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Feedback Strategies for a Reach-Avoid Game
with a Single Evader and Multiple Pursuers

Jhanani Selvakumar, Efstathios Bakolas

Abstract—We address a planar multi-agent pursuit-evasion
game with a terminal constraint (reach-avoid game). Specifically,
we consider the problem of steering a single evader to a
target location, while avoiding capture by multiple pursuers. We
propose a feasible control strategy for the evader, against a group
of pursuers that adopts a semi-cooperative strategy. First, we
characterize a partition of the game’s state-space, that allows us
to determine the existence of a solution to the game based on
the initial conditions of the players. Next, based on the time-
derivative of an appropriately defined risk metric, we develop a
nonlinear state feedback strategy for the evader which provides
a feasible solution to the game. This control strategy involves
switching between different control laws in different parts of
the state-space. We demonstrate the efficacy of our proposed
feedback control in terms of the evader’s performance, through
numerical simulations. We also show that for the special case of
the reach-avoid game with only one pursuer, the proposed control
law is successful in guiding the evader to the target location from
almost all initial conditions, and ensures that the evader will
remain uncaptured.

Index Terms—Quickest descent control, multi-agent reach-
avoid games, state space partition, feedback strategy.

I. INTRODUCTION

Strategic interaction between multiple agents, cooperative
or adversarial, is the underlying phenomenon in various situ-
ations, such as dynamic collision avoidance, surveillance eva-
sion, and pursuit of prey, to name a few. The characterization
of the motive and actions of each agent in these interactions is
important in developing a successful strategy geared towards
a desired outcome. Such multi-agent interactions can be put
under the umbrella of dynamic non-zero-sum multi-player
games. In this paper, we deal with a class of planar multi-agent
pursuit-evasion games in which a single evader must reach a
target location while avoiding capture by multiple pursuers.
The pursuers engage in semi-cooperative relay pursuit [1] and
the location of the target is known only to the evader.
The state space of a PEG is usually the multi-dimensional
space of positions and velocities of all the players involved.
In some cases, there may be additional states as well as state or
input constraints. The exact solution to a multi-agent pursuit-
evasion game (PEG) is in general onerous to obtain, due to the
high dimensionality of the problem. An approximate solution
can be obtained by reducing the PEG to a lower dimensional
problem. To this aim, we introduce a scalar risk metric which
is a function of the full state of the PEG. The risk metric allows
us to characterize a partition of the state-space of the game,
which encodes information about the outcome of the game,
based on the initial states of the players. Then, we develop an
evasion strategy induced by the risk metric, which determines
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a collection of nonlinear state feedback laws that guide the
evader to achieve its two-fold objective (avoid capture and
reach its target), such that the evader employs different control
laws in different parts of the state-space.

Literature review and previous work: Adversarial or competi-
tive interactions between two or more agents are often modeled
as games, in, for instance, economics, biology, and defense
[2]–[5]. These games are typically non-zero-sum, because the
loss incurred by one particular player is not necessarily equal
to the gain obtained by another player in the game [4]. Capture
and evasion in multi-player pursuit-evasion games, where mul-
tiple agents play against a single agent, have been addressed
in [1], [6]–[15]. In [1] and [10], the pursuit algorithm uses
dynamic Voronoi partitions to sequentially select one of the
pursuers to engage with the evader. In [8], multiple pursuers
within a convex domain use a switching strategy to capture
the evader by shrinking its Voronoi cell. In [12], the pursuers
use a greedy pursuit policy to locate and capture the evader
on a grid.

A particular class of multi-agent games called reach-avoid
games consists of games with terminal constraints, state con-
straints (e.g., obstacles or forbidden areas) and adversarial
players. This class of games is a preferred tool to model
situations where a team of agents must reach a target location
while avoiding obstacles or defend a target from an offensive
team of agents [16]–[20]. For instance, in [18], multiple agents
use a priority-based evasion system to avoid each other and
reach their respective targets. In [21], a numerical solution
to the multi-agent reach-avoid game is obtained by solving
the associated full-dimensional Hamilton-Jacobi-Isaacs (HJI)
equation. The authors of [16] and [17] present an approximate
solution to the reach-avoid game, as an alternative to solving
the high-dimensional HJI equation. A Nash equilibrium solu-
tion is obtained for a quadratic game involving multiple agents
in [19]. Yan et al. in [22] provide an analytical solution to a
three-player reach-avoid game, and characterize a partition of
the state-space as well as the optimal strategies for the players
in each set of the partition.

In our previous work, we have addressed the problem of
guiding a single evader to a target location or a target set in the
presence of multiple pursuers who engage in semi-cooperative
relay pursuit, by means of semi-analytical approaches includ-
ing a dynamic roadmap and static-game approximation of the
dynamic game [23], [24].

Contributions: In contrast to the previously mentioned reach-
avoid problems, in this work, we present an analytical solution
to the problem of reaching a fixed target point. Further, our
partition of the state-space reflects the fact that the evader must
frequently follow curved paths to successfully reach the target.
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We first develop a greedy analytical solution to the two-player
problem in which there is only one pursuer and the evader has
the two-fold goal of reaching a target location while avoiding
capture. Then, we postulate that the multi-player game can be
viewed as an aggregation of the individual two-player games,
and we numerically solve for feasible strategies in that case.
Finally, we study the efficacy of our proposed approach by
extensive numerical simulations. The main contributions of
this work are as follows: (i) a novel scalar risk metric for the
two-player game which is used to compute a feasible feedback
strategy for the evader, (ii) a partition of the state-space of the
PEG, such that the outcome of the PEG can be determined by
considering the membership of the initial conditions in the sets
of the partition, (iii) an analytical framework to determine the
evading strategy based on quickest-descent in the two-player
game, and (iv) an extension of the evader’s strategy to the
multiple-pursuer case, wherein the evader’s control is obtained
using convex optimization techniques at each time step. It is
also to be noted that our method makes use of a performance
index that is based on time-related metrics, rather than purely
geometric considerations. The use of time-related metrics can
be the basis for an evasion framework which is as independent
of the specific nature of the players as possible.

Structure of the paper: Section II presents the formulation of
the target-seeking evasion problem. Section III presents the
evader’s region-based control strategy in a two-player game.
The extension of this solution strategy to the case of multiple
pursuers is presented in Section IV, followed by illustrative
simulations and results in Section V. In Section VI, we present
concluding remarks.

II. FORMULATION OF TARGET-SEEKING EVASION

PROBLEM

Let us consider a pursuit evasion game that takes place in
R

2, with N pursuers and one evader. The analysis in this work
extends naturally to R

3. At any given time t ∈ [0,∞), let the
equations of motion of the players be given as follows:

ẋi(t) = vpi
ui(t), xi(0) = x̄i, (1a)

ẋe(t) = veue(t), xe(0) = x̄e, (1b)

where the state (position) of the ith pursuer, Pi, for i ∈
I := {1, 2, ..., N}, is denoted by xi(t) ∈ R

2, and the state
(position) of the single evader E, is denoted by xe(t) ∈ R

2.
The maximum speeds of the ith pursuer and the evader are
denoted by vpi

> 0 and ve > 0, respectively. Further, ui(t) ∈
R

2 and ue(t) ∈ R
2 denote the inputs of the ith pursuer and

the evader at time t, respectively, and are both assumed to
take values in the convex and compact set U := {u ∈ R

2 :
‖u‖ ≤ 1}. Note that the zero control input will be used by the
players only when the game terminates (either by capture of
the evader by at least one pursuer, or by the evader reaching
its target location).

In our problem set-up, capture is defined as positional
proximity of at least one of the pursuers to the evader
within a prespecified tolerance ℓ > 0, which is the radius of
capture. The evader aims to reach a target location, denoted
by xT ∈ R

2. In practice, it is sufficient for the evader to attain
positional proximity to the target with a tolerance ǫ > 0. The
game will terminate at time tf > 0, (a) if at time t = tf ,

the evader reaches the target while remaining uncaptured for
t ∈ [0, tf ) (in which case the evader is successful) or (b)
if at time t = tf , the evader is captured by a pursuer before
reaching the target (in which case the pursuers are successful).

A. Formulation of the target-seeking evasion problem

Now, we give the precise formulation of the target-seeking
evasion problem with N pursuers and one evader.

Problem 1: Given the initial states in the plane for all the

pursuers, that is, x̄i ∈ R
2, for i ∈ I, the initial state for the

evader x̄e ∈ R
2, and in addition, the target location xT ∈ R

2,

along with two positive constants ℓ and ǫ, find the control

input signal ue(·) : [0, tf ] → U , that will steer the evader to

the target location xT within a desired tolerance ǫ at some

time tf ∈ [0,∞), that is, ‖xe(tf )− xT ‖ ≤ ǫ, while avoiding

capture by any of the pursuers, that is, ‖xe(t) − xi(t)‖ >
ℓ, ∀i ∈ I, ∀t ∈ [0, tf ).

Note that the game terminates at the first time instant tf > 0
at which ‖xe(tf ) − xT ‖ ≤ ǫ or ‖xe(tf ) − xi(tf )‖ ≤ ℓ for
some i ∈ I. Typically, ℓ > ǫ. It is assumed that the target
location, xT , is known only to the evader. Note that the evader
has the two-fold goal of reaching the target location while
avoiding capture, whereas the group of pursuers only aims to
capture the evader as soon as possible. If the evader reaches
the target at the same instant as it is captured, we consider
that the evader has accomplished its goal. We assume perfect
information about the states of all the players in the game at
all times.

1) Relay pursuit strategy: We assume that the group of
pursuers adopts the semi-cooperative strategy of relay pursuit
[16]. According to this strategy, at each instant of time, the
pursuer who can capture the evader in the least amount of
time engages in active pursuit of the latter, while all the other
pursuers remain stationary, without participating in the pursuit
of the evader. We will refer to the former player as the active

pursuer. The minimum time required for capture of the evader
is called the relay metric in this case. If the active pursuer is
designated by the index ic, then, for all t ∈ [0, tf ], the feedback

strategy of the jth pursuer is

u∗
j (xe,xj) =

{

rj/‖rj‖, if j = ic,

0 otherwise,
(2)

where rj := xe − xj is the relative position vector of the

evader with respect to the jth pursuer. The assumption of relay
pursuit for a group of pursuers is particularly relevant when the
latter is distributed over the game’s domain and each pursuer
wishes to stay close to its initial position (e.g. agents in patrol
or surveillance). In this context, it would not be prudent for
all pursuers to independently and simultaneously engage in
pursuit of the evader, thereby making relay pursuit an effective
alternative. A schematic representation of the target-seeking
pursuit-evasion problem in the presence of multiple pursuers
employing the relay pursuit strategy is shown in Fig. 1.

2) Times of capture and intercept: Next, we introduce a
few quantities that will facilitate the discussion in this paper.
At any time t, when the evader’s current state is xe, and that
of the single pursuer (say the ith pursuer) is xi, let the min-
max time-to-capture of the evader by the pursuer, ignoring all
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Fig. 1: Schematic representation of the target-seeking evasion
problem in the presence of multiple pursuers. The pursuer Pic

is the active pursuer in this figure. The target location and its
radius of proximity is shown in green. The red circles illustrate
the radius of capture around each pursuer.

others, be denoted by φc(xe,xi). The qualifier “min-max” for
the time-to-capture indicates that it is the earliest time from the
present that capture can occur in the game, while the pursuer
tries to minimize the time-to-capture and the evader tries to
maximize it. In fact, the min-max time-to-capture is the value
of the min-max two-player zero-sum game. As the relative
position of the evader with respect to the ith pursuer at time
t is given by ri = xe − xi, in view of Eq. (1), we have that

ṙi = veue − vpi
ui, ri(0) = r̄i = x̄e − x̄i

Consequently,

d

dt
‖ri‖ =

d

dr
‖ri‖ṙi =

rTi (veue − vpi
ui)

‖ri‖
. (3)

The pursuit-evasion game will end in capture, if there exists
tf > 0, such that ‖ri(tf )‖ = ℓ. If the pursuer employs the
optimal pursuit action, that is, ui(t) := ri(t)/‖ri(t)‖, the
pursuit-evasion game will be a free terminal time problem
with two boundary conditions given by the initial and final
value of ‖ri‖. With these boundary conditions and Eq. (3), it
is straightforward to show that the min-max time-to-capture
φc(xe,xi) is equal to the minimum positive real solution to
the following equation:

(v2e − v2pi
)φ2 + 2(ver

T
i ue − ℓvpi

)φ+ ‖ri‖
2 − ℓ2 = 0, (4)

where ue = ri/‖ri‖ is the direction of optimal evasion [2].
In this case, the evader acts in an antagonistic manner to the
ith pursuer.

Similarly, let φs(xe,xi,xT ) denote the minimum time to
intercept of the evader by the ith pursuer, when the evader is
directly headed towards the target location xT with constant
speed ve. Note that φs(xe,xi,xT ) is the value function of the
minimum-time problem in which the pursuer is to intercept
an evader whose direction of motion is known and constant.
By its definition, φs(xe,xi,xT ) is equal to the minimum real
positive solution to Eq. (4) with ue = (xT − xe)/‖xT − xe‖.
Note that when the minimum time to intercept is calculated,
we assume that the evader does not maneuver to avoid the
pursuer, and only the pursuer is maneuvering to minimize the

capture time. For the evader, we can determine φs(xe,xi,xT )
by solving a single quadratic equation [25].

Finally, we wish to highlight that when the evader engages
in non-optimal play, φc(xe,xi) cannot be computed in closed-
form. Then, φs(xe,xi) can serve as a lower bound for
φc(xe,xi) in this case. Finally, let φT (xe,xT ) denote the
minimum time required for the evader located at xe at time
t, to reach the target xT , when there are no pursuers present.
Then, in particular, φT (xe,xT ) = ‖xT − xe‖/ve.

3) Performance index for the evader: For a given initial
condition, the evader’s performance index is a scalar denoted
by P(ue(·)), and is calculated at the terminal time tf . The
evader aims to minimize the value of the performance index,
which is, in particular,

P(ue(·)) :=
φT (xe,xT )− ǫ/ve
mini φs(xi,xe,xT )

∣

∣

∣

∣

t=tf

. (5)

Clearly, the performance index also depends on the other
parameters of the game such as x̄e, x̄1, ..., x̄N ,xT , the control
input history of the other players u1(·), ...,uN (·), and tf . The
value of P is a measure of the success of the evader’s strategy
in reaching the target without getting captured. If the evader
reaches the target within the desired tolerance and without
being captured at all previous time instants, the value of the
performance index is zero. However, achieving this value is
not possible for all initial conditions of the game. In the event
that the game will inevitably terminate in capture before the
evader reaches the target, the performance index for the evader,
P , will grow unbounded. For instance, when the evader is
slower than the pursuers, we can show that there is a non-
empty set of initial conditions from which the evader will get
captured before reaching the target. Our goal is to minimize
the performance index or to make it zero, if possible.

III. REGION-BASED CONTROL FOR TARGET-SEEKING

EVADER IN A TWO-PLAYER GAME

In this section, we present a region-based control strategy
for the evader that will minimize its performance index P ,
which is given by Eq. (5). Note that the control strategy for
all the pursuers is defined in Eq. (2). Since the pursuers engage
in relay pursuit, in this work, we propose to view the multi-
player game as an aggregation of individual two-player games.
This underlines the importance of characterizing the evader’s
control strategy in the two-player game that involves only
the closest pursuer and the evader, which is presented in the
following section. Hence, let us first characterize the region-
based control strategy for the evader when N = 1. Without
loss of generality, in the subsequent discussion, we assume
that the ith pursuer is the closest one to the evader, that is,
i = ic.

A. Capturability of the evader in a two-player game

For a zero-sum game between the ith pursuer and evader,
under some conditions on the parameters and initial states, the
evader cannot escape capture. Let us examine Eq. (4) when
ue(t) is taken to be the unit vector in the direction of optimal
evasion, that is, ue(t) := ri(t)/‖ri(t)‖. Then, as stated in
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min-max time-to-capture φc(xe,xi) is not well-defined. For
a given position xi of the pursuer in the inertial space, let
Se(xi) and Fe(xi) denote the sets that are the projections
of S and F respectively on the evader’s position plane. In
Fig. 3, the sets Se(xi) and Fe(xi) for a fixed position xi

of the pursuer are shown on the evader’s position plane. It is
possible to analytically characterize Se(xi) and Fe(xi), for a
given position of the pursuer, and we do so in the following
proposition.

Proposition 2: If the pursuer is located at time t at xi,

whereas the target is at the origin (xT = 0), then, (i) the

boundary ∂Se(xi) of Se(xi) is a circle centered at the target

(origin), with radius equal to (‖xi‖ − ℓ)ve/vpi
, and (ii) the

boundary ∂Fe(xi) of Fe(xi) is also a circle centered at xi

with radius equal to (1− ve/vpi
)‖xi‖+ veℓ/vpi

.

Proof 2 First, we prove (i). We know that S consists of all
positions in the augmented space X such that φs(xe,xi) >
φT (xe). From Eq. (4), by re-arranging the terms, we get

‖ri + veueφs(xe,xi)‖ = ℓ+ vpi
φs(xe,xi), (7)

where ue = −xe/‖xe‖. At the boundary of S , φs(xe,xi) =
φT (xe) = ‖xe‖/ve, and so ueφs(xe,xi) = −xe/ve, which
is substituted in Eq. (7) to give ‖ri −xe‖ = ℓ+ vpi

‖xe‖/ve,
or ‖xe‖ = (‖xi‖ − ℓ)ve/vpi

. (ii) By definition, the set F

consists of all states
[

xT
e ,x

T
i

]T
in the augmented state-space

X such that φc(xe,xi) < φT (xe). In this case, in view of
Eq. (4), we get ‖ri + veueφc(xe,xi)‖ = ℓ+ vpi

φc(xe,xi),
where ue = ri/‖ri‖, which further implies that

‖ri‖ = ℓ+ (vpi
− ve)φc(xe,xi). (8)

In the case when ri = αxe for some α < 0, the minimum time
to intercept is the same as the min-max time-to-capture. Then,
there exists a position of the evader x̂e such that, φc(x̂e,xi) =
φT (x̂e) = φs(x̂e,xi). We know that φs(xe,xi) = φT (xe) at
the boundary of the safe set. With this knowledge, we have
from Eq. (8) and part (i) of this proof,

‖ri‖ = ℓ+ (vpi
− ve)φT (x̂e)

= ℓ+ (vpi
/ve − 1)(‖xi‖ − ℓ)ve/vpi

.

Hence, the loci of all points on the boundary ∂Fe(xi), is
described by the following equation:

‖xe − xi‖ = (1− ve/vpi
)‖xi‖+ veℓ/vpi

,

and the proof is complete. �

Remark 3 When ve = vpi
, the failure set F is degenerate,

and is simply the ball of capture of radius ℓ. Further, the set
S shrinks as the ratio of ve/vpi

decreases, as the radius of
∂S(xi) is proportional to ve/vpi

.

At any time t ∈ [0, tf ], the log-risk for the two-player

game between the ith pursuer and the evader is denoted by
βi(xe,xi), and is defined as:

βi(xe,xi) := log
(

φT (xe)/φs(xe,xi)
)

. (9)

The log-risk is a measure of the capturability of the evader,
whose mission is to reach the target safely. It is easy to infer
that the safe set S comprises those augmented states which
are such that the log-risk is negative, that is, βi(xe,xi) <

Re

Se Fe

xe

ye

(a) ve < vp

Re

Se

Fe

xe

y e

(b) ve = vp

Fig. 3: The three sets Se, Re, and Fe, for different speeds of the
evader, as projected on the evader’s position space. The target location
is shown as a black circle while the pursuer’s fixed location is at the
red square.

0. Similarly, for states in R and F , βi(xe,xi) > 0. As the
relative distance between the players approaches the radius of
capture ℓ, the value of βi(xe,xi) tends to infinity.

C. Control laws for different parts of the state-space

Now, let us characterize the individual control laws for the
evader in different parts of the augmented state-space. For the
following discussion, we note that the evader’s position at time
t is a function of its initial position and its control history in
the interval [0, t), that is, xe = xe(t;ue(·), x̄e). Similarly, the
position of pursuer Pi at time t is also a function of its initial
position and control history, that is, xi = xi(t;ui(·), x̄i).

Proposition 3: If at time t ≥ 0, the augmented state
[

xT
e xT

i

]T
∈ S , then the optimal control input for the evader

at time t with state xe, which minimizes the performance index

in Eq. (5), will be given by u∗
e(t) = ueS(xe(t)), with

ueS(xe) :=

{

−xe/‖xe‖, if ‖xe‖ > ǫ

0, otherwise.
(10)

Proof 3 If the initial augmented state belongs to the set S ,
then φs(xe,xi) > φT (xe). Consequently, if the evader moves
with constant speed ve in the direction of the target, it cannot
be captured before it reaches the target. Then, the resulting
value of the performance index P is zero. Thus, the optimal
strategy for the evader is given by Eq. (10). �

Remark 4 Note that if the evader deviates from the control
input ueS(xe), it might be captured before reaching the target,
despite starting from the safe set.

Corollary: If the (augmented) state of the game at time t ≥ 0
is in S , under optimal play by the evader as dictated by Eq.

(10), the subsequent state trajectory will remain in the safe

set S for every time instant until the end of the game, that is,

[xT
e (τ) x

T
i (τ)]

T ∈ S for all τ ∈ [t, tf ].
Proof: The proof follows naturally from the definition of
the safe set S and Proposition 3. If the evader uses the
control ueS(·) when [xT

e xT
i ]

T ∈ S , then along the op-

timal trajectory, d
dtφs(xe,xi) = d

dtφT (xe) = −1. Since
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at time t, φs(xe(t),xi(t)) > φT (xe(t)), we conclude that
φs(xe(τ),xi(τ)) > φT (xe(τ)), for all τ ∈ [t, tf ]. �

Remark 5 For augmented states that belong to the boundary
∂S of set S , the control law in Eq. (10) is still applicable,
however, the evader will reach the target at the same time
it will be captured. If the pursuer and the evader have equal
speeds, that is, ve = vpi

, there exists a particular state in
∂S∩∂F , such that φs(xe,xi) = φT (xe) = φc(xe,xi), which
implies that the evader has already been captured, even at time
t = 0. We mention the existence of this initial condition for
completeness, since there is no ensuing pursuit-evasion game
in this case.

If the augmented state at initial time is in the set R, the evader
can maneuver to reach the target despite the fact that the latter
may be initially out of safe reach.

Proposition 4: If the initial (augmented) state belongs to

R, and there exists a control signal for the evader ue(·) that

drives the log-risk βi(xe,xi) to zero at some ts > 0, then

the evader can reach the target (origin) safely without being

captured, that is, ∃tf > ts : ‖xe(tf )‖ < ǫ and ‖ri(t)‖ > ℓ
for all t ∈ [ts, tf ].

Proof 4 If the initial augmented state belongs to R, then
φT (xe)/φs(xe,xi) > 1 and φT (xe) < φc(xe,xi). Hence,
although the time required to reach the target is less than
the maximum time available, by moving directly towards the
target location, the evader would get captured before reaching
the target. So, the evader must leave the set R and safely
reach (without being captured during the transition) the set S ,
from where it can reach the goal without being captured, by
following the strategy in Eq. (10). Hence, if, by hypothesis,
there exists a control input for the evader such that the ratio
φT (xe)/φs(xe,xi) = 1 at some ts > 0, we can thereafter
invoke Proposition 3 for the interval [ts, tf ]. �

Remark 6 For the states in R for which no control history
exists to achieve φT (xe)/φs(xe,xi) = 1 for some t > 0, and
for the states in F , the game will end in capture.

For all initial conditions of the game, irrespective of starting
from S , R or F , we wish to minimize the performance index
given in Eq. (5). To satisfy the safety constraint of no capture
while heading to the target, at a given time t, we require that
φs(xe,xi) ≥ φT (xe) for all t ∈ [0, tf ]. This is a conservative
requirement, as in reality, the evader can safely reach the target
if its time-to-capture by the ith pursuer is greater than the
time to reach the target. But when the players are engaged
in non-optimal play, we cannot always compute φc(xe,xi) in
closed form, and so, in its place, we use its conservative lower
bound φs(xe,xi). Further, note that the safety requirement is
automatically satisfied for states in S , and we can determine
that tf = φT (x̄e). For states that belong to R or F at t = 0,
we have that φs(x̄e, x̄i) < φT (x̄e), and we cannot calculate
tf in closed form. At this point, we would like to solve for the
evader’s control signal ue(t) for t ∈ [0, ts], such that ts > 0 is
the first time at which the augmented state of the game reaches
the boundary of the set S . Next, we present a quickest descent
control law that will guide the evader to the boundary of the
safe set, in the case that the game begins from a state in R∪F .

1) Quickest descent control law for evader from R or

F: The problem of guiding the evader to the boundary of
the safe set while avoiding capture is a path-constrained
optimal control problem with free terminal time and control
constraints. The optimal solution to this problem is analytically
intractable, while a numerical solution is computationally
expensive to obtain. For these reasons, we choose a quickest-
descent controller, which can be formulated analytically and is
inexpensive in terms of numerical computation. The quickest
descent control law minimizes the time-derivative of the log-
risk at every point along the trajectory of the game to achieve
the desired transition from state R to S . For states that are
in F at t = 0, there is no feasible control history for the
evader whose application would result in transition to the set
S , so we propose to use the quickest descent type control to
minimize the log-risk, point wise in time, until capture occurs.
The problem of finding the quickest descent control is stated
as follows.

Problem 2: For the two-player target-seeking game between

the evader and the ith pursuer subject to the dynamics in Eq.

(1), find the evader’s control at each time t ∈ [0, ts] such

that the log-risk is driven to zero at t = ts, and such that

u∗
e(t) = û, where û is the minimizer of the following cost

function:

Jt(u) := β̇i(u;xe(t),xi(t)), (11)

which is the time-derivative of the log-risk along the trajecto-

ries xe(·) and xi(·).

The solution to Problem 2 is given by the following proposi-
tion.

Proposition 5: The control input for the evader that solves

Problem 2 is given by u∗
e(t) = ueR(xe(t),xi(t)) for all t ∈

[0, ts], with

ueR(xe,xi) :=











−χi/‖χi‖, if ‖χi‖ 6= 0

−xe/‖xe‖, if ‖χi‖ = 0 and ‖xe‖ > ǫ

0, otherwise,

(12)

where χi = χi(xe,xi) is defined at time t as follows1:

χi(xe,xi) :=
xe

φT ‖xe‖
−

ν

µ
, (13)

with ν(xe,xi) := veri −
v2

eφsri

‖xe‖
+ v2eφs

(xT

e ri)xe

‖xe‖3 − v2eφs
xe

‖xe‖

and µ(xe,xi) := ‖ri‖
2 − ℓ2 − φs

(

vpℓ+ ve
rT

i xe

‖xe‖

)

.

Proof 5 From the definition for the log-risk βi, we have that

β̇i = φ̇T /φT − φ̇s/φs.

The expressions for φ̇s and φ̇T can be determined by differen-
tiating Eq. (4) and the expression for φT with respect to time.
After grouping of terms,

β̇i = χT
i ue + γi, (14)

1The arguments of the time of minimum intercept, φs, have been dropped
for compactness.



7

where χi is given by Eq. (13) and γi is a scalar valued function
of the states of the players at time t, defined as follows:

γi(xe,xi) :=
1

µ

(

− veφsvp
rTi xe

‖ri‖‖xe‖
+ vp‖ri‖

)

. (15)

Thus, in view of Eq. (14), at time t, given xe and xi, the

derivative β̇i is a linear function of the evader’s input. Hence,
the evader’s input that minimizes the time-derivative of the
log-risk at time t is given as a function of χi(xe,xi). In
particular, the evader’s input u∗

e(t) = û1(xe(t),xi(t)), is in
the form of a non-linear state feedback, as

û1(xe,xi) := −χi/‖χi‖, if ‖χi‖ 6= 0.

If there is no information available about minimizing the

derivative β̇i, as when χi = 0, the evader can choose an
arbitrary admissible input. In particular, for this case, the
evader’s input is the unit vector in the direction of the target,
that is, u∗

e(t) = û2(xe(t),xi(t)), where

û2(xe,xi) :=

{

−xe/‖xe‖, if ‖χi‖ = 0 and ‖xe‖ > ǫ

0, otherwise.

Thus, in the interval [0, ts], the evader’s control input which
is the solution to Problem 2 is given by Eq. (12), where
ueR(xe,xi) is equal to û1 or û2, depending on the vector
χi. �

Remark 7 If the evader lies at a position corresponding to
a state in R, at time t, it is possible that it can still reach
a position at some time ts > t, at which the log-risk βi is
zero, by using the quickest descent control law in Eq. (12).
This implies that the augmented state at time ts belongs to
∂S . This ensures that the evader will successfully reach the
target. The subset of states for which such a transition to S
is possible, is determined by the relative speeds of the two
players.

Next, let us determine whether the use of the quickest
descent control induced by the log-risk βi will lead to capture
of the evader in the interval [0, tf ). If the pursuer engages in
relay pursuit, then ui = ri/‖ri‖. Then, in view of Eq. (3),
‖ri‖ satisfies the following equation:

d

dt
‖ri‖ =

ve
‖ri‖

rTi ue − vpi
. (16)

Because maxue∈U ‖ue‖ = 1, we conclude that d
dt‖ri‖ < 0

provided ve < vpi
, that is, the relative distance between the

pursuer and the evader is a monotonically decreasing function
of time. For the case that ve = vpi

, we will examine the
evolution of the relative distance with time, assuming the
evader uses the quickest descent control in Eq. (12).

Proposition 6: Suppose that ve = vpi
. If the relative distance

between the evader and the pursuer at time t = 0 is greater

than the radius of capture, that is, if ‖ri(0)‖ > ℓ, then, for all

ℓ̂ ∈ (ℓ, ‖ri(0)‖], with the application of the quickest descent

control law as defined in Eq. (12) but with ℓ being replaced

by ℓ̂, it will hold that ‖ri‖ ≥ ℓ̂ > ℓ, for all t ∈ [0, tf ].
Consequently, the evader will avoid capture by the pursuer

for all t > 0.

Proof 6 Without loss of generality, let ve = vpi
= 1, and

let us replace ℓ with ℓ̂ in Eq. (13) and Eq. (15). Then, after

simplification, the new log-risk defined with respect to ℓ̂ is

β̂i(xe,xi) = log





2
(

ℓ̂‖xe‖+ rTi xe

)

‖ri‖2 − ℓ̂2



 , (17)

and the corresponding χ̂i = χ̂i(xe,xi), in view of Eq. (13),
becomes the following:

χ̂i =
2

‖ri‖2 − ℓ̂2

[

−(1− e−β̂i)ri + e−β̂i(‖xe‖+ ℓ̂)
xe

‖xe‖

]

.

(18)

In view of Eq. (17), β̂i → ∞, and thus e−β̂i → 0, as ‖ri‖ → ℓ̂.
Then, from Eq. (18), we argue that χ̂i/‖χ̂i‖ → −ri/‖ri‖ as

‖ri‖ → ℓ̂. Clearly, for small values of ‖xe‖, this holds true.
For the case where ‖xe‖ is large, let us consider ‖xe‖ =
∆, where ∆ ≫ 1 is a large number. Let δ = 1/∆. When

‖ri‖
2−ℓ̂2 = δ, we have eβ̂i =

2(ℓ̂∆+‖ri‖∆cos θre)
δ

where θre is

the smaller angle between ri and xe. Clearly2, eβ̂i = O(∆2),

and the second term in Eq. (18) is dominated by e−β̂i . Then,

it is true that χ̂i/‖χ̂i‖ → −ri/‖ri‖ as ‖ri‖ → ℓ̂.

When the initial augmented state belongs to the set R, (note
that, actually, Fe(xi) is simply the ball of radius ℓ centered
at xi, in this case), we have the evader’s control input given
by Eq. (12), which is a function of χ̂i. Then from Eq. (16),

we have d
dt‖ri‖ = −

rT

i χ̂i

‖ri‖‖χ̂i‖
− 1.

Let us consider the set Ac :=
{

[

xT
e xT

i

]T
: ‖ri‖ = ℓ̂

}

.

Then, as
[

xT
e xT

i

]T
→ Ac, where the convergence of the

augmented state to the set Ac is induced by the Hausdorff
metric, we can say that the time-sequence of two-dimensional
relative state vectors approaches a vector that lies on the circle

of radius ℓ̂ around the origin. Simply put, the norm of the

relative state vector approaches ℓ̂. Then,
d‖ri‖
dt → 0 as ‖ri‖ →

ℓ̂. This means that for any given relative distance ‖ri‖ > ℓ
at time t = 0, we can choose ℓ̂ > ℓ, such that ‖ri‖ ≥ ℓ̂ > ℓ
over the interval [0, tf ]. Note that even as β̂i → ∞, the actual
log-risk βi < ∞. In other words, when ve = vpi

, the evader
can avoid capture for all t ∈ [0, tf ] by applying the quickest
descent control law given in Eq. (12). �

Remark 8 From Eq. (16), we can see that when ve = vpi
,

we can at most guarantee that the relative distance between
the pursuer and the evader in the time interval [0, tf ] will
be strictly lower bounded by ℓ, and upper bounded by their
initial relative distance. When ve > vpi

, however, the relative
distance between the two players is not upper bounded by its
initial value. In both cases, the augmented state of the game
will never transition from the set R to the set F .

Remark 9 In view of the expression for χi in Eq. (18), which
holds when ve = vpi

, the evader’s control input is a weighted
sum of the control input required for pure evasion (that is,
ue = ri/‖ri‖) and the control input required for pure target

2Big O is the Landau notation, and denotes the growth rate of eβ̂i with
respect to ∆.
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seeking (ue = −xe/‖xe‖). The weights of the individual
components are functions of the log-risk βi.

The transition from set R to set S using the quickest
descent control law for the evader is illustrated in Fig. 4 for a
sample target-seeking evasion problem where ve = vpi

. In

each subfigure, one can see the contours of β̇i at specific
instances in time during the game. The evader is shown as

a small blue square, and moves from the region where β̇i > 0
to the region where β̇i < 0 and eventually reaches the safe set.
Note that the axes of Fig. 4 are chosen such that the pursuer is
always on the positive x-axis with respect to the target location
(origin).

D. Characterization of the region-based control strategy for

the evader

In this section, we will provide the complete characteriza-
tion of the evader’s strategy over the whole state-space of the
game. The optimal strategy for the evader depends on the set in
which the augmented state is at t = 0, and taking into account
the transitions from one set to another, we have effectively a
strategy for the evader that switches between different control
laws, in particular, the ones in Eq. (10) and Eq. (12). As stated
previously, if the initial augmented state vector of the game
(at t = 0) is in S , the evader only needs to move towards
the target, thereby minimizing φT (xe,xT ). But if the initial
conditions of the game are such that the initial state vector
is in F ∪ R, then the evader will have to first try to render
βi = 0.

The evader’s region-based control strategy for the two-
player game is given as shown in Fig. 5a. For all times
t ∈ [0, tf ], u

∗
e(t) = uX (xe(t),xi(t)), where

uX (xe,xi) =

{

ueS (xe), if [xT
e xT

i ]
T ∈ S

ueR(xe,xi), otherwise.
(19)

The velocity field of the evader using the region-based strategy
is illustrated in Fig. 5b, for a sample case, and for a fixed
position of the pursuer. The blue arrows show the evader’s
velocity in R and the black arrows show the evader’s velocity
in S . The pursuer is marked as a red square, and the target,
by a black dot.

Proposition 7: Let us assume that ve = vpi
. If the choice

of ℓ̂, where ℓ̂ ∈ (ℓ, ‖ri(0)‖], is such that ‖xi‖ > ℓ̂, then, as
[

xT
e xT

i

]T
→ ∂S , ‖ueR(xe,xi)− ueS (xe)‖ → 0.

Proof 7 Without loss of generality, let ve = vpi
= 1. If we

consider the definition of the log-risk with respect to ℓ̂ as in

Eq. (17), the points in the boundary of the new safe set ∂Ŝ for

this case are given by ‖xe‖ = ‖xi‖ − ℓ̂. If the evader starts

close to ∂Ŝ , then ‖xe‖ = ‖xi‖− ℓ̂+ρ, where ρ > 0 is a very

small number. We also know that at the boundary ∂Ŝ , β̂i = 0,
since the minimum time to intercept and the time-to-target are

equal. It is simple to show that when ‖xe‖ = ‖xi‖ − ℓ̂ + ρ
in Eq. (17), β̂i is equal to a small but positive number. Then,
from Eq. (18), we have

χ̂i

‖χ̂i‖
=

−(1− e−β̂i)ri + e−β̂i(‖xi‖+ ρ) xe

‖xi‖−ℓ̂+ρ

‖(1− e−β̂i)ri − e−β̂i(‖xi‖+ ρ) xe

‖xi‖−ℓ̂+ρ
‖

We note that β̂i → 0+ as ρ → 0+, and in addition, ‖xi‖ > ℓ̂.
Further, let us note that in view of Eq. (17), β̂i > βi, and

so, we have that βi → 0+ as β̂i → 0+. Then, as ρ → 0+,
χ̂i

‖χ̂i‖
→ xe

‖xe‖
, which implies, in view of Eq. (10) and Eq. (12),

we see that as, β̂i → 0+, which is equivalent to
[

xT
e xT

i

]T
→

∂S , we have ‖ueR(xe,xi)− ueS (xe)‖ → 0. �

Remark 10 When the augmented state is close to ∂S , the
time-derivative of the relative distance between the target and

the evader satisfies the following equation: d
dt‖xe‖ =

xT

e ue

‖xe‖
=

−1. Hence, if the augmented state is close to the boundary of
the set S , but belongs to the set R, the optimal action for the
evader is to follow the straight line path to the target.

IV. REGION-BASED CONTROL FOR TARGET-SEEKING

EVADER WITH MULTIPLE PURSUERS

We now extend the characterization of the evader’s strategy
for the case with a single pursuer to the case in which there
are multiple pursuers, that is, N > 1. When there are more
than two players, the game can be viewed as an aggregation
of the individual two-player games between the evader and
each pursuer. The actions of the evader with respect to one of
the pursuers, however, will affect the states of the two-player
games with respect to the other pursuers. Hence, the partition
of the augmented state-space as well as the feedback control
strategy require a distinct characterization in this case.

The partition of the augmented state-space for the multiple
pursuer game can be obtained, by naturally extending the
definition of the sets for the single pursuer game. In particular,
S := ∩N

i=1S
i where Si denotes the “safe” set for the game

involving only the ith pursuer and the evader. Similarly,
F := ∪N

i=1F
i, whereas the risky set R := int(X\(S̄ ∪ F̄)).

For N = 2, the projection of the sets S and F on the evader’s
position space for fixed positions of the two pursuers is shown
in Fig. 6. The set in white is the “risky” set Re(x1,x2), and
the sets Se(xi) and Fe(xi) for i = 1, 2 are in green and red
respectively. The dotted green circle is the boundary of the
safe set S2

e (x2) corresponding to the second pursuer, but the
actual safe set Se(x1,x2) is the intersection of the individual
safe sets, and is shown in solid green.

If the initial augmented state of the game belongs to the set
S , then the evader can go directly to the target at no risk of
capture. If the initial state is in F or R, then the proposed
approach for the evader is to try to simultaneously minimize
the risk ratio with respect to each pursuer. Let us assume that
the maximum speed of all the players is equal to unity. Ideally,
subject to the dynamic equations in Eq. (1), we would like
to find a control signal for the evader, that is, ue(t) for all

t ∈ [0, tf ], such that the time-derivative of the log-risk β̇i is
minimized simultaneously for all i ∈ I, and for all t ∈ [0, tf ].
Since we have multiple criteria to minimize, however, we must
perform a weighted least-squares approach to obtain a feasible
control signal for the evader, point-wise in time. To this aim,
we first form a vector whose elements are the individual log-
risks at time t, as follows:

b(xe,x1, ...,xN ) :=







β1(xe,x1)....
βN (xe,xN )






. (20)
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Note that the weight wi is such that if the minimum time
to intercept by a pursuer is large, then the evader is con-
sidered to be at less risk of being captured by that pursuer,
compared to a pursuer whose minimum time to intercept is
small. Hence, the evader weighs the log-risk of the latter
pursuer more than the others. Now, let W (xe,x1, ...,xN ) :=
diag [w̄1(xe,x1), ..., w̄N (xe,xN )], where

w̄i(xe,xi) := wi(xe,xi)/(

N
∑

i=1

wi(xe,xi)). (25)

Now, we introduce the following optimization problem:

Problem 3: Given λ as defined in Eq. (22), and the vector

λdes as given by Eq. (23), find the evader’s input ûe which

minimizes the cost function 3

Jw(ue) := ‖λdes − λ(ue)‖
2
W

= (λdes − λ(ue))
T
W (λdes − λ(ue)) (26)

subject to the constraint ‖ue‖ ≤ 1.

Proposition 8: The evader’s control input u∗
e(t) for the

vector case at each time t ∈ [0, ts], where ts is the first time at

which the evader reaches the boundary of set S , is given by the

solution to the quadratically constrained quadratic program in

Problem 3. That is, u∗
e(t) = ûe for all t ∈ [0, ts].

Proof 8 By construction, the matrix W is always positive
definite. Note that λ is an affine function of ue, and the
quadratic form with respect to a positive definite matrix is
a convex function. Therefore, the cost function Jw, which is
a composition of a convex quadratic function with an affine
function of ue, is convex in ue. Similarly, the constraint on
the magnitude of the evader’s input, given by ‖ue‖ ≤ 1,
is also convex. Hence, we conclude that Problem 3 is a
convex program, and in particular, a quadratically constrained
quadratic program. By the formulation of the cost function
in Eq. (26), the solution to this program is the solution to
the quadratically constrained least squares problem, which, in
turn, is the control input for the evader, point-wise in time.
Hence, u∗

e(t) = ûe for all t ∈ [0, ts]. �

The solution ûe to Problem 3 is implicitly dependent on the
states of the players at time t. Once the evader reaches the
boundary of set S , we can use the control input in Eq. (10).
Then, the region-based feedback strategy for the target-seeking
evader with multiple pursuers is given as follows:

u∗
e(t) =

{

ueS (xe), if [xT
e xT

1 ... xT
N ]T ∈ S

ueR(xe,x1, ...,xN ), otherwise,

(27)

where ueS (xe) is defined in Eq. (10) and
ueR(xe,x1, ...,xN ) := ûe. Note that when all players
have unit speeds, the projections of set F are balls of radius
ℓ around each pursuer.

V. NUMERICAL SIMULATIONS

In this section, we present numerical simulations that illus-
trate the performance of the proposed control strategy against

3where the arguments corresponding to the states have been dropped

TABLE I: Outcome of games - ve = 1

Solution Method N = 1 N = 2 N = 4 P at tf
Evader Captured 0.00% 26.88% 41.66% ∞

Target Reached 97.47% 72.04% 57.89% 0

one or more pursuers that use the relay pursuit strategy. The
various parameters chosen are: vpi

= 1 for all i ∈ I, ve = 1,
ℓ = 0.1, and ǫ = 0.001. In all figures in this section, the
target is marked as a black circle and the path of the evader
is shown in green and that of the pursuers in red. In Fig. 7a,
evader-pursuer trajectories in the position space are shown for
a sample case when N = 2. The pursuers engage in relay
pursuit with only the pursuer P1 being active through the
game. The game illustrated in Fig. 7b features only the active
players of the game illustrated in Fig. 7a. That is, in Fig. 7b,
only the evader and pursuer P1 are present. The evader clearly
follows a different trajectory in this case compared to the one
in Fig. 7a, and this is because in Fig. 7a, the evader takes
into account the presence of a second pursuer which has the
potential to be activated. In Fig. 7c and Fig. 7a, the non-active
pursuers are stationary at their initial locations. The respective
augmented states in each sample case are initially in the set
R.

In order to test the performance of the proposed control
strategy, we simulated the target-seeking evasion game for a
large number of random initial conditions for the pursuer and
the evader, and random target positions. In all cases, the initial
augmented state was in the risky set R and the evader followed
the region-based control strategy as given in Eq. (19) and Eq.
(27). The time limit for each simulation was fixed at 100 time
units, to ensure the completion of each simulation in finite
time. The outcomes of the target-seeking evasion game for
initial states that begin from R are shown for different values
of N in Table I. For N = 1, of about 105 cases of uniformly
random initial conditions chosen from the set R, there were
no cases of capture. The evader reached the target in all cases,
except when the players were positioned such that ri and xe

were collinear and the pursuer was between the evader and
the target. In such a case, the optimal action for the evader is
pure evasion, and so the evader will neither reach the target
nor get captured. When N > 1, we notice that as N increases,
the percentage of games that end in capture of the evader also
increases, as one would expect. The percentage of inconclusive
games in Table I correspond to those cases in which the evader
was neither captured nor did it reach the target within the fixed
time limit.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed a reach-avoid problem in which
the evader must reach a fixed target location while avoiding
capture by a group of pursuers. In our proposed solution,
the evader avoids being captured by pursuers which adopt
a semi-cooperative strategy known as relay pursuit, which
is a more efficient pursuit strategy than simultaneous non-
cooperative pursuit. We first characterized the solution for the
corresponding two-player reach-avoid game, with only one
pursuer and the evader. We have shown that the state-space of
the game can be partitioned into three non-overlapping sets,
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(a) N = 2.
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(c) N = 4.

Fig. 7: Evader-pursuer trajectories, where two pursuers are present in Fig. 7a, and the second pursuer P2 is absent in Fig. 7b, and with
N = 4 in Fig. 7c.The pursuers’ and evader’s positions are marked at specific points in time during the game.

and this partition allows us to determine the outcome of the
game at initial time. We also developed a quickest-descent
control strategy for the evader, which depends on its location
in the state-space. Subsequently, we extended these results to
the game with multiple pursuers, where the feedback strategy
of the evader was determined by the solution to a convex
minimization problem. Finally, we illustrated the performance
of the proposed control strategy for the evader using a large
number of numerical simulations. We conclude that the pro-
posed region-based control strategy performs well for a small
number of pursuers, independent of other parameters of the
game such as the initial relative distance between the players
or the capture radius. In future work, we will improve the
performance of the region-based strategy as the number of
pursuers increases, by exploring modifications of the quickest
descent control law applied to the multi-player case. We will
explore, in particular, different weighting functions for the cost
function associated with the quickest descent control law, and
also, the case where the position information available to the
evader is noisy.
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