such as number of hidden nodes. Our extensive numerical experiments
corroborate our theory and verify the surprising robustness of DNNs to label noise. Finally, we would like to
note that while our results show that solutions found by gradient descent are inherently robust to label noise,
specialized techniques such as ℓ1 penalization or sample reweighting are known to further improve robustness.
Our theoretical framework may enable more rigorous understandings of the benefits of such heuristics when
training overparameterized models.

1.2 Prior Art

Our work is connected to recent advances on theory for deep learning as well as heuristics and theory
surrounding outlier robust optimization.
Robustness to label corruption: DNNs have the ability to fit to pure noise [56], however they are also
empirically observed to be highly resilient to label noise and generalize well despite large corruption [44].
In addition to early stopping, several heuristics have been proposed to specifically deal with label noise
[26,30,36,42,47,57]. See also [23,37,43,48] for additional work on dealing with label noise in classification tasks.
When learning from pairwise relations, noisy labels can be connected to graph clustering and community
detection problems [1, 14, 54]. Label noise is also connected to outlier robustness in regression which is a
traditionally well-studied topic. In the context of robust regression and high-dimensional statistics, much of
the focus is on regularization techniques to automatically detect and discard outliers by using tools such as ℓ1
penalization [6, 10, 15,17,22,32,35]. We would also like to note that there is an interesting line of work that
focuses on developing robust algorithms for corruption not only in the labels but also input data [19,31, 41].
Overparameterized neural networks: Intriguing properties and benefits of overparameterized neural
networks has been the focus of a growing list of publications [4, 11, 12,18,28,49,51,53,56,58]. A recent line
of work [2, 3, 20, 21, 33, 38, 59] show that overparameterized neural networks can fit the data with random
initialization if the number of hidden nodes are polynomially large in the size of the dataset. Recently in [40]
we showed that this conclusion continues to hold with more modest amounts of overparameterization and as
soon as the number of parameters of the model exceed the square of the size of the training data set. This
line of work however is not informative about the robustness of the trained network against corrupted labels.
Indeed, such theory predicts that (stochastic) gradient descent will eventually fit the corrupted labels. In
contrast, our focus here is not in finding a global minima, rather a solution that is robust to label corruption.
In particular, we show that with early stopping we fit to the correct labels without overfitting to the corrupted
training data. Our result also defers from this line of research in another way. The key property utilized in
this research area is that the Jacobian of the neural network is well-conditioned at a random initialization if
the dataset is sufficiently diverse (e.g. if the points are well-separated). In contrast, in our model the Jacobian
is inherently low-rank with the rank of the Jacobian corresponding to different clusters/classes within the
dataset. We harness this low-rank nature to prove that gradient descent is robust to label corruptions. We
further utilize this low-rank structure to explain why neural networks can work with much more modest
amounts of overparameterization where the number of parameters in the model exceeds the number of
clusters raised to the fourth power and is independent of the number of data points. Furthermore, our
numerical experiments verify that the Jacobian matrix of real datasets (such as CIFAR10) indeed exhibit
low-rank structure. This is closely related to the observations on the Hessian of deep networks which is
empirically observed to be low-rank [45]. We would also like to note that the importance of the Jacobian
for overparameterized neural network analysis has also been noted by other papers including [21, 39, 49] and
also [16, 29] which investigate the optimization landscape and properties of SGD for training neural networks.
An equally important question to understanding the convergence behavior of optimization algorithms for
overparameterized models is understanding their generalization capabilities. This is the subject of a few
interesting recent papers [5, 7–9, 13, 24, 34, 50]. While in this paper we do not tackle generalization in the
traditional sense, we do show that solution found by gradient descent are robust to label noise/corruption
which demonstrates their predictive capabilities and in turn suggests better generalization.
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Figure 2: Visualization of the input/label samples and classes according to the clusterable dataset model in
Definition 1.1. In the depicted example there are K = 6 clusters, K̄ = 3 classes. In this example the number
of data points is n = 30 with each cluster containing 5 data points. The labels associated to classes 1, 2, and
3 are α1 = −1, α2 = 0.1, and α3 = 1, respectively so that δ = 0.9. We note that the placement of points are
exaggerated for clarity. In particular, per definition the cluster center and data points all have unit Euclidean
norm. Also, there is no explicit requirements that the cluster centers be separated. The depicted separation
is for exposition purposes only.

1.3 Models

We first describe the dataset model used in our theoretical results. In this model we assume that the input
samples x1,x2, . . . ,xn ∈ R

d come from K clusters which are located on the unit Euclidian ball in R
d. We also

assume our data set consists of K̄ ≤ K classes where each class can be composed of multiple clusters. We
consider a deterministic data set with n samples with roughly balanced clusters each consisting on the order
of n/K samples.1 Finally, while we allow for multiple classes, in our model we assume the labels are scalars
and take values in [−1, 1] interval. We formally define our dataset model below and provide an illustration in
Figure 2.

Definition 1.1 (Clusterable dataset) Consider a data set of size n consisting of input/label pairs{(xi, yi)}ni=1 ∈ R
d × R. We assume the input data have unit Euclidean norm and originate from K clusters

with the ℓth cluster containing nℓ data points. We assume the number of points originating from each cluster
is well-balanced in the sense that clow

n
K
≤ nℓ ≤ cup

n
K

with clow and cup two numerical constants obeying

0 < clow < cup < 1. We use {cℓ}Kℓ=1 ⊂ R
d to denote the cluster centers which are distinct unit Euclidian norm

vectors. We assume the input data points x that belong to the ℓ-th cluster obey

∥x − cℓ∥ℓ2 ≤ ε0,
with ε0 > 0 denoting the input noise level.

We assume the labels yi belong to one of K̄ ≤ K classes. Specifically, we assume yi ∈ {α1, α2, . . . , αK̄}
with {αℓ}K̄ℓ=1 ∈ [−1, 1] denoting the labels associated with each class. We assume all the elements of the same
cluster belong to the same class and hence have the same label. However, a class can contain multiple clusters.
Finally, we assume the labels are separated in the sense that

∣αr − αs∣ ≥ δ for r ≠ s, (1.1)

with δ > 0 denoting the class separation.

1This is for ease of exposition rather than a particular challenge arising in the analysis.
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In the data model above {cℓ}Kℓ=1 are the K cluster centers that govern the input distribution. We note that
in this model different clusters can be assigned to the same label. Hence, this setup is rich enough to model
data which is not linearly separable: e.g. over R

2, we can assign cluster centers (0,1) and (0,−1) to label 1
and cluster centers (1, 0) and (−1, 0) to label −1. Note that the maximum number of classes are dictated by
the separation δ. In particular, we can have at most K̄ ≤ 2

δ
+ 1 classes. We remark that this model is related

to the setup of [33] which focuses on providing polynomial guarantees for learning shallow networks. Finally,
note that, we need some sort of separation between the cluster centers to distinguish them. While Definition
1.1 doesn’t specifies such separation explicitly, Definition 2.1 establishes a notion of separation in terms of
how well a neural net can distinguish the cluster centers. Next, we introduce our noisy/corrupted dataset
model.

Definition 1.2 ((ρ, ε0, δ) corrupted dataset) Let {(xi, ỹi)}ni=1 be an (ε0, δ) clusterable dataset with α1,
α2, . . . , αK̄ denoting the K̄ possible class labels. A (ρ, ε0, δ) noisy/corrupted dataset {(xi, yi)}ni=1 is generated
from {(xi, ỹi)}ni=1 as follows. For each cluster 1 ≤ ℓ ≤K, at most sℓ ≤ ρnℓ of the labels associated with that

cluster (which contains nℓ points) is assigned to another label value chosen from {αℓ}K̄ℓ=1. We shall refer to
the initial labels {ỹi}ni=1 as the ground truth labels.

We note that this definition allows for a fraction ρ of corruptions in each cluster.
Network model: We will study the ability of neural networks to learn this corrupted dataset model. To
proceed, let us introduce our neural network model. We consider a network with one hidden layer that maps
R
d to R. Denoting the number of hidden nodes by k, this network is characterized by an activation function

φ, input weight matrix W ∈ R
k×d and output weight vector v ∈ R

k. In this work, we will fix output v to
be a unit vector where half the entries are 1/√k and other half are −1/√k to simplify exposition.2 We will
only optimize over the weight matrix W which contains most of the network parameters and will be shown
to be sufficient for robust learning. We will also assume φ has bounded first and second order derivatives,
i.e. ∣φ′(z)∣ , ∣φ′′(z)∣ ≤ Γ for all z. The network’s prediction at an input sample x is given by

x↦ f(W ,x) = vTφ(Wx), (1.2)

where the activation function φ applies entrywise. Given a dataset {(xi, yi)}ni=1, we shall train the network
via minimizing the empirical risk over the training data via a quadratic loss

L(W ) = 1

2

n∑
i=1
(yi − f(xi,W ))2. (1.3)

In particular, we will run gradient descent with a constant learning rate η, starting from a random initialization
W0 via the following updates

Wτ+1 =Wτ − η∇L(Wτ). (1.4)

2 Main results

Throughout, ∥ ⋅ ∥ denotes the largest singular value of a given matrix. The notation O(⋅) denotes that a
certain identity holds up to a fixed numerical constant. Also, c, c0, C, C0 etc. represent numerical constants.

2.1 Robustness of neural network to label noise with early stopping

Our main result shows that overparameterized neural networks, when trained via gradient descent using
early stopping are fairly robust to label noise. The ability of neural networks to learn from the training data,
even without label corruption, naturally depends on the diversity of the input training data. Indeed, if two
input data are nearly the same but have different uncorrupted labels reliable learning is difficult. We will
quantify this notion of diversity via a notion of condition number related to a covariance matrix involving the
activation φ and the cluster centers {cℓ}Kℓ=1.

2If the number of hidden units is odd we set one entry of v to zero.
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Definition 2.1 (Neural Net Cluster Covariance and Condition Number) Define the matrix of clus-
ter centers

C = [c1 . . . cK]T ∈ R
K×d.

Let g ∼N(0,Id). Define the neural net covariance matrix Σ(C) as
Σ(C) = (CCT )⊙Eg[φ′(Cg)φ′(Cg)T ].

Here ⊙ denotes the elementwise product. Also denote the minimum eigenvalue of Σ(C) by λ(C) and define
the following condition number associated with the cluster centers C

κ(C) =
√

d

K

∥C∥
λ(C) .

One can view Σ(C) as an empirical kernel matrix associated with the network where the kernel is given
by K(ci,cj) = Σij(C). Note that Σ(C) is trivially rank deficient if there are two cluster centers that are
identical. In this sense, the minimum eigenvalue of Σ(C) will quantify the ability of the neural network
to distinguish between distinct cluster centers. Therefore, one can think of κ(C) as a condition number
associated with the neural network which characterizes the distinctness/diversity of the cluster centers. The
more distinct the cluster centers, the larger λ(C) and smaller the condition number κ(C) is. Indeed, based
on results in [40] when the cluster centers are maximally diverse e.g. uniformly at random from the unit
sphere κ(C) scales like a constant. Throughout we shall assume that λ(C) is strictly positive (and hence
κ(C) <∞). This property is empirically verified to hold in earlier works [55] when φ is a standard activation
(e.g. ReLU, softplus). As a concrete example, for ReLU activation, using results from [40] one can show if the
cluster centers are separated by a distance ν > 0, then λ(C) ≥ ν

100K2 . We note that variations of the λ(C) > 0
assumption based on the data points (i.e. λ(X) > 0 not cluster centers) [20, 21, 40] are utilized to provide
convergence guarantees for DNNs.Also see [3, 59] for other publications using related definitions.

Now that we have a quantitative characterization of distinctiveness/diversity in place we are now ready to
state our main result. Throughout we use cΓ, CΓ, etc. to denote constants only depending on Γ. We note
that this Theorem is slightly simplified by ignoring logarithmic terms and precise dependencies on Γ. We
refer the reader to Theorem 6.13 for precise statement including logarithmic terms.

Theorem 2.2 (Robust learning with early stopping-simplified) Consider an (s, ε0, δ) clusterable cor-
rupted data set of input/label pairs {(xi, yi)}ni=1 ∈ R

d × R per Definition 1.2 with cluster centers {cℓ}Kℓ=1
aggregated as rows of a matrix C ∈ R

K×d. Furthermore, let {ỹi}ni=1 be the corresponding uncorrupted ground
truth labels. Also consider a one-hidden layer neural network with k hidden units and one output of the form
x↦ vTφ (Wx) with W ∈ R

k×d and v ∈ R
k the input-to-hidden and hidden-to-output weights. Also suppose

the activation φ obeys ∣φ(0)∣ ≤ Γ and ∣φ′(z)∣, ∣φ′′(z)∣ ≤ Γ for all z and some Γ ≥ 1. Furthermore, we set half of
the entries of v to 1/√k and the other half to −1/√k3 and train only over W . Starting from an initial weight
matrix W0 selected at random with i.i.d. N(0, 1) entries we run Gradient Descent (GD) updates of the form
Wτ+1 =Wτ − η∇L(Wτ) on the least-squares loss (1.3) with step size η = c̄ΓKn 1

∥C∥2 with c̄Γ. Furthermore,

assume the number of parameters obey

kd ≥ CΓκ
4(C)K4

d
,

with κ(C) the neural net cluster condition number pre Definition 2.1. Then as long as ǫ0 ≤ c̃Γ/K2 and ρ ≤ δ
8

with probability at least 1− 3/K100, after τ0 = cΓKd λ(C)κ2(C) log( 1
ρ
) iterations, the neural network f(⋅,Wτ0)

found by gradient descent assigns all the input samples xi to the correct ground truth labels ỹi. That is,

arg min
αℓ∶1≤ℓ≤K̄

∣f(Wτ ,xi) − αℓ∣ = ỹi, (2.1)

3If k is odd we set one entry to zero ⌊k−1
2
⌋ to 1/

√
k and ⌊k−1

2
⌋ entries to −1/

√
k.
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holds for all 1 ≤ i ≤ n. Furthermore, for all 0 ≤ τ ≤ τ0, the distance to the initial point obeys

∥Wτ −W0∥F ≤ C̄Γ (√K + K2

∥C∥2 τε0) .
Theorem 2.2 shows that gradient descent with early stopping has a few intriguing properties. We further
discuss these properties below.
Robustness. The solution found by gradient descent with early stopping degrades gracefully as the label
corruption level ρ grows. In particular, as long as ρ ≤ δ/8, the final model is able to correctly classify all
samples including the corrupted ones. In our setup, intuitively label gap obeys δ ∼ 1

K̄
, hence, we prove

robustness to
Total Number of corrupted labels ≲ n

K̄
.

This result is independent of number of clusters and only depends on number of classes. An interesting future
direction is to improve this result to allow on the order of n corrupted labels. Such a result maybe possible
by using a multi-output classification neural network.
Early stopping time. We show that gradient descent finds a model that is robust to outliers after a few
iterations. In particular using the maximum allowed step size, the required number of iterations is of the
order of K

d
λ(C)κ2(C) log( 1

ρ
) which scales with K/d up to condition numbers.

Modest overparameterization. Our result requires modest overparemetrization and apply as soon as the
number of parameters exceed the number of classes to the power four (kd ≳ K4). Interestingly, under our
data model the required amount of overparameterization is essentially independent of the size of the training
data n(ignoring logarithmic terms) and conditioning of the data points, only depending on the number of
clusters and conditioning of the cluster centers. This can be interpreted as ensuring that the network has
enough capacity to fit the cluster centers {cℓ}Kℓ=1 and the associated true labels.
Distance from initialization. Another feature of Theorem 2.2 is that the network weights do not stray far
from the initialization as the distance between the initial model and the final model (at most) grows with the
square root of the number of clusters (

√
K). This

√
K dependence implies that the more clusters there are,

the updates travel further away but continue to stay within a certain radius. This dependence is intuitive as
the Rademacher complexity of the function space is dictated by the distance to initialization and should grow
with the square-root of the number of input clusters to ensure the model is expressive enough to learn the
dataset.

Before we end this section we would like to note that in the limit of ǫ0 → 0 where the input data set is
perfectly clustered one can improve the amount of overparamterization. Indeed, the result above is obtained
via a perturbation argument from this more refined result stated below.

Theorem 2.3 (Training with perfectly clustered data) Consier the setting and assumptions of Theo-
rem 2.3 with ǫ0 = 0. Starting from an initial weight matrix W0 selected at random with i.i.d. N(0, 1) entries
we run Gradient Descent (GD) updates of the form Wτ+1 =Wτ − η∇L(Wτ) on the least-squares loss (1.3)
with step size η ≤ K

2cupnΓ2∥C∥2 . Furthermore, assume the number of parameters obey

kd ≥ CΓ4κ2(C)K2,

with κ(C) the neural net cluster condition number per Definition 2.1. Then, with probability at least 1−2/K100

over randomly initialized W0
i.i.d.∼ N(0,1), the iterates Wτ obey the following properties.

• The distance to initial point W0 is upper bounded by

∥Wτ −W0∥F ≤ cΓ
√

K logK

λ(C) .

• After τ ≥ τ0 ∶= c K
ηnλ(C) log (Γ√n logK

ρ
) iterations, the entrywise predictions of the learned network with

respect to the ground truth labels {ỹi}ni=1 satisfy

∣f(Wτ ,xi) − ỹi∣ ≤ 4ρ,
7



for all 1 ≤ i ≤ n. Furthermore, if the noise level ρ obeys ρ ≤ δ/8 the network predicts the correct label for
all samples i.e.

arg min
αℓ∶1≤ℓ≤K̄

∣f(Wτ ,xi) − αℓ∣ = ỹi for i = 1,2, . . . , n. (2.2)

This result shows that in the limit ǫ0 → 0 where the data points are perfectly clustered, the required amount
of overparameterization can be reduced from kd ≳ K4 to kd ≳ K2. In this sense this can be thought of a
nontrivial analogue of [40] where the number of data points are replaced with the number of clusters and the
condition number of the data points is replaced with a cluster condition number. This can be interpreted
as ensuring that the network has enough capacity to fit the cluster centers {cℓ}Kℓ=1 and the associated true
labels. Interestingly, the robustness benefits continue to hold in this case. However, in this perfectly clustered
scenario there is no need for early stopping and a robust network is trained as soon as the number of iterations
are sufficiently large. Infact, in this case given the clustered nature of the input data the network never
overfits to the corrupted data even after many iterations.

2.2 To (over)fit to corrupted labels requires straying far from initialization

In this section we wish to provide further insight into why early stopping enables robustness and generalizable
solutions. Our main insight is that while a neural network maybe expressive enough to fit a corrupted dataset,
the model has to travel a longer distance from the point of initialization as a function of the distance from
the cluster centers ε0 and the amount of corruption. We formalize this idea as follows. Suppose

1. two input points are close to each other (e.g. they are from the same cluster),

2. but their labels are different, hence the network has to map them to distant outputs.

Then, the network has to be large enough so that it can amplify the small input difference to create a large
output difference. Our first result formalizes this for a randomly initialized network. Our random initialization
picks W with i.i.d. standard normal entries which ensures that the network is isometric i.e. given input x,
E[f(W ,x)2] = O(∥x∥2ℓ2).
Theorem 2.4 Let x1,x2 ∈ R

d be two vectors with unit Euclidean norm obeying ∥x2 −x1∥ℓ2 ≤ ǫ0. Let

f(W ,x) = vTφ (Wx) where v is fixed, W ∈ R
k×d, and k ≥ cd with c > 0 a fixed constant. Assume∣φ′∣ , ∣φ′′∣ ≤ Γ. Let y1 and y2 be two scalars satisfying ∣y2 − y1∣ ≥ δ. Suppose W0

i.i.d.∼ N(0,1). Then, with

probability at least 1 − 2e−(k+d) − 2e− t2

2 , for any W ∈ R
k×d such that ∥W −W0∥F ≤ c√k and

f(W ,x1) = y1 and f(W ,x2) = y2,
holds, we have

∥W −W0∥ ≥ δ

CΓε0
− t

1000
.

In words, this result shows that in order to fit to a data set with a single corrupted label, a randomly initialized
network has to traverse a distance of at least δ/ε0. The next lemma clarifies the role of the corruption amount
s and shows that more label corruption within a fixed class requires a model with a larger norm in order to
fit the labels. For this result we consider a randomized model with ε20 input noise variance.

Lemma 2.5 Let c ∈ R
d be a cluster center. Consider 2s data points {xi}si=1 and {x̃i}si=1 in R

d generated
i.i.d. around c according to the following distribution

c + g with g ∼N(0, ε20
d
Id).
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Assign {xi}si=1 with labels yi = y and {x̃i}si=1 with labels ỹi = ỹ and assume these two labels are δ separated
i.e. ∣y − ỹ∣ ≥ δ. Also suppose s ≤ d and ∣φ′∣ ≤ Γ. Then, any W ∈ R

k×d satisfying

f(W ,xi) = yi and f(W , x̃i) = ỹi for i = 1, . . . , s,
obeys ∥W ∥F ≥ √sδ5Γε0

with probability at least 1 − e−d/2.
Unlike Theorem 2.4 this result lower bounds the network norm in lieu of the distance to the initialization W0.
However, using the triangular inequality we can in turn get a guarantee on the distance from initialization
W0 via triangle inequality as long as ∥W0∥F ≲ O(√sδ/ε0) (e.g. by choosing a small ε0).

The above Theorem implies that the model has to traverse a distance of at least

∥Wτ −W0∥F ≳√ρn

K

δ

ε0
,

to perfectly fit corrupted labels. In contrast, we note that the conclusions of the upper bound in Theorem
2.2 show that to be able to fit to the uncorrupted true labels the distance to initialization grows at most
by τε0 after τ iterates. This demonstrates that there is a gap in the required distance to initialization for
fitting enough to generalize and overfitting. To sum up, our results highlight that, one can find a network
with good generalization capabilities and robustness to label corruption within a small neighborhood of the
initialization and that the size of this neighborhood is independent of the corruption. However, to fit to the
corrupted labels, one has to travel much more, increasing the search space and likely decreasing generalization
ability. Thus, early stopping can enable robustness without overfitting by restricting the distance to the
initialization.

3 Technical Approach and General Theory

In this section, we outline our approach to proving robustness of overparameterized neural networks. Towards
this goal, we consider a general formulation where we aim to fit a general nonlinear model of the form
x↦ f(θ,x) with θ ∈ R

p denoting the parameters of the model. For instance in the case of neural networks θ
represents its weights. Given a data set of n input/label pairs {(xi, yi)}ni=1 ⊂ R

d × R, we fit to this data by
minimizing a nonlinear least-squares loss of the form

L(θ) = 1

2

n∑
i=1
(yi − f(θ,xi))2.

which can also be written in the more compact form

L(θ) = 1

2
∥f(θ) − y∥2ℓ2 with f(θ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(θ,x1)
f(θ,x2)⋮
f(θ,xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

To solve this problem we run gradient descent iterations with a constant learning rate η starting from an
initial point θ0. These iterations take the form

θτ+1 = θτ − η∇L(θτ) with ∇L(θ) = J T (θ) (f(θ) − y) . (3.1)

Here, J (θ) is the n × p Jacobian matrix associated with the nonlinear mapping f defined via

J (θ) = [∂f(θ,x1)
∂θ

. . .
∂f(θ,xn)

∂θ
]T . (3.2)
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3.1 Bimodal jacobian structure

Our approach is based on the hypothesis that the nonlinear model has a Jacobian matrix with bimodal
spectrum where few singular values are large and remaining singular values are small. This assumption is
inspired by the fact that realistic datasets are clusterable in a proper, possibly nonlinear, representation
space. Indeed, one may argue that one reason for using neural networks is to automate the learning of such a
representation (essentially the input to the softmax layer). We formalize the notion of bimodal spectrum
below.

Assumption 1 (Bimodal Jacobian) Let β ≥ α ≥ ǫ > 0 be scalars. Let f ∶ Rp → R
n be a nonlinear mapping

and consider a set D ⊂ R
p containing the initial point θ0 (i.e. θ0 ∈ D). Let S+ ⊂ R

n be a subspace and S− be
its complement. We say the mapping f has a Bimodal Jacobian with respect to the complementary subpspacesS+ and S− as long as the following two assumptions hold for all θ ∈ D.

• Spectrum over S+: For all v ∈ S+ with unit Euclidian norm we have

α ≤ ∥J T (θ)v∥
ℓ2
≤ β.

• Spectrum over S−: For all v ∈ S− with unit Euclidian norm we have

∥J T (θ)v∥
ℓ2
≤ ǫ.

We will refer to S+ as the signal subspace and S− as the noise subspace.

When ǫ << α the Jacobian is approximately low-rank. An extreme special case of this assumption is where
ǫ = 0 so that the Jacobian matrix is exactly low-rank. We formalize this assumption below for later reference.

Assumption 2 (Low-rank Jacobian) Let β ≥ α > 0 be scalars. Consider a set D ⊂ R
p containing the

initial point θ0 (i.e. θ0 ∈ D). Let S+ ⊂ R
n be a subspace and S− be its complement. For all θ ∈ D, v ∈ S+ and

w ∈ S− with unit Euclidian norm, we have that

α ≤ ∥J T (θ)v∥
ℓ2
≤ β and ∥J T (θ)w∥

ℓ2
= 0.

Our dataset model in Definition 1.2 naturally has a low-rank Jacobian when ǫ0 = 0 and each input example is
equal to one of the K cluster centers {cℓ}Kℓ=1. In this case, the Jacobian will be at most rank K since each

row will be in the span of {∂f(cℓ,θ)
∂θ

}K
ℓ=1. The subspace S+ is dictated by the membership of each cluster as

follows: Let Λℓ ⊂ {1, . . . , n} be the set of coordinates i such that xi = cℓ. Then, subspace is characterized by

S+ = {v ∈ R
n ∣ vi1 = vi2 for all i1, i2 ∈ Λℓ and 1 ≤ ℓ ≤K}.

When ǫ0 > 0 and the data points of each cluster are not the same as the cluster center we have the bimodal
Jacobian structure of Assumption 1 where over S− the spectral norm is small but nonzero.

In Section 4, we verify that the Jacobian matrix of real datasets indeed have a bimodal structure i.e. there
are few large singular values and the remaining singular values are small which further motivate Assumption
2. This is inline with earlier papers which observed that Hessian matrices of deep networks have bimodal
spectrum (approximately low-rank) [45] and is related to various results demonstrating that there are flat
directions in the loss landscape [27].

3.2 Meta result on learning with label corruption

Define the n-dimensional residual vector r where r(θ) = [f(x1,θ) − y1 . . . f(xn,θ) − yn]T . A key idea
in our approach is that we argue that (1) in the absence of any corruption r(θ) approximately lies on the
subspace S+ and (2) if the labels are corrupted by a vector e, then e approximately lies on the complement
space. Before we state our general result we need to discuss another assumption and definition.
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Assumption 3 (Smoothness) The Jacobian mapping J (θ) associated to a nonlinear mapping f ∶ Rp → R
n

is L-smooth if for all θ1,θ2 ∈ R
p we have ∥J (θ2) − J (θ1)∥ ≤ L ∥θ2 − θ1∥ℓ2 .4

Additionally, to connect our results to the number of corrupted labels, we introduce the notion of subspace
diffusedness defined below.

Definition 3.1 (Diffusedness) S+ is γ diffused if for any vector v ∈ S+
∥v∥ℓ∞ ≤√γ/n∥v∥ℓ2 ,

holds for some γ > 0.
The following theorem is our meta result on the robustness of gradient descent to sparse corruptions on

the labels when the Jacobian mapping is exactly low-rank. Theorem 2.3 for the perfectly clustered data
(ǫ0 = 0) is obtained by combining this result with specific estimates developed for neural networks.

Theorem 3.2 (Gradient descent with label corruption) Consider a nonlinear least squares problem

of the form L(θ) = 1
2
∥f(θ) − y)∥2ℓ2 with the nonlinear mapping f ∶ Rp → R

n obeying assumptions 2 and 3

over a unit Euclidian ball of radius
4∥r0∥ℓ2

α
around an initial point θ0 and y = [y1 . . . yn] ∈ R

n denoting the
corrupted labels. Also let ỹ = [ỹ1 . . . ỹn] ∈ R

n denote the uncorrupted labels and e = y − ỹ the corruption.
Furthermore, suppose the initial residual f(θ0) − ỹ with respect to the uncorrupted labels obey f(θ0) − ỹ ∈ S+.
Then, running gradient descent updates of the from (3.1) with a learning rate η ≤ 1

2β2 min(1, αβ

L∥r0∥ℓ2
), all

iterates obey

∥θτ − θ0∥ℓ2 ≤ 4∥r0∥ℓ2
α

.

Furthermore, assume ν > 0 is a precision level obeying ν ≥ ∥ΠS+(e)∥ℓ∞ . Then, after τ ≥ 5
ηα2 log ( ∥r0∥ℓ2

ν
)

iterations, θτ achieves the following error bound with respect to the true labels

∥f(θτ) − ỹ∥ℓ∞ ≤ 2ν.
Furthermore, if e has at most s nonzeros and S+ is γ diffused per Definition 3.1, then using ν = ∥ΠS+(e)∥ℓ∞

∥f(θτ) − ỹ∥ℓ∞ ≤ 2∥ΠS+(e)∥ℓ∞ ≤ γ
√
s

n
∥e∥ℓ2 .

This result shows that when the Jacobian of the nonlinear mapping is low-rank, gradient descent enjoys two
intriguing properties. First, gradient descent iterations remain rather close to the initial point. Second, the
estimated labels of the algorithm enjoy sample-wise robustness guarantees in the sense that the noise in the
estimated labels are gracefully distributed over the dataset and the effects on individual label estimates are
negligible. This theorem is the key result that allows us to prove Theorem 2.3 when the data points are
perfectly clustered (ǫ0 = 0). Furthermore, this theorem when combined with a perturbation analysis allows us
to deal with data that is not perfectly clustered (ǫ0 > 0) and to conclude that with early stopping neural
networks are rather robust to label corruption (Theorem 2.2).

Finally, we note that a few recent publication [3, 21, 39] require the Jacobian to be well-conditioned to fit
labels perfectly. In contrast, our low-rank model cannot perfectly fit the corrupted labels. Furthermore, when
the Jacobian is bimodal (as seems to be the case for many practical data sets and neural network models) it
would take a very long time to perfectly fit the labels and as demonstrated earlier such a model does not
generalize and is not robust to corruptions. Instead we focus on proving robustness with early stopping.

4Note that, if
∂J(θ)

∂θ
is continuous, the smoothness condition holds over any compact domain (albeit for a possibly large L).
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Lemma 6.3 Suppose Assumption 3.1 holds. If r ∈ R
n is a vector with s nonzero entries, we have that

∥ΠS+(r)∥ℓ∞ ≤ γ
√
s

n
∥r∥ℓ2 . (6.3)

Proof First, we bound the ℓ2 projection of r on S+ as follows

∥ΠS+(r)∥ℓ2 = sup
v∈S+

vTr∥v∥ℓ2 ≤
√

γ

n
∥r∥ℓ1 ≤

√
γs

n
∥r∥ℓ2 .

where we used the fact that ∣vi∣ ≤√γ∥v∥ℓ2/√n. Next, we conclude with

∥ΠS+(r)∥ℓ∞ ≤
√

γ

n
∥ΠS+(r)∥ℓ2 ≤ γ

√
s

n
∥r∥ℓ2 .

6.1.1 Proof of Theorem 3.2

Proof The proof will be done inductively over the properties of gradient descent iterates and is inspired
from the recent work [39]. In particular, [39] requires a well-conditioned Jacobian to fit labels perfectly. In
contrast, we have a low-rank Jacobian model which cannot fit the noisy labels (or it would have trouble
fitting if the Jacobian was approximately low-rank). Despite this, we wish to prove that gradient descent
satisfies desirable properties such as robustness and closeness to initialization. Let us introduce the notation
related to the residual. Set rτ = f(θτ) − y and let r0 = f(θ0) − y be the initial residual. We keep track of the
growth of the residual by partitioning the residual as rτ = r̄τ + ēτ where

ēτ = ΠS−(rτ) , r̄τ = ΠS+(rτ).
We claim that for all iterations τ ≥ 0, the following conditions hold.

ēτ =ē0 (6.4)

∥r̄τ∥2ℓ2 ≤(1 − ηα2

2
)τ ∥r̄0∥2ℓ2 , (6.5)

1

4
α ∥θτ − θ0∥ℓ2 + ∥r̄τ∥ℓ2 ≤ ∥r̄0∥ℓ2 ≤ ∥r0∥ℓ2 . (6.6)

Assuming these conditions hold till some τ > 0, inductively, we focus on iteration τ + 1. First, note that these

conditions imply that for all τ ≥ i ≥ 0, θi ∈ D where D is the Euclidian ball around θ0 of radius
4∥r0∥ℓ2

α
. This

directly follows from (6.6) induction hypothesis. Next, we claim that θτ+1 is still within the set D. This can
be seen as follows:

Claim 1 Under the induction hypothesis (6.4), θτ+1 ∈ D.
Proof Since range space of Jacobian is in S+ and η ≤ 1/β2, we begin by noting that

∥θτ+1 − θτ∥ℓ2 = η∥J T (θτ) (f(θτ ) − y)∥ℓ2 (6.7)

(a)= η∥J T (θτ) (ΠS+(f(θτ ) − y))∥ℓ2 (6.8)

(b)= η∥J T (θτ)r̄τ∥ℓ2 (6.9)

(c)≤ ηβ∥r̄τ∥ℓ2 (6.10)

(d)≤ ∥r̄τ∥ℓ2
β

(6.11)

(e)≤ ∥r̄τ∥ℓ2
α

(6.12)
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In the above, (a) follows from the fact that row range space of Jacobian is subset of S+ via Assumption 2. (b)
follows from the definition of r̄τ . (c) follows from the upper bound on the spectral norm of the Jacobian overD per Assumption 2, (d) from the fact that η ≤ 1

β2 , (e) from α ≤ β. The latter combined with the triangular

inequality and induction hypothesis (6.6) yields (after scaling (6.6) by 4/α)
∥θτ+1 − θ0∥ℓ2 ≤ ∥θτ+1 − θτ∥ℓ2 + ∥θ0 − θτ∥ℓ2 ≤ ∥θτ − θ0∥ℓ2 + ∥r̄τ∥ℓ2α

≤ 4∥r0∥ℓ2
α

,

concluding the proof of θτ+1 ∈ D.
To proceed, we shall verify that (6.6) holds for τ +1 as well. Note that, following Lemma 6.2, gradient descent
iterate can be written as

rτ+1 = (I −C(θτ))rτ .
Since both column and row space of C(θτ) is subset of S+, we have that

ēτ+1 = ΠS−((I −C(θτ))rτ) (6.13)

= ΠS−(rτ) (6.14)

= ēτ , (6.15)

This shows the first statement of the induction. Next, over S+, we have

r̄τ+1 = ΠS+((I −C(θτ))rτ) (6.16)

= ΠS+((I −C(θτ))r̄τ) +ΠS+((I −C(θτ))ēτ) (6.17)

= ΠS+((I −C(θτ))r̄τ) (6.18)

= (I −C(θτ))r̄τ (6.19)

where the second line uses the fact that ēτ ∈ S− and last line uses the fact that r̄τ ∈ S+. To proceed, we need
to prove that C(θτ) has desirable properties over S+, in particular, it contracts this space.

Claim 2 let PS+ ∈ R
n×n be the projection matrix to S+ i.e. it is a positive semi-definite matrix whose

eigenvectors over S+ is 1 and its complement is 0. Under the induction hypothesis and setup of the theorem,
we have that7

β2PS+ ⪰C(θτ) ⪰ 1

2
J (θτ)J (θτ)T ⪰ α2

2
PS+ . (6.20)

Proof The proof utilizes the upper bound on the learning rate. The argument is similar to the proof of
Lemma 9.7 of [39]. Suppose Assumption 3 holds. Then, for any θ1,θ2 ∈ D we have

∥J (θ2,θ1) − J (θ1)∥ =∥∫ 1

0
(J (θ1 + t (θ2 − θ1)) − J (θ1))dt∥ ,

≤∫ 1

0
∥J (θ1 + t (θ2 − θ1)) − J (θ1)∥dt,

≤∫ 1

0
tL ∥θ2 − θ1∥ℓ2 dt ≤ L

2
∥θ2 − θ1∥ℓ2 . (6.21)

Thus, for η ≤ α
Lβ∥r0∥ℓ2

,

∥J (θτ+1,θτ) − J (θτ)∥ ≤ L

2
∥θτ+1 − θτ∥ℓ2 (6.22)

= ηL

2
∥J T (θτ) (f(θτ ) − y)∥ℓ2 ≤ ηβL

2
∥r̄τ∥ℓ2 (6.23)

(a)≤ ηβL

2
∥r̄0∥ℓ2 (b)≤ α

2
. (6.24)

7We say A ⪰B if A −B is a positive semi-definite matrix in the sense that for any real vector v, vT (A −B)v ≥ 0.
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where for (a) we utilized the induction hypothesis (6.6) and (b) follows from the upper bound on η. Now
that (6.24) is established, using following lemma, we find

C(θτ) =J (θτ+1,θτ)J (θτ)T ⪰ (1/2)J (θτ)J (θτ)T .
The β2 upper bound directly follows from Assumption 2 by again noticing range space of Jacobian is subset
of S+.

Lemma 6.4 (Asymmetric PSD perturbation) Consider the matrices A,C ∈ R
n×p obeying ∥A −C∥ ≤

α/2. Also suppose CCT ⪰ α2PS+ . Furthermore, assume range spaces of A,C lies in S+. Then,

ACT
⪰
CCT

2
⪰
α2

2
PS+ .

Proof For r ∈ S+ with unit Euclidian norm, we have

rTACTr = ∥CTr∥2ℓ2 + rT (A −C)CTr ≥ ∥CTr∥2ℓ2 − ∥CTr∥ℓ2∥rT (A −C)∥ℓ2
= (∥CTr∥ℓ2 − ∥rT (A −C)∥ℓ2)∥CTr∥ℓ2≥ (∥CTr∥ℓ2 − α/2)∥CTr∥ℓ2≥ ∥CTr∥2ℓ2/2.

Also, for any r, by range space assumption rTACTr = ΠS+(r)TACTΠS+(r) (same for CCT ). Combined
with above, this concludes the claim.

What remains is proving the final two statements of the induction (6.6). Note that, using the claim above
and recalling (6.19) and using the fact that ∥J (θτ+1,θτ)∥ ≤ β, the residual satisfies

∥r̄τ+1∥2ℓ2 = ∥(I − ηC(θτ))r̄τ∥2ℓ2 = ∥r̄τ∥2ℓ2 − 2ηr̄Tτ Cτ r̄τ + η2r̄Tτ CT
τ Cτ r̄τ (6.25)

≤ ∥r̄τ∥2ℓ2 − ηr̄Tτ J (θτ)J (θτ)T r̄τ + η2β2r̄Tτ J (θτ)J (θτ)T r̄τ (6.26)

≤ ∥r̄τ∥2ℓ2 − (η − η2β2)∥J (θτ)T r̄τ∥2ℓ2 (6.27)

≤ ∥r̄τ∥2ℓ2 − η

2
∥J (θτ)T r̄τ∥2ℓ2 . (6.28)

where we used the fact that η ≤ 1
2β2 . Now, using the fact that J (θτ)J (θτ)T ⪰ α2PS+ , we have

∥r̄τ∥2ℓ2 − η

2
∥J (θτ)T r̄τ∥2ℓ2 ≤ (1 − ηα2

2
)∥r̄τ∥2ℓ2 ≤ (1 − ηα2

2
)τ+1∥r̄0∥2ℓ2 ,

which establishes the second statement of the induction (6.6). What remains is obtaining the last statement
of (6.6). To address this, completing squares, observe that

∥r̄τ+1∥ℓ2 ≤
√∥r̄τ∥2ℓ2 − η

2
∥J (θτ)T r̄τ∥2ℓ2 ≤ ∥r̄τ∥ℓ2 − η

4

∥J (θτ)T r̄τ∥2ℓ2∥r̄τ∥ℓ2 .

On the other hand, the distance to initial point satisfies

∥θτ+1 − θ0∥ℓ2 ≤ ∥θτ+1 − θτ∥ℓ2 + ∥θτ − θ0∥ℓ2 ≤ ∥θτ − θ0∥ℓ2 + η∥J (θτ)r̄τ∥ℓ2 .
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Combining the last two lines (by scaling the second line by 1
4
α) and using induction hypothesis (6.6), we find

that

1

4
α ∥θτ+1 − θ0∥ℓ2 + ∥r̄τ+1∥ℓ2 ≤ 1

4
α(∥θτ − θ0∥ℓ2 + η∥J (θτ)r̄τ∥ℓ2) + ∥r̄τ∥ℓ2 − η

4

∥J (θτ)T r̄τ∥2ℓ2∥r̄τ∥ℓ2 (6.29)

≤ [1
4
α∥θτ − θ0∥ℓ2 + ∥r̄τ∥ℓ2] + η

4
[α∥J (θτ)r̄τ∥ℓ2 − ∥J (θτ)T r̄τ∥2ℓ2∥r̄τ∥ℓ2 ] (6.30)

≤ [1
4
α∥θτ − θ0∥ℓ2 + ∥r̄τ∥ℓ2] + η

4
∥J (θτ)r̄τ∥ℓ2 [α − ∥J (θτ)T r̄τ∥ℓ2∥r̄τ∥ℓ2 ] (6.31)

≤ 1

4
α∥θτ − θ0∥ℓ2 + ∥r̄τ∥ℓ2 (6.32)

≤ ∥r̄0∥ℓ2 ≤ ∥r0∥ℓ2 . (6.33)

This establishes the final line of the induction and concludes the proof of the upper bound on ∥θτ − θ0∥ℓ2 . To
proceed, we shall bound the infinity norm of the residual. Using ΠS−(e) = ΠS−(r0) = ēτ , note that

∥f(θτ) − y − e∥ℓ∞ = ∥rτ − e∥ℓ∞ (6.34)

≤ ∥r̄τ∥ℓ∞ + ∥e − ēτ∥ℓ∞ (6.35)

= ∥r̄τ∥ℓ∞ + ∥e −ΠS−(e)∥ℓ∞ (6.36)

= ∥r̄τ∥ℓ∞ + ∥ΠS+(e)∥ℓ∞ . (6.37)

What remains is controlling ∥r̄τ∥ℓ∞ . For this term, we shall use the naive upper bound ∥r̄τ∥ℓ2 . Using the
rate of convergence of the algorithm (6.6), we have that

∥r̄τ∥ℓ2 ≤ (1 − ηα2

4
)τ∥r0∥ℓ2 .

We wish the right hand side to be at most ν > 0 where ν ≥ ∥ΠS+(e)∥ℓ∞ . This implies that we need

(1 − ηα2

4
)τ∥r0∥ℓ2 ≤ ν ⇐⇒ τ log(1 − ηα2

4
) ≤ log( ν∥r0∥ℓ2 ) (6.38)

⇐⇒ τ log( 1

1 − ηα2

4

) ≥ log(∥r0∥ℓ2
ν
) (6.39)

To conclude, note that since ηα2

4
≤ 1/8 (as η ≤ 1/2β2), we have

log( 1

1 − ηα2

4

) ≥ log(1 + ηα2

4
) ≥ ηα2

5
.

Consequently, if τ ≥ 5
ηα2 log( ∥r0∥ℓ2

ν
), we find that ∥r̄τ∥ℓ∞ ≤ ∥r̄τ∥ℓ2 ≤ ν, which guarantees

∥rτ − e∥ℓ∞ ≤ 2ν.
which is the advertised result. If e is s sparse and S+ is diffused, applying Lemma 3.1 we have

∥ΠS+(e)∥ℓ∞ ≤ γ
√
s

n
∥e∥ℓ2 .
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6.1.2 Proof of Generic Lower Bound – Theorem 3.3

Proof Suppose θ ∈ D satisfies y = f(θ). Define Jτ = J ((1 − τ)θ + τθ0) and J = J (θ,θ0) = ∫ 1

0
Jτdτ . Since

Jacobian is derivative of f , we have that

f(θ) − f(θ0) = ∫ 1

0
Jτ(θ − θ0)dτ = J(θ − θ0).

Now, define the matrices J+ = ΠS+(J) and J− = ΠS−(J). Using Assumption 1, we bound the spectral norms
via ∥J+∥ = sup

v∈S+,∥v∥ℓ2≤1
∥JTv∥ℓ2 ≤ β , ∥J−∥ = sup

v∈S−,∥v∥ℓ2≤1
∥JTv∥ℓ2 ≤ ǫ.

To proceed, projecting the residual on S+, we find for any θ with f(θ) = y
ΠS+(f(θ) − f(θ0)) = ΠS+(J)(θ − θ0) Ô⇒ ∥θ − θ0∥ℓ2 ≥ ∥ΠS+(f(θ) − f(θ0))∥ℓ2β

≥ E+
β

.

The identical argument for S− yields ∥θ − θ0∥ℓ2 ≥ E−
ǫ
. Together this implies

∥θ − θ0∥ℓ2 ≥max(E−
ǫ
,
E+
β
). (6.40)

If R is strictly smaller than right hand side, we reach a contradiction as θ /∈ D. If D = R
p, we still find (6.40).

This shows that if ǫ is small and E− is nonzero, gradient descent has to traverse a long distance to find a
good model. Intuitively, if the projection over the noise space indeed contains the label noise, we actually
don’t want to fit that. Algorithmically, our idea fits the residual over the signal space and not worries about
fitting over the noise space. Approximately speaking, this intuition corresponds to the ℓ2 regularized problem

min
θ
L(θ) ∥θ − θ0∥ℓ2 ≤ R.

If we set R = E+
β
, we can hope that solution will learn only the signal and does not overfit to the noise. The

next section builds on this intuition and formalizes our algorithmic guarantees.

6.2 Proofs for Neural Networks

Throughout, σmin(⋅) denotes the smallest singular value of a given matrix. We first introduce helpful
definitions that will be used in our proofs.

Definition 6.5 (Support subspace) Let {xi}ni=1 be an input dataset generated according to Definition 1.1.
Also let {x̃i}ni=1 be the associated cluster centers, that is, x̃i = cℓ iff xi is from the ℓth cluster. We define
the support subspace S+ as a subspace of dimension K, dictated by the cluster membership as follows. Let
Λℓ ⊂ {1, . . . , n} be the set of coordinates i such that x̃i = cℓ. Then, S+ is characterized by

S+ = {v ∈ R
n ∣ vi1 = vi2 for all i1, i2 ∈ Λℓ and for all 1 ≤ ℓ ≤K}.

Definition 6.6 (Neural Net Jacobian) Given input samples (xi)ni=1, form the input matrix X = [x1 . . . xn]T ∈
R
n×d. The Jacobian of the learning problem (1.3), at a matrix W is denoted by J (W ,X) ∈ R

n×kd and is
given by J (W ,X)T = (diag(v)φ′(WXT )) ∗XT .

Here ∗ denotes the Khatri-Rao product.

The following theorem is borrowed from [40] and characterizes three key properties of the neural network
Jacobian. These are smoothness, spectral norm, and minimum singular value at initialization which correspond
to Lemmas 6.6, 6.7, and 6.8 in that paper.
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Theorem 6.7 (Jacobian Properties at Cluster Center) Suppose X = [x1 . . . xn]T ∈ R
n×d be an input

dataset satisfying λ(X) > 0. Suppose ∣φ′∣, ∣φ′′∣ ≤ Γ. The Jacobian mapping with respect to the input-to-hidden
weights obey the following properties.

• Smoothness is bounded by

∥J (W̃ ,X) − J (W ,X)∥ ≤ Γ√
k
∥X∥ ∥W̃ −W ∥

F
for all W̃ ,W ∈ R

k×d.

• Top singular value is bounded by

∥J (W ,X)∥ ≤ Γ ∥X∥ .
• Let C > 0 be an absolute constant. As long as

k ≥ CΓ2logn ∥X∥2
λ(X)

At random Gaussian initialization W0 ∼N (0,1)k×d, with probability at least 1 − 1/K100, we have

σmin (J (W0,X)) ≥√λ(X)/2.
In our case, the Jacobian is not well-conditioned. However, it is pretty well-structured as described previously.
To proceed, given a matrix X ∈ R

n×d and a subspace S ⊂ R
n, we define the minimum singular value of the

matrix over this subspace by σmin(X,S) which is defined as

σmin(X,S) = sup
∥v∥ℓ2=1,UUT =PS

∥vTUTX∥ℓ2 .
Here, PS ∈ R

n×n is the projection operator to the subspace. Hence, this definition essentially projects the
matrix on S and then takes the minimum singular value over that projected subspace. The following theorem
states the properties of the Jacobian at a clusterable dataset.

Theorem 6.8 (Jacobian Properties at Clusterable Dataset) Let input samples (xi)ni=1 be generated
according to (ε0, δ) clusterable dataset model of Definition 1.1 and define X = [x1 . . . xn]T . Let S+ be the
support space and (x̃i)ni=1 be the associated clean dataset as described by Definition 6.5. Set X̃ = [x̃1 . . . x̃n]T .
Assume ∣φ′∣, ∣φ′′∣ ≤ Γ and λ(C) > 0. The Jacobian mapping at X̃ with respect to the input-to-hidden weights
obey the following properties.

• Smoothness is bounded by

∥J (W̃ , X̃) − J (W , X̃)∥ ≤ Γ√cupn

kK
∥C∥ ∥W̃ −W ∥

F
for all W̃ ,W ∈ R

k×d.

• Top singular value is bounded by

∥J (W , X̃)∥ ≤√cupn

K
Γ ∥C∥ .

• As long as

k ≥ CΓ2logK ∥C∥2
λ(C)

At random Gaussian initialization W0 ∼N (0,1)k×d, with probability at least 1 − 1/K100, we have

σmin (J (W0, X̃),S+) ≥
√

clownλ(C)
2K
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• The range space obeys range(J (W0, X̃)) ⊂ S+ where S+ is given by Definition 6.5.

Proof Let J (W ,C) be the Jacobian at the cluster center matrix. Applying Theorem 6.7, this matrix
already obeys the properties described in the conclusions of this theorem with desired probability (for the
last conclusion). We prove our theorem by relating the cluster center Jacobian to the clean dataset Jacobian
matrix J (W , X̃).

Note that X̃ is obtained by duplicating the rows of the cluster center matrix C. This implies thatJ (W , X̃) is obtained by duplicating the rows of the cluster center Jacobian. The critical observation is that,
by construction in Definition 1.1, each row is duplicated somewhere between clown/K and cupn/K.

To proceed, fix a vector v and let p̃ = J (W , X̃)v ∈ R
n and p = J (W ,C)v ∈ R

K . Recall the definition of
the support sets Λℓ from Definition 6.5. We have the identity

p̃i = pℓ for all i ∈ Λℓ.

This implies p̃ ∈ S+ hence range(J (W , X̃)) ⊂ S+. Furthermore, the entries of p̃ repeats the entries of p
somewhere between clown/K and cupn/K. This implies that,√

cupn

K
∥p∥ℓ2 ≥ ∥p̃∥ℓ2 ≥

√
clown

K
∥p∥ℓ2 ,

and establishes the upper and lower bounds on the singular values of J (W , X̃) over S+ in terms of the
singular values of J (W ,C). Finally, the smoothness can be established similarly. Given matrices W ,W̃ ,
the rows of the difference ∥J (W̃ , X̃) − J (W , X̃)∥
is obtained by duplicating the rows of ∥J (W̃ ,C) − J (W ,C)∥ by at most cupn/K times. Hence the spectral

norm is scaled by at most
√
cupn/K.

Lemma 6.9 (Upper bound on initial misfit) Consider a one-hidden layer neural network model of the
form x ↦ vTφ (Wx) where the activation φ has bounded derivatives obeying ∣φ(0)∣, ∣φ′(z)∣ ≤ Γ. Suppose
entries of v ∈ R

k are half 1/√k and half −1/√k so that ∥v∥ℓ2 = 1. Also assume we have n data points
x1,x2, . . . ,xn ∈ R

d with unit euclidean norm (∥xi∥ℓ2 = 1) aggregated as rows of a matrix X ∈ R
n×d and the

corresponding labels given by y ∈ R
n generated accoring to (ρ, ε0 = 0, δ) noisy dataset (Definition 1.2). Then

for W0 ∈ R
k×d with i.i.d. N (0,1) entries

∥vTφ (W0X
T ) − y∥

ℓ2
≤ O(Γ√n logK),

holds with probability at least 1 −K−100.
Proof This lemma is based on a fairly straightforward union bound. First, by construction ∥y∥ℓ2 ≤ √n.
What remains is bounding ∥vTφ (W0X

T )∥ℓ2 . Since ε0 = 0 there are K unique rows. We will show that

each of the unique rows is bounded with probability 1 −K−101 and union bounding will give the final result.
Let w be a row of W0 and x be a row of X. Since φ is Γ Lipschitz and ∣φ(0)∣ ≤ Γ, each entry of φ (Xw)
is O(Γ)-subgaussian. Hence vTφ(W0x) is weighted average of k i.i.d. subgaussians which are entries of
φ(W0x). Additionally it is zero mean since ∑ni=1 vi = 0. This means vTφ(W0x) is also O(Γ) subgaussian
and obeys

P(∣vTφ(W0x)∣ ≥ cΓ√logK) ≤K−101,
for some constant c > 0, concluding the proof.
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6.2.1 Proof of Theorem 2.3

We first prove a lemma regarding the projection of label noise on the cluster induced subspace.

Lemma 6.10 Let {(xi, yi)}ni=1 be an (ρ, ε0 = 0, δ) clusterable noisy dataset as described in Definition 1.2.
Let {ỹi}ni=1 be the corresponding noiseless labels. Let J (W ,C) be the Jacobian at the cluster center matrix
which is rank K and S+ be its column space. Then, the difference between noiseless and noisy labels satisfy
the bound ∥ΠS+(y − ỹ)∥ℓ∞ ≤ 2ρ.
Proof Let e = y − ỹ. Observe that by assumption, ℓth cluster has at most sℓ = ρnℓ errors. Let Iℓ denote the
membership associated with cluster ℓ i.e. Iℓ ⊂ {1, . . . , n} and i ∈ Iℓ if and only if xi belongs to ℓth cluster. Let
1(ℓ) ∈ R

n be the indicator function of the ℓth class where ith entry is 1 if i ∈ Iℓ and 0 else for 1 ≤ i ≤ n. Then,
denoting the size of the ℓth cluster by nℓ, the projection to subspace S+ can be written as the P matrix where

P =
K∑
ℓ=1

1

nℓ
1(ℓ)1(ℓ)T .

Let eℓ be the error pattern associated with ℓth cluster i.e. eℓ is equal to e over Iℓ and zero outside. Since
cluster membership is non-overlapping, we have that

Pe =
K∑
ℓ=1

1

nℓ
1(ℓ)1(ℓ)Teℓ.

Similarly since supports of 1(ℓ) are non-overlapping, we have that

∥Pe∥ℓ∞ = max
1≤ℓ≤K

1

nℓ
1(ℓ)1(ℓ)Teℓ.

Now, using ∥e∥ℓ∞ ≤ 2 (max distance between two labels), observe that

∥1(ℓ)1(ℓ)Teℓ∥ℓ∞ ≤ 2∥1(ℓ)∥ℓ∞∥eℓ∥ℓ1 = 2∥eℓ∥ℓ1 .
Since number of errors within cluster ℓ is at most nℓρ, we find that

∥Pe∥ℓ∞ = K∑
ℓ=1
∥ 1
nℓ

1(ℓ)1(ℓ)Teℓ∥ℓ∞ ≤ ∥eℓ∥ℓ1nℓ
≤ 2ρ.

The final line yields the bound

∥PS+(y − ỹ)∥ℓ∞ = ∥PS+(e)∥ℓ∞ = ∥Pe∥ℓ∞ ≤ 2ρ.
With this, we are ready to state the proof of Theorem 2.3.
Proof The proof is based on the meta Theorem 3.2, hence we need to verify its Assumptions 2 and 3 with
proper values and apply Lemma 6.10 to get ∥PS+(e)∥ℓ∞ . We will also make significant use of Corollary 6.8.

Using Corollary 6.8, Assumption 3 holds with L = Γ
√

cupn

kK
∥C∥ where L is the Lipschitz constant of

Jacobian spectrum. Denote rτ = f(Wτ) − y. Using Lemma 6.9 with probability 1 −K−100, we have that∥r0∥ℓ2 = ∥y − f(W0)∥ℓ2 ≤ Γ√c0n logK/128 for some c0 > 0. Corollary 6.8 guarantees a uniform bound for β,
hence in Assumption 2, we pick

β ≤

√
cupn

K
Γ ∥C∥ .

We shall also pick the minimum singular value over S+ to be

α =
α0

2
where α0 =

√
clownλ(C)

2K
,
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We wish to verify Assumption 2 over the radius of

R =
4∥f(W0) − y∥ℓ2

α
≤
Γ
√
c0n logK/8

α
= Γ

¿ÁÁÀc0n logK/2
clownλ(C)

2K

= Γ

√
c0K logK

clowλ(C) ,
neighborhood of W0. What remains is ensuring that Jacobian over S+ is lower bounded by α. Our choice of
k guarantees that at the initialization, with probability 1 −K−100, we have

σmin(J (W0,X),S+) ≥ α0.

Suppose LR ≤ α = α0/2. Using triangle inequality on Jacobian spectrum, for any W ∈ D, using ∥W −W0∥F ≤
R, we would have

σmin(J (W ,X),S+) ≥ σmin(J (W0,X),S+) −LR ≥ α0 − α = α.
Now, observe that

LR = Γ

√
cupn

kK
∥C∥Γ

¿ÁÁÀc0K log(K)
clowλ(C) = Γ2∥C∥

√
cupc0n logK

clowkλ(C) ≤
α0

2
=

√
clownλ(C)

8K
, (6.41)

as k satisfies

k ≥ O(Γ4∥C∥2 cupK log(K)
c2lowλ(C)2 ) ≥ O(

Γ4K log(K) ∥C∥2
λ(C)2 ).

Finally, since LR = 4L∥r0∥ℓ2/α ≤ α, the learning rate is

η ≤
1

2β2
min(1, αβ

L ∥r0∥ℓ2 ) =
1

2β2
=

K

2cupnΓ2 ∥C∥2 .
Overall, the assumptions of Theorem 3.2 holds with stated α,β,L with probability 1−2K−100 (union bounding
initial residual and minimum singular value events). This implies for all τ > 0 the distance of current iterate
to initial obeys ∥Wτ −W0∥F ≤ R.

The final step is the properties of the label corruption. Using Lemma 6.10, we find that

∥ΠS+(ỹ − y)∥ℓ∞ ≤ 2ρ.
Substituting the values corresponding to α,β,L yields that, for all gradient iterations with

5

ηα2
log(∥r0∥ℓ2

2ρ
) ≤ 5

ηα2
log(Γ

√
c0n logK/32

2ρ
) = O( K

ηnλ(C) log(Γ
√
n logK

ρ
)) ≤ τ,

denoting the clean labels by ỹ and applying Theorem 3.2, we have that, the infinity norm of the residual
obeys (using ∥ΠS+(e)∥ℓ∞ ≤ 2ρ) ∥f(W ) − ỹ∥ℓ∞ ≤ 4ρ.
This implies that if ρ ≤ δ/8, the network will miss the correct label by at most δ/2, hence all labels (including
noisy ones) will be correctly classified.
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6.2.2 Proof of Theorem 2.4

Consider

f(W ,x) = vTφ (Wx)
and note that

∇xf(W ,x) =W Tdiag (φ′ (Wx))v
Thus

∂

∂x
f(W ,x)u =vTdiag (φ′ (Wx))Wu

=

k∑
ℓ=1

vℓφ
′ (⟨wℓ,x⟩)wT

ℓ u

Thus

∇wℓ
( ∂

∂x
f(W ,x)u) = vℓ (φ′′(wT

ℓ x)(wT
ℓ u)x + φ′(wT

ℓ x)u)
Thus, denoting vectorization of a matrix by vect(⋅)

vect(U)T ( ∂

∂vect(W ) ∂

∂x
f(W ,x))u = k∑

ℓ=1
vℓ (φ′′(wT

ℓ x)(wT
ℓ u)(uTℓ x) + φ′(wT

ℓ x)(uTℓ u))
=uTW Tdiag (v)diag (φ′′(Wx))Ux + vTdiag (φ′ (Wx))Uu

Thus by the general mean value theorem there exists a point (W̃ , x̃) in the square (W0,x1), (W0,x2), (W ,x1)
and (W ,x2) such that

(f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1))
= (x2 −x1)TW̃ Tdiag (v)diag (φ′′(W̃ x̃)) (W −W0)x̃ + vTdiag (φ′ (W̃ x̃)) (W −W0)(x2 −x1)

Using the above we have that

∣ (f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1)) ∣
(a)
≤ ∣(x2 −x1)TW̃ Tdiag (v)diag (φ′′(W̃ x̃)) (W −W0)x̃∣
+ ∣vTdiag (φ′ (W̃ x̃)) (W −W0)(x2 −x1)∣

(b)
≤ (∥v∥ℓ∞ ∥x̃∥ℓ2 ∥W̃ ∥ + ∥v∥ℓ2)Γ ∥x2 −x1∥ℓ2 ∥W −W0∥
(c)
≤ ( 1√

k
∥x̃∥ℓ2 ∥W̃ ∥ + 1)Γ ∥x2 −x1∥ℓ2 ∥W −W0∥

(d)
≤ ( 1√

k
∥W̃ ∥ + 1)Γ ∥x2 −x1∥ℓ2 ∥W −W0∥

(e)
≤ ( 1√

k
∥W0∥ + 1√

k
∥W̃ −W0∥ + 1)Γ ∥x2 −x1∥ℓ2 ∥W −W0∥

(f)
≤ ( 1√

k
∥W0∥ + 1√

k
∥W̃ −W0∥F + 1)Γ ∥x2 −x1∥ℓ2 ∥W −W0∥

(g)
≤
⎛⎝ 1√

k
∥W̃ −W0∥F + 3 + 2

√
d

k

⎞⎠Γ ∥x2 −x1∥ℓ2 ∥W −W0∥
(h)
≤ CΓ ∥x2 −x1∥ℓ2 ∥W −W0∥ (6.42)
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Here, (a) follows from the triangle inequality, (b) from simple algebraic manipulations along with the fact
that ∣φ′(z)∣ ≤ Γ and ∣φ′′(z)∣ ≤ Γ, (c) from the fact that vℓ = ± 1√

k
, (d) from ∥x2∥ℓ2 = ∥x1∥ℓ2 = 1 which implies

∥x̃∥ℓ2 ≤ 1, (e) from triangular inequality, (f) from the fact that Frobenius norm dominates the spectral norm,

(g) from the fact that with probability at least 1 − 2e−(d+k), ∥W0∥ ≤ 2(√k +√d), and (h) from the fact that∥W̃ −W0∥ ≤ ∥W −W0∥F ≤ c̃√k and k ≥ cd.
Next we note that for a Gaussian random vector g ∼N (0,Id) we have

∥φ(gTx2) − φ(gTx1)∥ψ2
=∥φ(gTx2) − φ(gTx1)∥ψ2

=∥φ′ (tgTx2 + (1 − t)gTx1)gT (x2 −x1)∥ψ2

≤Γ∥gT (x2 −x1)∥ψ2

≤cΓ ∥x2 −x1∥ℓ2 . (6.43)

Also note that

f(W0,x2) − f(W0,x1) =vT (φ (W0x2) − φ (W0x1))
∼

k∑
ℓ=1

vℓ (φ(gTℓ x2) − φ(gTℓ x1))
where g1,g2, . . . ,gk are i.i.d. vectors with N (0,Id) distribution. Also for v obeying 1Tv = 0 this random
variable has mean zero. Hence, using the fact that weighted sum of subGaussian random variables are
subgaussian combined with (B.2) we conclude that f(W0,x2) − f(W0,x1) is also subGaussian obeying∥f(W0,x2) − f(W0,x1)∥ψ2

≤ cΓ ∥v∥ℓ2 ∥x2 −x1∥ℓ2 . Thus
∣f(W0,x2) − f(W0,x1)∣ ≤ ctΓ ∥v∥ℓ2 ∥x2 −x1∥ℓ2 = ctΓ ∥x2 −x1∥ℓ2 , (6.44)

with probability at least 1 − e− t2

2 .
Now combining (B.1) and (B.3) we have

δ ≤ ∣y2 − y2∣
= ∣f(W ,x1) − f(W ,x2)∣
= ∣vT (φ(Wx2) − φ(Wx1))∣
≤ ∣(f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1))∣ + ∣vT (φ(W0x2) − φ(W0x1))∣
≤CΓ ∥x2 −x1∥ℓ2 ∥W −W0∥ + ctΓ ∥x2 −x1∥ℓ2
≤CΓε0 (∥W −W0∥ + 1

1000
t)

Thus

∥W −W0∥ ≥ δ

CΓε0
− t

1000
,

with high probability.

6.3 Perturbation analysis for perfectly clustered data (Proof of Theorem 2.2)

Denote average neural net Jacobian at data X via

J (W1,W2,X) = ∫ 1

0
J (αW1 + (1 − α)W2,X)dα.
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Lemma 6.11 (Perturbed Jacobian Distance) Let X = [x1 . . . xn]T be the input matrix obtained from
Definition 1.1. Let X̃ be the noiseless inputs where x̃i is the cluster center corresponding to xi. Given weight
matrices W1,W2,W̃1,W̃2, we have that

∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥ ≤ Γ√n(∥W̃1 −W1∥F + ∥W̃2 −W2∥F
2
√
k

+ ε0).
Proof Given W ,W̃ , we write

∥J (W ,X) − J (W̃ , X̃)∥ ≤ ∥J (W ,X) − J (W̃ ,X)∥ + ∥J (W̃ ,X) − J (W̃ , X̃)∥.
We first bound

∥J (W ,X) − J (W̃ ,X)∥ = ∥diag(v)φ′(WXT ) ∗XT − diag(v)φ′(W̃XT ) ∗XT ∥ (6.45)

=
1√
k
∥(φ′(WXT ) − φ′(W̃XT )) ∗XT ∥ (6.46)

To proceed, we use the results on the spectrum of Hadamard product of matrices due to Schur [46]. Given
A ∈ R

k×d,B ∈ R
n×d matrices where B has unit length rows, we have

∥A ∗B∥ =√∥(A ∗B)T (A ∗B)∥ =√∥(ATA)⊙ (BTB)∥ ≤√∥ATA∥ = ∥A∥.
Substituting A = φ′(WXT ) − φ′(W̃XT ) and B =XT , we find

∥(φ′(WXT ) − φ′(W̃XT )) ∗XT ∥ ≤ ∥φ′(WXT ) − φ′(W̃XT )∥ ≤ Γ∥(W̃ −W )XT ∥F ≤ Γ√n∥W̃ −W ∥F .
Secondly,

∥J (W̃ ,X) − J (W̃ , X̃)∥ = 1√
k
∥φ′(W̃XT ) ∗ (X − X̃)∥

where reusing Schur’s result and boundedness of ∣φ′∣ ≤ Γ
∥φ′(W̃XT ) ∗ (X − X̃)∥ ≤ Γ√k∥X − X̃∥ ≤ Γ√knε0.

Combining both estimates yields

∥J (W ,X) − J (W̃ , X̃)∥ ≤ Γ√n(∥W̃ −W ∥F√
k

+ ε0).
To get the result on ∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥, we integrate

∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥ ≤ ∫ 1

0
Γ
√
n(∥α(W̃1 −W1) + (1 − α)(W̃1 −W1)∥F√

k
+ ε0)dα (6.47)

≤ Γ
√
n(∥W̃1 −W1∥F + ∥W̃2 −W2∥F

2
√
k

+ ε0). (6.48)

Theorem 6.12 (Robustness of gradient path to perturbation) Generate samples (xi, yi)ni=1 accord-
ing to (ρ, ε0, δ) noisy dataset model and form the concatenated input/labels X ∈ R

d×n,y ∈ R
n. Let X̃ be

the clean input sample matrix obtained by mapping xi to its associated cluster center. Set learning rate
η ≤ K

2cupnΓ2∥C∥2 and maximum iterations τ0 satisfying

ητ0 = C1

K

nλ(C) log(Γ
√
n logK

ρ
).
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where C1 ≥ 1 is a constant of our choice. Suppose input noise level ε0 and number of hidden nodes obey

ε0 ≤ O( λ(C)
Γ2K log(Γ√n logK

ρ
)) and k ≥ O(Γ10K

2∥C∥4
λ(C)4 log(Γ√n logK

ρ
)6).

Set W0
i.i.d.
∼ N(0,1). Starting from W0 = W̃0 consider the gradient descent iterations over the losses

Wτ+1 =Wτ − η∇L(Wτ) where L(W ) = 1

2

n∑
i=1
(yi − f(W , x̃i))2 (6.49)

W̃τ+1 = W̃τ −∇L̃(W̃τ) where L̃(W̃ ) = 1

2

n∑
i=1
(yi − f(W̃ , x̃i))2 (6.50)

Then, for all gradient descent iterations satisfying τ ≤ τ0, we have that

∥f(Wτ ,X) − f(W̃τ , X̃)∥ℓ2 ≤ c0τηε0Γ3n3/2√logK,

and

∥Wτ − W̃τ∥F ≤ O(τηε0Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2).

Proof Since W̃τ are the noiseless iterations, with probability 1 − 2K−100, the statements of Theorem 2.3
hold on W̃τ . To proceed with proof, we first introduce short hand notations. We use

ri = f(Wi,X) − y, r̃i = f(W̃i, X̃i) − y (6.51)

Ji = J (Wi,X), Ji+1,i = J (Wi+1,Wi,X), J̃i = J (W̃i, X̃), J̃i+1,i = J (W̃i+1,W̃i, X̃) (6.52)

di = ∥Wi − W̃i∥F , pi = ∥ri − r̃i∥F , β = Γ∥C∥√cupn/K, L = Γ∥C∥√cupn/Kk. (6.53)

Here β is the upper bound on the Jacobian spectrum and L is the spectral norm Lipschitz constant as in
Theorem 6.8. Applying Lemma 6.11, note that

∥J (Wτ ,X) − J (W̃τ , X̃)∥ ≤ L∥W̃ −W ∥F + Γ√nε0 ≤ Ldτ + Γ√nε0 (6.54)

∥J (Wτ+1,Wτ ,X) − J (W̃τ+1,W̃τ , X̃)∥ ≤ L(dτ + dτ+1)/2 + Γ√nε0. (6.55)

Following this and using that noiseless residual is non-increasing and satisfies ∥r̃τ∥ℓ2 ≤ ∥r̃0∥ℓ2 , note that
parameter satisfies

Wi+1 =Wi − ηJiri , W̃i+1 = W̃i − ηJ̃ Ti r̃i (6.56)

∥Wi+1 − W̃i+1∥F ≤ ∥Wi − W̃i∥F + η∥Ji − J̃i∥∥r̃i∥ℓ2 + η∥Ji∥∥ri − r̃i∥ℓ2 (6.57)

di+1 ≤ di + η((Ldi + Γ√nε0)∥r̃0∥ℓ2 + βpi), (6.58)

and residual satisfies (using I ⪰ J̃i+1,iJ̃ Ti /β2 ⪰ 0)

ri+1 = ri − ηJi+1,iJ Ti ri Ô⇒ (6.59)

ri+1 − r̃i+1 = (ri − r̃i) − η(Ji+1,i − J̃i+1,i)J Ti ri − ηJ̃i+1,i(J Ti − J̃ Ti )ri − ηJ̃i+1,iJ̃ Ti (ri − r̃i). (6.60)

ri+1 − r̃i+1 = (I − ηJ̃i+1,iJ̃ Ti )(ri − r̃i) − η(Ji+1,i − J̃i+1,i)J Ti ri − ηJ̃i+1,i(J Ti − J̃ Ti )ri. (6.61)

∥ri+1 − r̃i+1∥ℓ2 ≤ ∥ri − r̃i∥ℓ2 + ηβ∥ri∥ℓ2(L(3dτ + dτ+1)/2 + 2Γ√nε0). (6.62)

∥ri+1 − r̃i+1∥ℓ2 ≤ ∥ri − r̃i∥ℓ2 + ηβ(∥r̃0∥ℓ2 + pi)(L(3dτ + dτ+1)/2 + 2Γ√nε0). (6.63)

where we used ∥ri∥ℓ2 ≤ pi + ∥r̃0∥ℓ2 and ∥(I − ηJ̃i+1,iJ̃ Ti )v∥ℓ2 ≤ ∥v∥ℓ2 which follows from (6.28). This implies

pi+1 ≤ pi + ηβ(∥r̃0∥ℓ2 + pi)(L(3dτ + dτ+1)/2 + 2Γ√nε0). (6.64)
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Finalizing proof: Next, using Lemma 6.9, we have ∥r̃0∥ℓ2 ≤ Θ ∶= C0Γ
√
n logK. We claim that if

ε0 ≤ O( 1

τ0ηΓ2n
) ≤ 1

8τ0ηβΓ
√
n

and L ≤
2

5τ0ηΘ(1 + 8ητ0β2) ≤ 1

30(τ0ηβ)2Θ , (6.65)

(where we used ητ0β
2 ≥ 1), for all t ≤ τ0, we have that

pt ≤ 8tηΓ√nε0Θβ ≤ Θ , dt ≤ 2tηΓ√nε0Θ(1 + 8ητ0β2). (6.66)

The proof is by induction. Suppose it holds until t ≤ τ0 − 1. At t + 1, via (6.58) we have that

dt+1 − dt
η

≤ LdtΘ + Γ√nε0Θ + 8τ0ηβ2Γ
√
nε0Θ

?≤ 2Γ√nε0Θ(1 + 8ητ0β2).
Right hand side holds since L ≤ 1

2ητ0Θ
. This establishes the induction for dt+1.

Next, we show the induction on pt. Observe that 3dt + dt+1 ≤ 10τ0ηΓ√nε0Θ(1+ 8ητ0β2). Following (6.64)
and using pt ≤ Θ, we need

pt+1 − pt
η

≤ βΘ(L(3dτ + dτ+1) + 4Γ√nε0) ?≤ 8Γ√nε0Θβ ⇐⇒ (6.67)

L(3dτ + dτ+1) + 4Γ√nε0 ?≤ 8Γ√nε0 ⇐⇒ (6.68)

L(3dτ + dτ+1) ?≤ 4Γ√nε0 ⇐⇒ (6.69)

10Lτ0η(1 + 8ητ0β2)Θ ?≤ 4 ⇐⇒ (6.70)

L
?≤ 2

5τ0η(1 + 8ητ0β2)Θ . (6.71)

Concluding the induction since L satisfies the final line. Consequently, for all 0 ≤ t ≤ τ0, we have that

pt ≤ 8tηΓ√nε0Θβ = c0tηε0Γ
3n3/2√logK.

Next, note that, condition on L is implied by

k ≥ 1000Γ2n(τ0ηβ)4Θ2 (6.72)

= O(Γ4n
K4

n4λ(C)4 log(Γ√n logK
ρ

)4(∥C∥Γ√n/K)4(Γ√n logK)2) (6.73)

= O(Γ10K
2∥C∥4

λ(C)4 log(Γ√n logK
ρ

)4 log2(K)) (6.74)

which is implied by k ≥ O(Γ10K
2∥C∥4
λ(C)4 log(Γ√n logK

ρ
)6).

Finally, following (6.66), distance satisfies

dt ≤ 20tη2τ0Γ√nε0Θβ2 ≤ O(tηε0Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2).

6.3.1 Completing the Proof of Theorem 2.2

Theorem 2.2 is obtained by the theorem below when we ignore the log terms, and treating Γ, λ(C) as
constants. We also plug in η = K

2cupnΓ2∥C∥2 .
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Theorem 6.13 (Training neural nets with corrupted labels) Let {(xi, yi)}ni=1 be an (s, ε0, δ) cluster-
able noisy dataset as described in Definition 1.2. Let {ỹi}ni=1 be the corresponding noiseless labels. Suppose∣φ(0)∣, ∣φ′∣, ∣φ′′∣ ≤ Γ for some Γ ≥ 1, input noise and the number of hidden nodes satisfy

ε0 ≤ O( λ(C)
Γ2K log(Γ√n logK

ρ
)) and k ≥ O(Γ10K

2∥C∥4
λ(C)4 log(Γ

√
n logK

ρ
)6).

where C ∈ R
K×d is the matrix of cluster centers. Set learning rate η ≤ K

2cupnΓ2∥C∥2 and randomly initialize

W0
i.i.d.
∼ N (0, 1). With probability 1 − 3/K100, after τ = O( K

ηnλ(C)) log(Γ
√
n logK

ρ
) iterations, for all 1 ≤ i ≤ n,

we have that

• The per sample normalized ℓ2 norm bound satisfies

∥f(Wτ ,X) − ỹ∥ℓ2√
n

≤ 4ρ + cε0Γ3K
√
logK

λ(C) log(Γ
√
n logK

ρ
).

• Suppose ρ ≤ δ/8. Denote the total number of prediction errors with respect to true labels (i.e. not
satisfying (2.2)) by err(W ). With same probability, err(Wτ) obeys

err(Wτ)
n

≤ c
ε0K

δ

Γ3
√
logK

λ(C) log(Γ
√
n logK

ρ
).

• Suppose ρ ≤ δ/8 and ε0 ≤ c
′ δλ(C)2

Γ5K2 log(Γ
√

n logK

ρ
)3
, then, Wτ assigns all input samples xi to correct ground

truth labels ỹi i.e. (2.2) holds for all 1 ≤ i ≤ n.

• Finally, for any iteration count 0 ≤ t ≤ τ the total distance to initialization is bounded as

∥Wτ −W0∥F ≤ O(Γ
√

K logK

λ(C) + tηε0Γ
4Kn

λ(C) log(
Γ
√
n logK

ρ
)2). (6.75)

Proof Note that proposed number of iterations τ is set so that it is large enough for Theorem 2.3 to achieve
small error in the clean input model (ε0 = 0) and it is small enough so that Theorem 6.12 is applicable. In
light of Theorems 6.12 and 2.3 consider two gradient descent iterations starting from W0 where one uses
clean dataset (as if input vectors are perfectly cluster centers) X̃ and other uses the original dataset X.
Denote the prediction residual vectors of the noiseless and original problems at time τ with respect true
ground truth labels ỹ by r̃τ = f(W̃τ , X̃) − ỹ and rτ = f(Wτ ,X) − ỹ respectively. Applying Theorems 6.12
and 2.3, under the stated conditions, we have that

∥r̃τ∥ℓ∞ ≤ 4ρ and (6.76)

∥rτ − r̃τ∥ℓ2 ≤ cε0 K

nλ(C) log(
Γ
√
n logK

ρ
)Γ3n3/2√logK (6.77)

= c
ε0Γ

3K
√
n logK

λ(C) log(Γ
√
n logK

ρ
) (6.78)

First statement: The latter two results imply the ℓ2 error bounds on rτ = f(Wτ ,X) − ỹ.
Second statement: To assess the classification rate we count the number of entries of rτ = f(Wτ ,X) − ỹ
that is larger than the class margin δ/2 in absolute value. Suppose ρ ≤ δ/8. Let I be the set of entries obeying
this. For i ∈ I using ∥r̃τ∥ℓ∞ ≤ 4ρ ≤ δ/4, we have

∣rτ,i∣ ≥ δ/2 Ô⇒ ∣rτ,i∣ + ∣rτ,i − r̄τ,i∣ ≥ δ/2 Ô⇒ ∣rτ,i − r̄τ,i∣ ≥ δ/4.
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Consequently, we find that ∥rτ − r̄τ∥ℓ1 ≥ ∣I ∣δ/4.
Converting ℓ2 upper bound on the left hand side to ℓ1, we obtain

c
√
n
ε0Γ

3K
√
n logK

λ(C) log(Γ
√
n logK

ρ
) ≥ ∣I ∣δ/4.

Hence, the total number of errors is at most

∣I ∣ ≤ c′ ε0nK
δ

Γ3
√
logK

λ(C) log(Γ
√
n logK

ρ
)

Third statement – Showing zero error: Pick an input sample x from dataset and its clean version x̃.
We will argue that f(Wτ ,x) − f(W̃τ , x̃) is smaller than δ/4 when ε0 is small enough. We again write

∣f(Wτ ,x) − f(W̃τ , x̃)∣ ≤ ∣f(Wτ ,x) − f(W̃τ ,x)∣ + ∣f(W̃τ ,x) − f(W̃τ , x̃)∣
The first term can be bounded via

∣f(Wτ ,x) − f(W̃τ ,x)∣ = ∣vTφ(Wτx) − vTφ(W̃τx)∣ ≤ ∥v∥ℓ2∥φ(Wτx) − φ(W̃τx)∥ℓ2 (6.79)

≤ Γ∥Wτ − W̃τ∥F (6.80)

≤ O(ε0 Γ5K2

λ(C)2 log(Γ
√
n logK

ρ
)3) (6.81)

Next, we need to bound

∣f(W̃τ ,x) − f(W̃τ , x̃)∣ ≤ ∣vTφ(W̃τx) − vTφ(W̃τ x̃)∣ (6.82)

where ∥W̃τ −W0∥F ≤ O(Γ√K logK

λ(C) ), ∥x − x̃∥ℓ2 ≤ ε0 and W0
i.i.d.
∼ N (0,I). Consequently, using by assumption

we have

k ≥ O(∥W̃ −W0∥2F ) = O(Γ2K logK

λ(C) ),
and applying an argument similar to Theorem 2.4 (detailed in Appendix B), with probability at 1 − 1/n100,
we find that

∣f(W̃τ ,x) − f(W̃τ , x̃)∣ ≤ C ′Γε0(∥W̃τ −W0∥F +√logn) (6.83)

CΓε0(Γ
√

K logK

λ(C) +
√
logn). (6.84)

Combining the two bounds above we get

∣f(Wτ ,x) − f(W̃τ , x̃)∣ ≤ ε0O( Γ5K2

λ(C)2 log(Γ
√
n logK

ρ
)3 + Γ(Γ√K logK

λ(C) +
√
logn)) (6.85)

≤ ε0O( Γ5K2

λ(C)2 log(Γ
√
n logK

ρ
)3). (6.86)

Hence, if ε0 ≤ c
′ δλ(C)2

Γ5K2 log(Γ
√

n logK

ρ
)3
, we obtain that, for all 1 ≤ i ≤ n,

∣f(Wτ ,xi) − ỹi∣ < ∣f(W̃τ , x̃i) − f(Wτ ,xi)∣ + ∣f(W̃τ , x̃i) − ỹi∣ỹi∣ ≤ 4ρ + δ

4
.
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If ρ ≤ δ/8, we obtain ∣f(Wτ ,xi) − ỹi∣ < δ/2
hence, Wτ outputs the correct decision for all samples.
Fourth statement – Distance: This follows from the triangle inequality

∥Wτ −W0∥F ≤ ∥Wτ − W̃τ∥F + ∥W̃τ −W0∥F
We have that right hand side terms are at most O(Γ√K logK

λ(C) ) and O(tηε0 Γ4Kn
λ(C) log(Γ√n logK

ρ
)2) from

Theorems 6.12 and 2.3 respectively. This implies (6.75).
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A Proof of Lemma 2.5

Create two matrices X ∈ R
s×d and X̃ ∈ R

s×d by concatenating the input samples. Note that the matrix
X − X̃ has i.i.d. N(0, 2ε20/d) entries. Thus, using standard results regarding the concentration of the spectral
norm with probability at least 1 − e−d/2, we have

∥X − X̃∥ ≤√2(√ s

d
+ 2) ε0 ≤ 5ε0.

Define the vectors y, ỹ ∈ R
s with entries given by yi and ỹi, respectively. Suppose W fits these labels perfectly.

Using the fact that ∥v∥ℓ2 = 1, we can conclude that√
sδ ≤ ∥y − ỹ∥ℓ2 = ∥f(W ,X) − f(W , X̃)∥ℓ2 ,
= ∥vT (φ(WX) − φ(WX̃))∥ℓ2 ,
≤ Γ∥v∥ℓ2∥W (X − X̃)∥F ,
≤ Γ∥X − X̃∥∥W ∥F ≤ 5Γε0∥W ∥F .

This implies the desired lower bound on ∥W ∥F .
B Single label perturbation

Note that

∣f(W ,x) − f(W , x̃)∣ = ∣vT (φ (Wx) − φ (Wx̃))∣
≤ ∣vT (φ (Wx) − φ (Wx̃)) − vT (φ (W0x) − φ (W0x̃))∣ + ∣vT (φ (W0x) − φ (W0x̃))∣

To continue note that by the general mean value theorem there exists a point (W ,x) in the square(W0,x), (W0, x̃), (W ,x), and (W , x̃) such that

(f(W ,x) − f(W0,x)) − (f(W , x̃) − f(W0, x̃))
= (x − x̃)TW T

diag (v)diag (φ′′(Wx)) (W −W0)x + vTdiag (φ′ (Wx)) (W −W0)(x − x̃)
Using the above we have that

∣ (f(W ,x) − f(W0,x)) − (f(W , x̃) − f(W0, x̃)) ∣ (a)≤ ∣(x − x̃)TW T
diag (v)diag (φ′′(Wx)) (W −W0)x∣

+ ∣vTdiag (φ′ (Wx)) (W −W0)(x − x̃)∣
(b)
≤ (∥v∥ℓ∞ ∥x∥ℓ2 ∥W ∥ + ∥v∥ℓ2)Γ ∥x − x̃∥ℓ2 ∥W −W0∥
(c)
≤ ( 1√

k
∥x∥ℓ2 ∥W ∥ + 1)Γ ∥x − x̃∥ℓ2 ∥W −W0∥

(d)
≤ ( 1√

k
∥W ∥ + 1)Γ ∥x − x̃∥ℓ2 ∥W −W0∥

(e)
≤ ( 1√

k
∥W0∥ + 1√

k
∥W −W0∥ + 1)Γ ∥x − x̃∥ℓ2 ∥W −W0∥

(f)
≤ ( 1√

k
∥W0∥ + 1√

k
∥W −W0∥F + 1)Γ ∥x − x̃∥ℓ2 ∥W −W0∥

(g)
≤
⎛⎝ 1√

k
∥W −W0∥F + 3 + 2

√
d

k

⎞⎠Γ ∥x − x̃∥ℓ2 ∥W −W0∥
(h)
≤ CΓ ∥x − x̃∥ℓ2 ∥W −W0∥ (B.1)
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Here, (a) follows from the triangle inequality, (b) from simple algebraic manipulations along with the fact
that ∣φ′(z)∣ ≤ Γ and ∣φ′′(z)∣ ≤ Γ, (c) from the fact that vℓ = ± 1√

k
, (d) from ∥x∥ℓ2 = ∥x̃∥ℓ2 = 1 which implies

∥x∥ℓ2 ≤ 1, (e) from triangular inequality, (f) from the fact that Frobenius norm dominates the spectral norm,

(g) from the fact that with probability at least 1 − 2e−(d+k), ∥W0∥ ≤ 2(√k +√d), and (h) from the fact that∥W −W0∥ ≤ ∥W −W0∥F ≤ c̃√k and k ≥ cd.
Next we note that for a Gaussian random vector g ∼N (0,Id) we have

∥φ(gTx) − φ(gT x̃)∥ψ2
=∥φ(gTx) − φ(gT x̃)∥ψ2

=∥φ′ (tgTx + (1 − t)gT x̃)gT (x − x̃)∥ψ2

≤Γ∥gT (x − x̃)∥ψ2

≤cΓ ∥x − x̃∥ℓ2 . (B.2)

Also note that

f(W0,x) − f(W0, x̃) =vT (φ (W0x) − φ (W0x̃))
∼

k∑
ℓ=1

vℓ (φ(gTℓ x) − φ(gTℓ x̃))
where g1,g2, . . . ,gk are i.i.d. vectors with N (0,Id) distribution. Also for v obeying 1Tv = 0 this random
variable has mean zero. Hence, using the fact that weighted sum of subGaussian random variables are
subgaussian combined with (B.2) we conclude that f(W0,x) − f(W0, x̃) is also subGaussian obeying∥f(W0,x) − f(W0, x̃)∥ψ2

≤ cΓ ∥v∥ℓ2 ∥x − x̃∥ℓ2 . Thus
∣f(W0,x) − f(W0, x̃)∣ ≤ ctΓ ∥v∥ℓ2 ∥x − x̃∥ℓ2 = ctΓ ∥x − x̃∥ℓ2 , (B.3)

with probability at least 1 − e− t2

2 . Thus, using t = 2
√
logn for n data points

∣f(W0,xi) − f(W0, x̃i)∣ ≤ 2cΓ√logn ∥xi − x̃i∥ℓ2 ,
holds for all i = 1,2, . . . , n with probability at least

1 − ne− t2

2 ≥ 1 − 1

n100
.
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