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Abstract In this paper, we address the problem of guiding an aerial or aquatic
vehicle to a fixed target point in a partially uncertain flow-field. We assume
that the motion of the vehicle is described by a point-mass linear kinematic
model. In addition, the velocity of the flow-field, which is taken to be time
varying, can be decomposed into two components: one which is known a pri-
ori, and another one which is uncertain and only a bound on its magnitude
is known. We show that the guidance problem can be reformulated as an
equivalent pursuit evasion game with time-varying affine dynamics. To solve
the latter game, we propose an extension of a specialized solution approach
which transforms the pursuit-evasion game (whose terminal time is free) via a
special state transformation into a family of games with fixed terminal time.
In addition, we provide a simple method to visualize the level sets of the
value function of the game, along with the corresponding reachable sets. Fur-
thermore, we compare our conservative game-theoretic solution with a pure
optimal control solution for the special case in which the flow-field is perfectly
known a priori.
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1 Introduction

More now than ever, mobile autonomous agents are desired for assisting or
replacing human activity in potentially hazardous or complex situations. The
ability to navigate successfully in uncertain environments is of significant in-
terest for autonomous and semi-autonomous vehicles. In this paper, we focus
on the problem of guiding an autonomous aquatic or aerial vehicle to a fixed
known location in the presence of a partially uncertain flow-field induced by,
for instance, oceanic currents and winds respectively. In particular, we assume
that the velocity of the flow-field can be decomposed into two components,
namely, one that is known a priori, and another one which is uncertain and
only a bound on its magnitude is known a priori. Our objective is to charac-
terize a robust time-optimal guidance law for the previous problem.

Accurate probabilistic models for the environmental disturbances that act
upon an aquatic or an aerial vehicle are not always available. In the absence
of such models, the problem of guiding a vehicle to a goal state cannot be
addressed via optimal control techniques, which cannot account for the ef-
fect of the uncertain flow-field. By contrast, a game-theoretic formulation is
well-suited to handle this type of uncertainty. Specifically, by formulating the
guidance problem as a game, one can design robust guidance laws. In this
formulation, the unknown component of the flow-field is assumed to be deter-
mined by a decision maker that is antagonistic to the vehicle. In particular,
this adversary makes decisions that aim at delaying the arrival of the vehicle
to its final destination as much as possible, if not preventing the latter from
reaching its destination at all.

Given this central idea, we formulate the vehicle guidance problem as an
affine zero-sum pursuit-evasion game between two agents, where the vehicle
takes the role of the pursuer whereas the evader corresponds to a second
fictitious player whose velocity is equal to the velocity of the flow-field. Because
it is assumed that one component of the velocity of the flow-field is prescribed
and known to the vehicle / pursuer, the evader will be confined to controlling
only the part of its velocity that corresponds to the uncertain component of
the velocity of the flow-field. In this set-up, the event of capture of the evader
by the pursuer is equivalent to the vehicle arriving at the goal destination
within a tolerance specified by the user.

Literature review : Two-player zero-sum pursuit evasion games (PEGs) have
been well studied in literature [1–3]. Rufus Isaacs pioneered a great deal of
work on differential games with an emphasis on PEGs. Isaacs’ solution frame-
work is centered around a particular partial differential equation, known as
the Hamilton-Jacobi-Isaacs equation, the solution of which yields the optimal
feedback strategies for the players [1]. An alternative approach to differential
games including PEGs, which is built upon variational techniques, was pro-
posed by Pontryagin [4]. Another solution concept is the so-called stroboscopic
strategy introduced by Hàjek [5], in which a player has information about the
other player’s decision before making his own. An illustration of stroboscopic
strategies in guidance problems can be found in [6].
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In general, the time of termination or terminal time of the game may be
fixed or free. A popular class of differential games with fixed terminal time is
that of linear quadratic differential games, which seek the control inputs of two
antagonistic players that will minimize and maximize a quadratic performance
index, respectively, over a known and fixed time interval. Bernhard [7] pro-
vides necessary and sufficient conditions for the existence of a saddle point for
linear-quadratic games in general, and computes the optimal feedback strategy
by solving a certain Riccati equation. Two-player linear quadratic differential
games with an uncertain dynamic model are addressed in [8]. The authors
provide sufficient conditions for existence of closed loop strategies based on
solutions to certain Riccati equations. Furthermore, Bernhard deals with the
Isotropic Rocket problem in [9], where he investigates the optimality of Isaacs’
solution and presents geometric results on the game of kind. Perelman et
al. [10] formulate the problem of aircraft defense against a homing missile as a
linear quadratic differential game, assuming perfect knowledge of the system,
and they provide optimal cooperative strategies for all the players.

A specialized solution technique for a class of PEGs with free terminal
time is presented by Gutman et al. [11]. The proposed technique associates
a particular class of PEGs with free terminal time to a one-parameter family
of differential games whose performance index consists of a single terminal
cost term and whose final time is fixed (the final time is the parameter of
this family of differential games). The open-loop solution to the latter family
of problems is obtained by applying the variational approach for zero-sum
differential games [3]. The authors also analyze the capture and avoidance
zones of the original pursuit-evasion game. Game-theoretic approaches are
used to address control problems in adversarial or uncertain environments
in [10], [12], [13], [14], and [15]. In particular, Trottemant et al. [14] address
the control design subject to model uncertainty for a missile guidance problem
by utilizing a two-person game-theoretic approach and convex optimization
techniques. Patsko et al. [15] have proposed numerical methods for the solution
of an aircraft landing problem under severe wind disturbances formulated as a
differential game. Further, Breitner and Pesch [12] solve the problem of shuttle
re-entry under atmospheric uncertainty as a two-player differential game.

Zhao and Bryson [16] have addressed the aircraft control under uncertainty
during takeoff in a downburst by formulating it as a two-objective (min and
max) optimization problem. In addition, Bulirsch et al. [17] have addressed
the aircraft landing problem in windshear based on a minimax optimal con-
trol problem formulation. Further, the minimum-time guidance problem in a
deterministic flow-field for simpler kinematic models has received some at-
tention in the literature. Combined analytical and computational techniques
for the solution of the time-optimal guidance problem for a Dubins vehicle
in constant wind are presented in [18–20]. A numerical solution approach to
the problem of guiding a Dubins vehicle to a target set in a stochastically
varying wind in minimum expected time is presented in [21]. In addition,
the minimum-time guidance of a Newtonian particle (or point mass) in the
presence of a known time-varying flow-field and fixed terminal position was
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addressed by Bakolas [22]. The results of [22] were extended by Bakolas and
Marchidan in [23], who developed an algorithm for time-optimal guidance of a
particle in a spatio-temporal field. Sun et al. [24] use level sets and reachability
analysis to solve a multi-agent pursuit-evasion game in a dynamic flow-field
under the assumption that all players follow simple motion dynamics (that is,
the players can change the direction of their velocities instantaneously). The
robust time-optimal guidance of a Newtonian particle in a partially uncertain
but constant flow-field was solved by means of Isaacs’ solution approach in our
previous work [25].

Contributions : In this paper, we solve the problem of robust time-optimal
guidance of a vehicle in a partially known time-varying flow-field. It should
be highlighted at this point that assuming that the flow-field be completely
adversarial will lead to an overly conservative solution. Because the flow-field
is time-varying, the standard approaches presented in [1] and [11] cannot be
directly applied to our problem. For this reason, we propose an extension
of the solution approach proposed in [11], which is based on a special state
transformation. This transformation not only allows us to calculate the robust
time-optimal control input for the vehicle in a straightforward way but also
simplifies the characterization of the level sets of the optimal value function of
the robust time-optimal guidance problem. We illustrate our approach using
numerical simulations for the specific example of guiding a Newtonian particle
in a flow-field. The latter problem can be viewed as a variation of the classic
Isotropic Rocket PEG of Isaacs [1]. At this point, we note that if the vehicle
uses the game-theoretic control input at all times, that is, the vehicle acts as
a rational agent, the time it will need to reach its goal position in the presence
of an uncertain flow-field will be upper-bounded by the time of capture of
the equivalent pursuit-evasion game. This is because in the game-theoretic
formulation of the guidance problem, we assume that the uncertain component
of the flow-field will have, at all times, the worst possible effect on the vehicle
in terms of preventing the latter from reaching its goal destination as fast
as possible. In practice, it is expected that the vehicle will arrive faster to
its destination than what the game-theoretic solution predicts given that, for
instance, the unknown component of the flow-field may turn out to be aiding
the vehicle to reach its destination for certain time subintervals.

Organization: The contents of the paper are organized as follows. In Section
2, we formulate the robust time-optimal guidance problem which we associate
with an equivalent two-player zero-sum differential game. In Section 3, we
present in detail the solution approach to the two-player game. In Section 4,
we apply our solution to a variation of the Isotropic Rocket PEG of Isaacs.
The corresponding numerical simulations and observations are presented in
Section 5. Finally, Section 6 concludes the paper with a summary of remarks.



Title Suppressed Due to Excessive Length 5

2 Formulation of the Robust Time-Optimal Guidance Problem and
its Equivalent Pursuit-Evasion Game

2.1 The Robust Time-Optimal Guidance Problem

Consider a vehicle V , whose equations of motion in the presence of a flow-field
are given by the following state space model:

ẋV (t) = AV (t)xV (t) +BV (t)uV (t) +EV (t)p(t), xV (t0) = x0
V , (1)

for all t ∈ [t0, T ] with t0 ≤ T < ∞, where xV (t) ∈ R
2n and x0

V ∈ R
2n denote,

respectively, the state at time t ∈ [t0, T ] and time t = t0. In addition, uV (t)
denotes the control input at time t. It is assumed that uV (·) : [t0, T ] → U ⊂ R

n

is a piece-wise continuous function that attains values in the set
U := {u ∈ R

n : ‖u‖ ≤ 1}, for all t ∈ [t0, T ] (‖ · ‖ denotes the vector 2-norm in
R

n). It is assumed that the matrix-valued functions EV (·) : [t0, T ] → R
2n×n,

AV (·) : [t0, T ] → R
2n×2n and BV (·) : [t0, T ] → R

2n×n are piece-wise continu-
ous. Furthermore, p(t) ∈ R

n denotes the velocity of the partially known flow-
field at time t ∈ [t0, T ]. In this work, we assume that

p(t) := wpvp(t) + p0(t), for all t ∈ [t0, T ], (2)

where p0(t) ∈ R
n denotes the known component of the velocity of the

flow-field at time t. The term wpvp(t) corresponds to the unknown com-
ponent of p(t). In particular, wp is a known positive constant and
vp(·) : [t0, T ] → V ⊂ R

n is an unknown piece-wise continuous function that
takes values in V := {v ∈ R

n : ‖v‖ ≤ 1}. It follows that the magnitude of the
uncertain component is upper bounded by wp, that is, ‖wpvp(t)‖ ≤ wp for all
t ∈ [t0, T ]. A schematic depiction of the vehicle guidance problem in a flow-field
is shown in Fig. ??.

In the state space model given by (1), the state vector at time t, which is
denoted as xV (t), is the concatenation of the position and velocity vectors of
the vehicle V at time t, which are denoted by rV (t) and vV (t), respectively.
Therefore, the state space will be either four-dimensional (n = 2), in the planar
2-D case, or six-dimensional (n = 3), in the 3-D case. In order to streamline the
presentation, we will henceforth focus on the planar case (n = 2). Therefore,
the position vector rV (t) can be written as follows: rV (t) = DxV (t) where
D =

[

I2 0
]

∈ R
2×4. Note that the 3-D case can be treated in a similar way

after the necessary modifications have been carried out.
Now, let rTV ∈ R

2 be a given target position and ℓ > 0 a given constant,
and let TV (u(·),v(·); t0,x

0
V ,S

T
ℓ ) denote the first time at which the system

described by (1), which emanates from x0
V at time t0 and is driven by the

control input u(·), for a given piecewise continuous function v(·) (particular
realization of the uncertain component of the flow-field), reaches the terminal
set ST

ℓ := {xV ∈ R
4 : ‖DxV − rTV ‖ ≤ ℓ}. For the given initial condition x0

V ,
the min-max time of arrival is denoted by T ∗

V = T ∗
V (t0,x

0
V ;S

T
ℓ ) with

T ∗
V (t0,x

0
V ;S

T
ℓ ) := min

u(·)
max
v(·)

TV (u(·),v(·); t0,x
0
V ,S

T
ℓ ), (3)



6 Jhanani Selvakumar, Efstathios Bakolas

where the operators min and max operate on all piecewise continuous inputs
u(·) and v(·) taking values in U and V, respectively, with the application of
which the vehicle’s trajectory xV (·) reaches the terminal set ST

ℓ in finite time.
Next we formulate the guidance problem in an uncertain (or more precisely,
partially uncertain) flow-field as a robust time-optimal problem.

Problem 2.1 Given ℓ > 0, an initial state x0
V ∈ R

4 and a target terminal po-
sition rTV ∈ R

2, find a piecewise continuous control input u∗
V (·) : [t0, T

∗
V ] → U

that will steer the vehicle V , whose motion is described by (1) and which em-
anates from the state x0

V at time t0, to the terminal set ST
ℓ at time t = T ∗

V ,
where T ∗

V = T ∗
V (t0,x

0
V ;S

T
ℓ ) is the min-ma x time of arrival that is defined in

(3).

2.2 Formulation of the Robust Time-Optimal Guidance Problem in an
Uncertain Flow-Field as a Pursuit-Evasion Game in a Known Flow-Field

Next, we reformulate Problem 2.1 as a two-player zero-sum differential game.
The motivation for this approach comes from the fact that one can think of the
vehicle ‘playing’ against an adversary that controls the uncertain component of
the flow-field so that the latter will have the worst possible effect on the former
player (vehicle) in terms of preventing it from reaching its target location as
fast as possible. In the inertial frame, and in the presence of a flow-field, the
target is static. However, the target actually moves according to the flow-field
in the reference frame attached to the vehicle itself. This moving target is
referred to as the evader, while the vehicle takes on the role of the pursuer.
Let P denote the pursuer and E the evader. The equation of motion for the
pursuer in the inertial frame of reference is as follows:

ẋP (t) = AP (t)xP +BP (t)uP (t), xP (t0) = x0
P , (4)

where the state xP (t) is equal to xV (t) as in (1), and AP (t), BP (t) and uP (t)
are all equal to AV (t), BV (t), and uV (t), respectively, for all t ∈ [t0, T ]. The
evader’s velocity is determined by the velocity of the flow-field as in (2). The
equation of motion for the evader in the inertial frame is given by:

ṙE(t) = −p(t), rE(t0) = r0E , (5)

where rE(t) ∈ R
2 is the position of the evader at time t. Note that in this set-

up, the evader can directly control its velocity. Given the equations of motion
for the two agents, it is sufficient to look at the relative position of one agent
with respect to the other. This is because the termination of the game depends
only on the relative position of the two players, as we will see later.

We consider a new state space model for the game whose state vector
consists of the relative position of E with respect to P and the inertial velocity
of P . In particular, at time t, the new state x(t) ∈ R

4 is defined as follows:

x(t) :=
[

(rE(t)− rP (t))
′ ṽ′

P (t)
]′
. The situation is illustrated in Fig. ??. We

will say that the state x(t) belongs to the reduced state space of the PEG. The
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equations of motion for the PEG in the reduced state space can be written as
follows:

ẋ(t) = A(t)x+B(t)u(t) +Cv(t) +Ep0(t), x(t0) = x0, (6)

where, at each time t, A(t) ∈ R
4×4 denotes the new state matrix and B(t),

C ∈ R
4×2 denote the control input matrices for the pursuer and the evader,

respectively. The matrices can be constructed from (1)-(5). In particular,
A(t) = bdiag(−I2, I2)AP (t), where bdiag(M1, . . . ,Mk) denotes the block di-
agonal matrices formed by matrices M1, . . . ,Mk of appropriate and compat-
ible dimensions, B(t) = BP (t), for all t ∈ [t0, T ], C = −wpD

′ and E = −D′

(note that the matrices C and E are time-invariant). In addition, u(t) de-
notes the control input of the pursuer at time t, which satisfies u(t) = uV (t)
for all t ∈ [t0, T ]. Finally, v(t) denotes the control input of the evader at time
t and is equal to the unit vector that determines the direction of the unknown
component of the flow-field p(t). Note that the functions u(·) and v(·), which
are both defined over [t0, T ], are piecewise continuous and attain values in,
respectively, the compact and convex sets U and V, which have already been
defined.

The robust time-optimal guidance problem of the vehicle V in a partially
known flow-field (Problem 2.1) can now be associated with an equivalent pur-
suit evasion game (PEG) between P and E in a known flow-field. It should
be highlighted at this point that in the latter problem, there are two players,
namely, the evader which tries to maximize the time of capture in the game, if
not avoid capture completely, and the pursuer which tries to minimize the time
of capture. For a given ℓ > 0 (capture radius), the capture time, which is de-
noted as T (u(·),v(·); t0,x0, Σℓ), is defined as the first time at which the system
described by (6), which emanates from x0 at time t0 and is driven by the con-
trol inputs u(·) and v(·), reaches the terminal set Σℓ := {x ∈ R

4 : ‖Dx‖ ≤ ℓ}.
For the given initial condition x0, the optimal time of capture of the PEG is
denoted by T ∗ = T ∗(t0,x

0;Σℓ), where

T ∗(t0,x
0;Σℓ) := min

u(·)
max
v(·)

T (u(·),v(·); t0,x
0, Σℓ) = T (u∗(·),v∗(·); t0,x

0, Σℓ)

and the following saddle point condition is satisfied:

T (u∗(·),v(·); t0,x
0, Σℓ) ≤ T ∗(t0,x

0;Σℓ) ≤ T (u(·),v∗(·); t0,x
0, Σℓ),

for all piecewise continuous functions u(·) and v(·) taking values in U and V,
respectively, with the application of which the corresponding trajectory x(·)
of the system in (6) reaches the terminal set Σℓ in finite time. In addition, it
turns out that

T ∗(t0,x
0;Σℓ) = min

u(·)
max
v(·)

T (u(·),v(·); t0,x
0, Σℓ)

= max
v(·)

min
u(·)

T (u(·),v(·); t0,x
0, Σℓ). (7)
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The interchangeability of min and max operators follows from the fact that
the terms in the expressions of the performance index and the dynamics of the
game that contain u(·) and v(·) are independent of each other [1]. Next, we
provide the precise formulation of the pursuit-evasion game.

Problem 2.2 Given ℓ > 0, find the optimal pair of piecewise continu-
ous control inputs (u∗(·),v∗(·)) such that the resulting optimal trajectory
x∗(·) = x∗(·; t0,x0) of the system described by (6) and emanating from x0

at time t0 satisfies the capture condition at time t = T ∗, that is, x∗(T ∗) ∈ Σℓ,
where T ∗ = T ∗(t0,x

0;Σℓ) is the optimal time of capture that is defined in (7).

Remark 2.1 In the formulation of Problem 2.2, we have taken the admissible
set of control inputs to consist of open-loop controls (piecewise continuous
functions of time). However, as we will see later on, it turns out that the
open-loop control input that will solve the min-max problem will also admit
a feedback representation a posteriori.

The optimal play of the evader corresponds to the situation in which the
unknown component of the flow-field has the worst possible effect on the vehi-
cle V , that is, it tries to delay the arrival of the latter to its destination as much
as possible if not prevent it completely. Note that the capture of the evader
by the pursuer in the game is equivalent to the vehicle V reaching the desired
terminal set. Moreover, the optimal control inputs and the corresponding opti-
mal time of capture obtained as the solution to Problem 2.2 yield the vehicle’s
control input as well as the optimal time of arrival which correspond to the
solution to Problem 2.1. It should be emphasized again that the optimal time
of arrival of Problem 2.1 corresponds to an upper bound of the actual time
of arrival of the vehicle to its destination given that in practice, the flow-field
may not have an adversarial effect on the vehicle at all times (it is likely, for
instance, that during certain intervals of time the flow-field may even aid the
vehicle to reach its destination faster).

3 Solution Method: Reformulation of the Zero-Sum Differential
Game as a Differential Game with a Terminal Cost

The pursuit-evasion game with free terminal time formulated in Problem 2.2 is
re-defined as a game whose performance index consists of only a terminal cost
based on the approach proposed in [11]. For a game that starts at state x0 ∈ R

4

at time t0, with the control inputs u(·) and v(·) applied from time t = t0 to
time t = T , let the state trajectory be denoted by x(·) (or x(·; t0,x

0), when we
want to highlight the initial time and state). Now, we define the performance
index/terminal cost function

Jx(u(·),v(·); t0, T,x
0) := ‖Dx(T )‖ = ‖r(T )‖, (8)

where T > 0 is the time of termination of the game, which is assumed to be
fixed. Let us recall that the two-player pursuit-evasion game terminates in
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capture when the relative distance between the two players becomes equal
to the radius of capture for the first time (this follows from the formulation
in Problem 2.2), and this time is unknown. Therefore, a pair (u(·),v(·)) will
make the game formulated in Problem 2.2 terminate in capture, if there exists
a terminal time T > 0 such that Jx(u(·),v(·); t0, T,x0) = ℓ. Our conjecture,
whose correctness will be proven later in this section, is that the smallest
possible terminal time T ∗ such that

Jx(u
∗(·),v∗(·); t0, T

∗,x0) = ℓ

corresponds to the optimal time of capture of the game formulated in Problem
2.2 and the pair u∗(·),v∗(·)) corresponds to the optimal (saddle-point) pair of
the game.

Now, in order to obtain the solution to Problem 2.2, we will associate it with
a family of games whose performance index is the terminal cost Jx defined in
(8) and which are parameterized by the terminal time T (this terminal time is
assumed to be fixed for each problem in the family). To set up this association,
let us note that the state transition matrix of the system in (6) is given by
ΦA(t, t0), and that

Φ̇A(T, t) = −ΦA(T, t)A(t), ΦA(T, T ) = I4,

for all t ∈ [t0, T ]. Now, let us define the following state transformation
y(t) := DΦA(T, t)x(t) for all t ∈ [t0, T ]. Then,

ẏ(t) = −DΦA(T, t)A(t)x(t) +DΦA(T, t)ẋ(t), y(t0) = y0, (9)

where y0 = DΦA(T, t0)x
0 ∈ R

2. In view of (6), (9) becomes

ẏ(t) = B(t;T )u(t) + C(t;T )v(t) + e(t;T ), y(t0) = y0, (10)

where

B(t;T ) := DΦA(T, t)B(t), (11a)

C(t;T ) := DΦA(T, t)C, (11b)

e(t;T ) := DΦA(T, t)Ep0(t), (11c)

for all t ∈ [t0, T ].

From the definition of y(t), it follows readily that ‖y(T )‖ = ‖Dx(T )‖. The
expression for the terminal cost in terms of the transformed state is given by

Jy(u(·),v(·); t0, T,y
0) = ‖y(T )‖. (12)

Note that, if the parameter/terminal time T that appears in the performance
index Jy is such that ‖y(T )‖ = ℓ, then ‖Dx(T )‖ = ‖y(T )‖ = ℓ, which means
that the capture condition of the game (Problem 2.2) is satisfied at t = T .
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Problem 3.1 Given ℓ > 0, find the smallest parameter T ∗ ≥ t0 (terminal
time) and the corresponding optimal pair of piecewise continuous control inputs
(ū(·), v̄(·)) taking values in U × V such that (i) the performance index/terminal
cost Jy evaluated along (ū(·), v̄(·)) satisfies the following equation:

Jy(ū(·), v̄(·); t0, T
∗,y0) = min

u(·)
max
v(·)

Jy(u(·),v(·); t0, T
∗,y0)

=: J̄y(t0,y
0;T ∗), (13)

and in addition, (ii) ‖ȳ(T ∗)‖ = ℓ and ‖ȳ(t)‖ > ℓ for all t ∈ [t0, T
∗), where ȳ(·)

denotes the optimal trajectory of the system described by (10) that emanates
from y0 at time t0 and is generated with the application of the optimal pair of
inputs (ū(·), v̄(·)).

According to the formulation of Problem 3.1, capture can be achieved no
earlier than the time t = T ∗ when both players apply their corresponding
optimal inputs. Next, we establish the equivalence between the solution to
Problem 3.1 and the solution to Problem 2.2 and subsequently characterize
the optimal pair of inputs under the following well-known assumption due to
Gutman [11]:

Assumption 1. There exist piecewise continuous functions
b(·;T ) : [t0, T ] → [0,∞[ and c(·;T ) : [t0, T ] → [0,∞[, where b(t;T ) = 0 or
c(t;T ) = 0 only at a finite number of points in [t0, T ] at most, such that the
matrices B(t;T ) and C(t;T ) satisfy, respectively, the following equations:

B(t;T )B′(t;T ) = b2(t;T )I2, C(t;T )C′(t;T ) = c2(t;T )I2, (14)

for all t ∈ [t0, T ].

Remark 3.1 The previous assumption is intuitive in the sense that in many
practical situations, the matrices B(t;T ) and C(t;T ) do not vanish except for,
possibly, a finite number of instants of time. This is true in practical situations,
characteristic examples of which are pursuit-evasion games involving vehicles
with single or double-integrator type dynamics in the presence of flow-fields,
or lack thereof, missile-target systems and spacecraft in orbit, to name but a
few. It should be highlighted that Assumption 1 will significantly simplify the
computation of the optimal pair of control inputs, as we will see later on.

Lemma 3.1 For any t ∈ [t0, T ], B(t;T ) = 0 if and only if b(t;T ) = 0. Simi-
larly, C(t;T ) = 0 if and only if c(t;T ) = 0.

Proof. If b(t;T ) = 0, then in the light of (14), it follows that B(t;T )B′(t;T ) = 0.
Because rank(B(t;T )) = rank(B(t;T )B′(t;T )) = rank(0) = 0, we immediately
conclude that B(t;T ) = 0. Conversely, if B(t;T ) = 0, then B(t;T )B′(t;T ) = 0,
which implies, in view of (14), that b(t;T ) = 0.

Theorem 3.1 Problem 2.2 admits a solution if and only if Problem 3.1 is
solvable. Furthermore, if Problem 2.2 admits a solution, then the optimal pair
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of min-max control inputs (u∗(·),v∗(·)) which constitutes the solution to Prob-
lem 2.2 is equal to the optimal pair of control inputs (ū(·), v̄(·)) that solves
Problem 3.1. In particular, provided that Assumption 1 holds true, the optimal
pair of inputs are given by

u∗(t) = ū(t) = −
B

′(t;T ∗)z̄(t)

‖B′(t;T ∗)z̄(t)‖
, (15a)

v∗(t) = v̄(t) =
C
′(t;T ∗)z̄(t)

‖C′(t;T ∗)z̄(t)‖
, (15b)

for all t ∈ [t0, T
∗], where z̄(t) := ȳ(t) +

∫ T∗

t
e(η;T ∗)dη, and T ∗ is the min-

max time of capture, which is defined in (7), and is also equal to the optimal
parameter of Problem 3.1. In particular, T ∗ corresponds to the smallest non-
negative root of the following equation in T :

‖y0 +

∫ T

t0

e(η;T )dη‖+

∫ T

t0

γ̇(z̄(η))dη = ℓ, (16)

where γ̇(z̄(t)) = z̄
′(t)

‖z̄(t)‖

(

B(t;T ∗)ū(t) + C(t;T ∗)v̄(t)
)

for all t ∈ [t0, T
∗].

Proof. : Let y(t) = ysol(t;u(·),v(·), t0,y
0), with y0 = y(t0), denote the solu-

tion to (10) at time t ∈ [t0, T ] for a given initial state y0 at time t0 and for a
given pair of control inputs (u(·),v(·)) that are applied over the time interval
[t0, t). Let us also consider the function ω(·) : R2 → [0,∞[ with ω(y) := ‖y‖,
whose time derivative along the trajectory y(·) is given, in light of (10), by

ω̇(y(t)) = ξ′(t)ẏ(t)

= ξ′(t) [B(t;T )u(t) + C(t;T )v(t) + e(t;T )] , (17)

for all t ∈ [t0, T ], where ξ(t) := y(t)/‖y(t)‖. Then, the terminal cost, starting
from y = y(t) at time t ∈ [t0, T ], is given by

Jy(u(·),v(·); t, T,y(t)) = ‖y(T )‖ = ω(y(t)) +

∫ T

t

ω̇(y(η))dη

= ‖y(t)‖+

∫ T

t

ω̇(y(η))dη. (18)

Therefore, the optimal terminal cost from y(t) at time t, which is denoted as
J̄y(t,y(t);T ), is defined as follows:

J̄y(t,y(t);T ) := min
u(·)

max
v(·)

Jy(u(·),v(·); t, T,y(t))

= ‖y(t)‖+min
u(·)

max
v(·)

∫ T

t

ω̇(y(η))dη.

Let (ūT (·), v̄T (·)) denote the corresponding optimal (min-max) pair of inputs
and ȳT (·) the corresponding optimal trajectory, with

ȳT (t1) = ysol(t1; ūT (·), v̄T (·), t,y(t))
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for t1 ∈ [t, T ]. By definition,

J̄y(t,y(t);T ) = ‖ȳT (T )‖ = ‖y(t)‖+

∫ T

t

ω̇(ȳT (η))dη. (19)

The optimal parameter T = T ∗ (optimal terminal time) for Problem 3.1 is the
smallest non-negative root of the following equation:

ℓ = ‖y(t)‖+

∫ T

t

ω̇(ȳT (η))dη. (20)

Then the optimal pair of inputs that solves Problem 3.1, which is denoted by
(ū(·), v̄(·)), is defined as follows:

(ū(t), v̄(t)) = (ūT∗(t), v̄T∗(t)), for all t ∈ [t0, T
∗].

Next, we proceed with the characterization of the optimal pair of inputs.
To this aim, we introduce a new variable z(t), where

z(t) := y(t) +

∫ T∗

t

e(η;T ∗)dη, (21)

which implies that ż(t) = ẏ(t)− e(t;T ∗), from which it follows that

ż(t) = B(t;T ∗)u(t) + C(t;T ∗)v(t), z(t0) = z0, (22)

where z0 := y0 +
∫

T∗

t0
e(η;T ∗)dη. Now we define a function

γ(·) : R
2 → [0,∞[, where γ(z) := ‖z‖, whose time derivative along the

trajectory z(·) is given by

γ̇(z(t)) =
z′(t)

‖z(t)‖

(

B(t;T ∗)u(t) + C(t;T ∗)v(t)
)

. (23)

Let us also define the cost-to-go function from z(t) at time t as follows:

Jz(u(·),v(·); t, T
∗, z(t)) = ‖z(T ∗)‖ = ‖z(t)‖+

∫ T∗

t

γ̇(z(η))dη. (24)

Then, the optimal terminal cost is given by:

J̄z(t, z(t);T
∗) := min

u(·)
max
v(·)

Jz(u(·),v(·); t, T
∗, z(t))

= ‖z(t)‖+min
u(·)

max
v(·)

∫ T∗

t

γ̇(z(η))dη.

Let (ūz(·), v̄z(·)) denote the corresponding optimal min-max pair of inputs
and z̄(·) the corresponding optimal trajectory of the system described by (22)
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that emanates from state z(t). By its definition, the optimal cost-to-go can
also be written as follows:

J̄z(t,y(t);T
∗) = ‖z̄(T ∗)‖ = ‖z(t)‖+

∫ T∗

t

γ̇(z̄(η))dη, (25)

where z̄(T ∗) is the terminal state of the optimal trajectory z̄(·). We claim that

(ū(t), v̄(t)) = (ūz(t), v̄z(t)), for all t ∈ [t0, T
∗].

Let us now solve the min-max optimization of the terminal cost ‖z(T ∗)‖,
subject to the dynamics in (22) and the input constraints u(t) ∈ U and
v(t) ∈ V for all t ∈ [t0, T

∗]. To this aim, we consider the Hamiltonian
H(·) : [t0, T

∗]× R
2 × U × V × R

2 with

H(t, z,u,v,λ) = λ′[B(t;T ∗)u+ C(t;T ∗)v], (26)

where λ is the co-state. Then, in view of the two player extension of the
maximum principle (refer to Theorem 2, pg. 349 in [3]) we have that

H(t, z̄(t), ūz(t), v̄z(t), λ̄(t)) = min
u∈U

max
v∈V

H(t, z̄(t),u,v, λ̄(t)), (27)

where λ̄(·) satisfies the following equation:

˙̄λ(t) = −H′
z
(t, z̄(t), ūz(t), v̄z(t), λ̄(t)) = 0, for all t ∈ [t0, T

∗], (28a)

λ̄(T ∗) =
d‖z‖

dz

∣

∣

∣

∣

z=z̄(T∗)

=
z̄′(T ∗)

‖z̄(T ∗)‖
. (28b)

Equations (28a)-(28b) imply that the co-state λ̄(·) is a constant unit vector.
In particular,

λ̄(t) = λ̄(T ∗) =
z̄(T ∗)

‖z̄(T ∗)‖
, for all t ∈ [t0, T

∗]. (29)

In addition, the optimal pair of control inputs that solve the corresponding
min-max optimization problem can be independently chosen as follows:

ūz(t) = −
B

′(t;T ∗)λ̄(t)

‖B′(t;T ∗)λ̄(t)‖
, (30a)

v̄z(t) =
C
′(t;T ∗)λ̄(t)

‖C′(t;T ∗)λ̄(t)‖
, (30b)

for all t ∈ [t0, T
∗] for which B(t;T ∗) 6= 0 and C(t;T ∗) 6= 0. When this condi-

tion is satisfied, the denominators of the expressions of ūz(t) and v̄z(t) that
appear in (30a) and (30b), respectively, are non-zero. Indeed, if B(t;T ∗) 6= 0,
then B(t;T ∗)B′(t;T ∗) = b2(t;T ∗)I2 > 0 by virtue of Assumption 1. There-
fore, the null space of B′(t;T ∗), which is denoted by N (B′(t;T ∗)), is neces-
sarily trivial, that is, N (B′(t;T ∗)) = {0}; and since the co-state vector λ̄(t)
has unit magnitude according to (29), λ̄(t) /∈ N (B′(t;T ∗)) for all t ∈ [t0, T

∗]
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for which B(t;T ∗) 6= 0. Similarly, we can prove that λ̄(t) /∈ N (C′(t;T ∗)) for
all t ∈ [t0, T

∗] with C(t;T ∗) 6= 0.
Note that the exact values of the optimal inputs ūz(t) and v̄z(t) at any (iso-
lated) points of t ∈ [t0, T

∗] that either B(t;T ∗) and C(t;T ∗) = 0 (the number
of such points is finite, at most) are irrelevant to the solution of Problem 3.1
and can be chosen to be any vectors in U and V, respectively.

Next, motivated by the fact that λ̄(T ∗) = z̄(T ∗)/‖z̄(T ∗)‖, we argue that
λ̄(t) = z̄(t)/‖z̄(t)‖ for all t ∈ [t0, T

∗], in which case, we have that

λ̄(t) = λ̄(T ∗) =
z̄(T ∗)

‖z̄(T ∗)‖
=

z̄(t)

‖z̄(t)‖
, for all t ∈ [t0, T

∗]. (31)

To prove that (31) holds true, we first observe that (28a), which is in gen-
eral a linear ordinary differential equation, with the boundary condition
given by (28b), admits a unique solution. Therefore, it suffices to show that
λ̄(t) = z̄(t)/‖z̄(t)‖ is the solution to (28a)-(28b), for all t ∈ [t0, T

∗]. To this
aim, we first compute the (total) time derivative of z/‖z‖ along the optimal
trajectory z̄(·), which is given by:

d

dt

(

z̄(t)

‖z̄(t)‖

)

=
1

‖z̄(t)‖2

(

‖z̄(t)‖ ˙̄z(t)−
1

‖z̄(t)‖

(

z̄(t)z̄′(t)
)

˙̄z(t)

)

=
1

‖z̄(t)‖

(

I2 −
1

‖z̄(t)‖2
(

z̄(t)z̄′(t)
)

)

˙̄z(t), (32)

for all t ∈ [t0, T
∗]. In view of (14) and (30a)-(30b), along the optimal trajectory,

(22) becomes

˙̄z(t) = B(t;T ∗)ūz(t) + C(t;T ∗)v̄z(t)

= −
B(t;T ∗)B′(t;T ∗)λ̄(t)

‖B′(t;T ∗)λ̄(t)‖
+

C(t;T ∗)C′(t;T ∗)λ̄(t)

‖C′(t;T ∗)λ̄(t)‖

= −
b2(t, T ∗)λ̄(t)

|b(t, T ∗)|‖λ̄(t)‖
+

c2(t;T ∗)λ̄(t)

|c(t;T ∗)|‖λ̄(t)‖

= −|b(t, T ∗)|
λ̄(t)

‖λ̄(t)‖
+ |c(t;T ∗)|

λ̄(t)

‖λ̄(t)‖

= −
(

b(t, T ∗)− c(t;T ∗)
)

λ̄(t),

since ‖λ̄(t)‖ = 1 for all t ∈ [t0, T
∗], and |b(t, T ∗)| = b(t, T ∗) and

|c(t, T ∗)| = c(t, T ∗), in view of Assumption 1. After substituting the
last expression of ˙̄z(t) in (32), we obtain

˙̄λ(t) =
d

dt

(

z̄(t)

‖z̄(t)‖

)

= −
b(t, T ∗)− c(t;T ∗)

‖z̄(t)‖

(

I2 −
1

‖z̄(t)‖2
(

z̄(t)z̄′(t)
)

)

z̄(t)

‖z̄(t)‖

= −
b(t, T ∗)− c(t;T ∗)

‖z̄(t)‖2

(

z̄(t)− z̄(t)
z̄′(t)z̄(t)

‖z̄(t)‖2

)

= 0,
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and at time t = T ∗, λ̄(T ∗) = z̄(T ∗)/‖z̄(T ∗)‖. Hence, the solution to (28a)-
(28b) is given by λ̄(t) = z̄(t)/‖z̄(t)‖ for all t ∈ [t0, T

∗], and (31) holds true as
we have claimed. Now, in light of (31), the optimal control pair in (30a)-(30b)
can be written as follows:

ūz(t) = −
B

′(t;T ∗)(z̄(t)/‖z̄(t)‖)

‖B′(t;T ∗)(z̄(t)/‖z̄(t)‖)‖

= −
B

′(t;T ∗)z̄(t)

‖B′(t;T ∗)z̄(t)‖
, (33a)

and similarly,

v̄z(t) =
C
′(t;T ∗)z̄(t)

‖C′(t;T ∗)z̄(t)‖
, (33b)

for all t ∈ [t0, T
∗], for which B(t;T ∗) 6= 0 and C(t;T ∗) 6= 0. Note that when

B(t;T ∗) 6= 0 and C(t;T ∗) 6= 0, the expressions of ūz(t) and v̄z(t) given
in (33a) and (33b), respectively, are well defined. This is because when
B(t;T ∗) 6= 0, then N (B′(t;T ∗)) = {0}, as we have shown in the discussion
following (30a)-(30b). In addition, because ‖z̄(t)‖ ≥ ℓ > 0 (and thus z̄(t) 6= 0)
for all t ∈ [t0, T

∗], we conclude that ‖B′(t;T ∗)z̄(t)‖ > 0 for all t ∈ [t0, T
∗].

Similarly, we can prove that ‖C′(t;T ∗)z̄(t)‖ > 0 for all t ∈ [t0, T
∗].

At any time t ∈ [t0, T
∗] that either B(t;T ∗) = 0 or C(t;T ∗) = 0, the corre-

sponding optimal input can be chosen to be any vector in U or V, respectively.
Further, it turns out that the expressions of ūz(t) and v̄z(t) given in (33a) and
(33b), respectively, ensure that the closed-loop dynamics, which are described
by the following equation:

˙̄z(t) =
B(t;T ∗)B′(t;T ∗)z̄(t)

‖B′(t;T ∗)z̄(t)‖
+

C(t;T ∗)C′(t;T ∗)z̄(t)

‖C′(t;T ∗)z̄(t)‖
, (34)

are well-defined for all t ∈ [t0, T
∗]. This is because the two terms that appear

in the right hand side of (34) are well-defined for all t ∈ [t0, T
∗], even when

B(t;T ∗) = 0 or C(t;T ∗) = 0. In particular, in view of Assumption 1, we have
that

B(t;T ∗)B′(t;T ∗)z̄(t)

‖B′(t;T ∗)z̄(t)‖
=

B(t;T ∗)B′(t;T ∗)z̄(t)
√

z̄′(t)B(t;T ∗)B′(t;T ∗)z̄(t)
=

|b(t;T ∗)|z̄(t)

‖z̄(t)‖
,

which is well defined given that z̄(t) ≥ ℓ > 0 for all t ∈ [t0, T
∗]. If B(t;T ∗) = 0

for some t ∈ [t0, T ], then in the light of Lemma 3.1 we have that b(t;T ∗) = 0.
Thus,

B(t;T ∗)B′(t;T ∗)z̄(t)

‖B′(t;T ∗)z̄(t)‖
= 0,

for all t ∈ [t0, T
∗] with B(t;T ∗) = 0. The proof for the well-posedness of the

second term that appear in the right hand side of (34) is similar, and we will
omit it.
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Furthermore, in view of (21), it follows that z(T ∗) = y(T ∗), and so the
game terminates in capture when ‖z(T ∗)‖ = ‖y(T ∗)‖ = ℓ. The optimal ter-
minal time T ∗ corresponds to the smallest real positive value that satisfies
J̄z(t, T

∗, z(t)) = ℓ, where J̄z(t, T
∗, z(t)) is defined in (25). Furthermore, the

optimal pair of open-loop control inputs (ūz(·), v̄z(·)) corresponding to T ∗

coincides with the optimal pair (ū(·), v̄(·)) that solves Problem 3.1.
Now, we argue that the optimal solution to Problem 3.1 is also the optimal

solution to Problem 2.2. This follows readily after observing that with the ap-
plication of the pair of control inputs (ūz(·), v̄z(·)) to both the systems given
in (6) and (10) with initial conditions x0 and y0 = DΦA(T, t0)x0 respectively
at time t0, over the time interval [t0, T ], the two systems will reach termi-
nal states x∗(T ) and ȳ(T ), respectively, with ȳ(T ) = Dx∗(T ), for all T ≥ t0.
Consequently, T = T ∗ is the first time for which the following equation

‖ȳ(T ∗)‖ = ‖Dx∗(T ∗)‖ = ℓ

holds true, which in turn implies that at time t = T ∗, x∗(T ∗) ∈ Σℓ. Hence, the
optimal pair of control inputs for Problem 2.2 is given by (15). This concludes
the proof of Theorem 3.1.

Remark 3.2 Because the optimal pair of control inputs at each time t depend
on the transformed state z, these control inputs can be implemented as real-
izations of the corresponding pair of feedback min-max control laws.

Remark 3.3 It is preferable to use (16) in order to find the optimal time of
capture T ∗ instead of 20). This is because the integrand in the latter equation
is, in view of (17), explicitly dependent on the trajectory ȳ(·) because of the
e(·;T ∗) term. By contrast, the integrand in (16) does not depend explicitly on
z̄(·), and the terminal time T ∗ is easily obtained.

4 Example: Guidance of a Newtonian particle in a Partially Known
Flow-Field

In this section, we apply the previous results to a specific example, which is
the problem of guiding a vehicle in a partially known flow-field in the plane.
The vehicle’s motion is described in terms of a simple point-mass kinematic
model (Newtonian particle).

The state space model for the vehicle in the flow-field is given by (1) where
n = 2 with

AV =

[

0 I2
0 0

]

, BV = F

[

0
I2

]

, EV = D′,

where F > 0 is a known constant. Note that all the matrices in the previous
state space model are time-invariant.

Here, we take the known component p0(t) of the velocity p(t) of the par-
tially unknown time-varying flow-field, which is defined in (2), to be a bounded
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and periodic function of time. In particular, the known component of the flow-
field p0(t) = sin(kπt)µ, where k > 0,µ ∈ R

2. As we have already explained,
the guidance problem of the Newtonian particle in a partially known flow-field
is equivalent to a two-player pursuit-evasion game in a known flow-field. The
two-player game is a variation of Isaacs’ Isotropic Rocket game [1]. The ve-
hicle’s motion is described in terms of a Newtonian point mass model, which
Isaacs has referred to as the Isotropic Rocket, which is a term that we will
also use henceforth. In the Isotropic Rocket PEG, the pursuer controls its
acceleration vector whose magnitude is an a priori known positive constant
whereas the evader controls directly the direction of its velocity vector, whose
magnitude (i.e., its speed) is assumed to be constant.

At each time t, the state vector x(t), that belongs to the reduced state
space of the Isotropic Rocket pursuit-evasion game, is defined as follows:
x(t) := [r′(t) ṽ′

P (t)]
′ ∈ R

4, where r(t) := rE(t)− rP (t) is the relative position
of E with respect to P and ṽP (t) is the velocity of P at time t. The time-
invariant state-space model is given by the following matrices in (6):

A =

[

0 − I2
0 0

]

, B = F

[

0
I2

]

, C = −wp

[

I2
0

]

E = −D′.

For any terminal time T , the state transition matrix corresponding to the state
matrix A is given by:

ΦA(T, t) =

[

I2 − (T − t)I2
0 I2

]

.

Then by definition, B(t;T ) = DΦA(T, t)B(t) = −F (T − t)I2. Similarly,
C(t;T ) = −wpI2, and e(t;T ) = −p0(t). The expression for the transformed
variable y(t) is also obtained as follows:

y(t) = r(t)− (T − t)ṽP (t). (35)

Note that for all t ∈ [t0, T
∗], where T ∗ is the min-max time of capture, z̄(t)

depends on p0(t) and the values of the min-max control inputs u∗(t) and
v∗(t) can be computed using (33a) and (33b), respectively. Then, at time t,
the min-max value for γ̇(z(t)), which is denoted by γ̇(z̄(t)), is given by:

γ̇(z̄(t)) = −F (T ∗ − t) + wp,

and (16) becomes:

ℓ = ‖z0‖+

∫ T∗

t0

(−F (T ∗ − η) + wp)dη. (36)

It is notable at this point that whether the vehicle V can reach its target
location or not depends on the initial conditions as well as the parameters of
the problem. There is a particular region of the state space for which there
exists a positive real value of T ∗ that satisfies (36). This region is called the
capturable region. For the vehicle V , the capturable region represents the set
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of states that are reachable under the given flow-field conditions and control
limits. If (36) does not admit such a solution, the evader has a possibility of
escape, which means that there exists no admissible control that the pursuer
can employ to guarantee capture. Note that in the latter case of no guaranteed
capture, we cannot guarantee that we can guide V to the desired terminal set in
the partially known flow-field. In particular, from (36), w2

p < 2Fℓ is a sufficient
condition for the existence of an admissible control that will guide V to the
desired terminal set in the partially known flow-field.

Finally, for the special case in which the known component of the flow-
field is constant, the optimal value function of the game and the trajectories
subsequently obtained match the solution to the Isotropic Rocket problem
using Isaacs’ method of retrogressive path equations [1].

5 Numerical Simulations: Newtonian Particle in Partially Known
Flow-Field

In this section, we illustrate our proposed solution approach for the
example problem using numerical simulations. We choose the values
t0 = 0, F = 1, wp = 0.4, and ℓ = 0.1, µ = [1 1]′ and k = 0.5.

First, let us look in detail into the solution of the two-player game. Since
an analytical expression for the time of capture is available from (36), we can
deduce that the isochrones for this problem are actually circles whose center
and radius are functions of time. This enables us to geometrically construct the
level sets of the time of capture in the pursuit evasion game. A sample capture
trajectory is shown in Fig. ?? in the inertial frame and the corresponding level
sets for the pursuer (vehicle) are shown in Fig. ??, projected on the relative
position space.

Fig. ?? illustrates the effect of varying the magnitude of the unknown
component wp on the level sets of the time of capture function, for a given
initial state and periodic wind. It is clear that the reachable sets of the pursuer
in the relative state space are different in each case, and in particular, as the
magnitude of wp increases, the reachable set of the pursuer shrinks accordingly.
Similarly, the dependence of the reachable sets on the (constant) magnitude
F of the vehicle’s acceleration is illustrated in Fig. ??. As expected, when F is
increased, the reachable set of the pursuer in the relative state space will also
increase. Also, the higher the value of F , the lesser the time that the pursuer
will need to reach a particular location.

Remark 5.1 The underlying dependence of the game-theoretic solution on the
parameters F and wp can be used to calculate the minimum required F to
maneuver the vehicle to a chosen target location in the presence of the flow-
field, given a particular value of wp. For instance, in the presence of the flow-
field with k = 0.5, wp = 0.4, ℓ = 0.1, µ = [1 1]′, and maximum allowed
terminal time of T ∗ = 1.5, with the initial state of the pursuit-evasion game
being x = [2.631 −0.778 1 −1]′, we require at least F = 1.5 for the capture
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of the evader, that is, for the vehicle to reach its desired target location in the
presence of the antagonistic flow-field.

Now, we consider the solution to the problem of guiding the vehicle in
a partially known flow-field. The game-theoretic estimate of the time taken
by the vehicle V to reach the origin in a flow-field is an upper-bound on the
actual minimum time required should the flow-field be known a priori or act
favorable to V . This is because the game-theoretic framework always assumes
the worst intention of the adversary. In our case, this assumption means a
component of the flow-field is unknown but bounded, and actively tries to
prevent, if possible, or delay the progress of the vehicle towards its target.

For instance, let us examine a case where the flow-field component that is
unknown a priori is not completely adversarial, in particular, for all t ∈ [0, T ],
let p(t) = p0(t) + 0.5wp(cos t− sin t)[1 − 1]′. Fig. ?? shows the trajectory of
the vehicle V to the target in this flow-field, which is computed by utilizing
the game-theoretic approach, for a given initial condition. The direction of the
flow-field component that is not completely known a priori is shown along the
trajectory in blue. The trajectories of the players in the equivalent pursuit-
evasion game assuming a completely adversarial flow-field component is shown
in Fig. ??.

At this point, we wish to highlight an observation about the game-theoretic
time of capture. Let us assume that the vehicle (pursuer) always acts optimally
based on the state information available to it. When the evader engages in opti-
mal play, the min-max time of capture T ∗(t0,x

0;Σℓ) remains constant over the
duration of the pursuit-evasion game, that is, T ∗(t,x∗(t);Σℓ) = T ∗(t0,x

0;Σℓ)
and its value needs to be computed only once at time t = t0. However, when
the evader acts sub-optimally (as in the case of an unknown flow-field that
is not completely adversarial), the game-theoretic time of capture changes in-
stantaneously as the game is played. In this case, at each time instant t, we
must re-compute the value of T ∗(t,x(t);Σℓ) along the ensuing non-optimal
trajectory x(·) and then compute the optimal control input for the vehicle
(pursuer) because, in general, T ∗(t,x(t);Σℓ) 6= T ∗(t0,x

0;Σℓ).

Further, at any given time t ∈ [t0, T
∗], and for a given state x(t), it is im-

portant to distinguish between the min-max time of capture T ∗(t,x(t);Σℓ),
which is the first time instant at which capture occurs, and the time-to-go
Tgo(t,x(t);Σℓ), which is the time remaining before capture. The two are re-
lated; the time-to-go Tgo(t,x(t);Σℓ) = T ∗(t,x(t);Σℓ)− t. Note that if t0 = 0,
Tgo(t0,x

0;Σℓ) = T ∗(t0,x
0;Σℓ).

The difference between the game-theoretic terminal time and the actual
time taken by the vehicle to reach the target is illustrated in Fig. ??. In Fig.
??, the evolution of the time-to-go when the unknown component of the flow-
field is fully adversarial is shown as a green line. It is clearly seen that the
game-theoretic time-to-go is an upper bound for the optimal time-to-go when
the unknown flow-field component is not completely adversarial (shown in
deep blue). Another case where the flow-field is completely known a priori is
shown in light blue in the same figure. The evolution of the distance between
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the pursuer and the evader (vehicle and the target) shows similar behavior as
shown in Fig. ??.

Further, the existence of a solution to the game-theoretic formulation of
the guidance problem in a partially unknown flow-field is only a sufficient
condition for the vehicle V to be able to navigate to the target in that flow-
field. This condition can be very conservative in some cases. In reality, the
flow-field is not expected to have an adversarial effect at all times on the
vehicle V as is assumed in the game-theoretic framework (it is possible that
at some time subintervals the flow-field may even be favorable to the vehicle
V ). Consequently, it is possible for V to reach the target in finite time even
in cases where the game-theoretic formulation of the guidance problem does
not have a solution. Fig. ?? illustrates the vehicle’s trajectories emanating
from two different initial states generated with the application of the minimax
guidance law proposed in this paper and the nonlinear feedback guidance law
proposed in [26]. The feedback guidance law proposed in [26] is derived based
on backstepping nonlinear control design techniques without taking explicitly
into account neither input constraints nor optimal performance specifications.
For the purpose of this comparison, we have normalized the computed control
input so that it satisfies the same norm bound as the minimax control proposed
in this work. The target position of the vehicle in Fig. ?? is the origin and it
assumed that the winds are periodic. After comparing the two guidance laws
for approximately 102 random initial conditions, we found that for nearly 70%
of the cases, the vehicle on average takes 57% lesser time to reach the origin
when it uses the game-theoretic guidance law. We must state here that due to
its conservative nature, the game-theoretic approach to the guidance problem
may not admit a solution for some initial conditions, from which, however, the
vehicle can successfully reach the origin by utilizing the backstepping feedback
control law.

Returning to the solution of the two-player game, we note that at
any time t ∈ [t0, T

∗], the relative magnitude of the known component of
the flow-field ‖p0(t)‖ with respect to the magnitude bound wp of the un-
known component does not affect the capturability of the evader in the
two-player game. However, it has an effect on the time of capture in the
game. Let λ ∈ [0, 1] denote the ratio of the magnitude bound of the known
component of the flow-field to the bound on its total magnitude, that is,
λ = (maxt∈[t0,T∗] ‖p0(t)‖)/(maxt∈[t0,T∗] ‖p(t)‖).

In Fig. ??, for a given initial condition and for different values of λ, we
compare the min-max time of capture (in the game theoretic formulation).
Note that as the ratio λ decreases, the magnitude of the unknown component
increases and so does the time estimate for the vehicle V to reach the target.
In Fig. ??, the values of parameters were chosen as F = 3 and ℓ = 0.4 with
the same values of µ and k as before.
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6 Conclusions

In this paper, we have used game-theoretic tools to address the problem of
guiding a vehicle, such as an aquatic or aerial vehicle, in a partially known time-
varying flow-field induced by currents or winds, respectively. Our approach
involves the reformulation of the guidance problem to an equivalent two-player
zero-sum game between the vehicle and a fictitious player that can control the
velocity of the flow-field. After expressing the equations of motion in the so-
called reduced state space, we have developed a semi-analytic solution to the
guidance problem for the case in which the known component of the flow-field
is time-varying. Our proposed solution method for the case of time-varying
flow-fields is an advancement over the method in [11], while being considerably
simpler than Isaacs’ framework [1]. The applicability of our approach has been
demonstrated on the problem of guiding a Newtonian particle in a flow-field
with a known periodic component.

In addition, we have computed the worst-case reachable sets of the vehicle
by exploiting the structure of the level sets of the value function of the game.
This is simpler than constructing the reachable sets by solving the generalized
Hamilton-Jacobi-Isaacs equation for the two-player game. We argue that the
game-theoretic approach is ideal for solving guidance problems in the absence
of probabilistic models of the uncertainty in the environment. In particular,
the capture time based on the game-theoretic formulation is an upper bound
on the actual time required by the vehicle to reach the target position. This is
because when the flow-field is either completely known a priori or its unknown
component is not completely adversarial, the vehicle requires less time to reach
the target than determined in the adversarial game. Hence with knowledge
of a bound on the uncertain component of the flow-field, the existence of a
solution to the two-player game can be used as a certificate for the existence
of a solution to the vehicle guidance problem.

The framework presented in this paper can be extended to address the
guidance problem for a vehicle in a spatio-temporal flow-field that can
be locally approximated by a time-varying affine flow-field. We also plan
to extend the applicability of the proposed solution framework to robust
time-optimal problems for systems that do not satisfy Assumption 1, such as
problems in which it is desirable to drive both the position and the velocity
of a vehicle to prescribed goal vectors.
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