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Abstract—In a variety of scientific applications we are inter-
ested in imaging 3D objects at very fine resolutions. However,
we typically can not measure the object or its footprint directly.
Rather restricted by fundamental laws governing the propagation
of light we have access to 2D magnitude-only measurements of
the 3D object through highly nonlinear projection mappings.
Therefore, reconstructing the object requires inverting highly
nonlinear and seemingly non-invertible mappings. In this paper
we discuss some of the challenges that arises in such three dimen-
sional phaseless imaging problems and offer possible solutions for
3D reconstruction. In particular we demonstrate how variants
of the recently proposed Accelerated Wirtinger Flow (AWF)
algorithm can enable precise 3D reconstruction at unprecedented
resolutions. This extended abstract is based on a summary of [2],
[46], and forthcoming work by the author and collaborators with
parts of the text directly adapted.

I. INTRODUCTION

The ability to image objects at nm scales is of fundamental

importance in a variety of scientific and engineering disciplines.

For instance, successful imaging of large protein complexes

and biological specimens at very fine scales may enable live

imaging of biochemical behavior at the molecular level pro-

viding new insights. Similarly, modern multilayered integrated

circuits increasingly contain features below 10nm in size. The

ability to image such specimens non-destructively can be used

to improve quality control during the manufacturing process.

Imaging at finer and finer resolutions necessitates shorter

and shorter beam wavelengths. However, lens-like devices

and other optical components are difficult to build at very

short wavelengths. Phase-less coherent diffraction imaging

techniques offer an alternative method for recovery of high

resolution images without the need for involved measurement

setups that include mirrors and lenses. Invention of new light

sources and new experimental setups that enable recording and

reconstruction of non-crystalline objects has caused a major

revival in the use of phase-less imaging techniques [1], [9],

[11], [14], [21], [24]–[27], [30], [31], [44], [45]. More recently,

successful experiments using ptychography [12], [13], [17],

[29], [32], [36], Fourier ptychography [10], [18], [38], [39],

[43], [48] and partially coherent ptychography [8] have further

contributed to this surge. There has also been tremendous

progress in the development of phase retrieval methods with

the introduction of new algorithmic approaches that include

maximum-likelihood estimation [37], Ptychographic Iterative

Engine (PIE) [28] and extended Ptychographic Iterative Engine

(ePIE) [22], Difference Map (DM) [35], [36], new variants

of the classic Error Reduction (ER) algorithm [47], Relaxed

Averaged Alternating Reflections (RAAR) [23], semidefinite

programming [3], [4], [6], [19], Wirtinger Flow (WF) [5],

proximal algorithms [16], [34], [42], and majorize-minimize

methods [41]. See also [7], [20], [33], [40] and references

therein for many interesting works on first-order methods and/or

theoretical analysis with random sensing ensembles. Despite

all of this major progress three dimensional phaseless imaging

at nano-scale has remained elusive.

II. 3D PHASELESS IMAGING: MODELS AND CHALLENGES

In this section we discuss a mathematical formulation of the

problem by explaining the forward model from the 3D object

to the measurements. This exposition is based on [15]. To begin

let x denote a three dimensional array representing the complex

refractive index of the 3D object. Then the two-dimensional

measurements can be written in the form

yℓ = ∣Agℓ(x)∣ for ℓ = 1,2, . . . , L.

Here, ℓ denotes the index of the illumination angle taking

values in {1,2, . . . , L}, m is the total number of intensity

measurements for all the L angles, yℓ ∈ R
m

L is the vector of

the square root of the intensity measurement corresponding to

angle ℓ, A ∈ R
m

L
×

m

L represents the 2D Fourirer transform and

application of the probe function, and gℓ(x) ∈ R
m

L denotes

the known exit wave corresponding to the projection angle ℓ.

At nano-scale, the exit wave gℓ is a highly nonlinear function

that maps the three dimensional object to the two dimensional

wave at illumination angle ℓ. The goal is to reconstruct the

object x from such observations.

There are many challenges that arise in such 3D phase

retrieval problems. First, the forward mapping is highly

nonlinear and inverting this nonlinearity requires solving highly

nonconvex optimization problems with many local optima.

Second, the model maps an inherently three dimensional object

in two dimensions introducing many new ambiguities in the

reconstruction. For instance, in this problem in addition to the

global phase ambiguity common in 2D phase retrieval problem

one has to deal with notorious phase wrapping ambiguities



that typically occur in tomography. Third, due to the highly

complicated nature of the experimental setup a variety of new

noise/misalignment effects corrupt the measurements. Finally,

acquisition at such fine resolution is extremely slow. For

instance imaging a 1cm × 1cm object at 10nm can take more

than 2500 days.

III. OBJECT RECONSTRUCTION VIA ACCELERATED

WIRTINGER FLOWS

To overcome the challenges discussed in the previous section

we formulate the reconstruction problem via the following

nonconvex optimization problem

min
z

L(z) ∶=
L

∑
ℓ=1

∥yℓ − ∣Agℓ(z)∣∥
2

ℓ2
. (III.1)

To solve this nonconvex optimization problem and in particular
circumvent its highly nonconvex landscape we use a variant of
the Accelarated Wirtinger Flow algorithm [46] which utilizes
Nesterov-style acceleration to circumvent local optima. In
particular, theoretical results enable prespecification of all
AWF algorithm parameters, with no need for computationally-
expensive line searches and no need for manual parameter
tuning. Furthemore, we develop a variety of heuristics to deal
with the aforementioned ambiguity factors (see the presentation
accompanying this paper for more detail). Finally, to reduce the
acquisition time we use a regularized variant of the formulation
above where we utilize training data to learn the appropriate
regularizer for a given reconstruction task. In the presentation
accompanying this paper we demonstrate the effectiveness
of our approach for 3D reconstruction of a variety of nano-
structures.
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