
Collision Avoidance for an Unmanned Aerial Vehicle in the

Presence of Static and Moving Obstacles

Andrei Marchidan ∗ and Efstathios Bakolas †

The University of Texas at Austin, Austin, TX, 78712

A new collision avoidance procedure for an unmanned aerial vehicle in the presence of

static and moving obstacles is presented. The proposed procedure is based on a new form of

local parametrized guidance vector fields, called collision avoidance vector fields, that produce

smooth and intuitive maneuvers around obstacles. These vector fields are generated from a

decomposition of UAV kinematics and a proximity-based velocity modulation. The proposed

kinematic decomposition encodes both collision avoidance and constant speed motion for the

UAV. As such, the resulting maneuvers follow nominal collision-free paths, which we refer to

as streamlines of the collision avoidance vector fields, with constant speed. Next, in accordance

with the computed guidance vector fields, different collision avoidance controllers that generate

collision-free maneuvers are developed. Furthermore, it is shown that any tracking controller

with convergence guarantees can be used with the avoidance controllers to track the streamlines

of the collision avoidance vector fields. Finally, numerical simulations demonstrate the efficacy

of the proposed approach and its ability to avoid collisions with static and moving pop-up

threats in different practical scenarios.

Nomenclature

UAV = unmanned aerial vehicle

R
n = set of n-dimensional real vectors

S
1 = unit circle homeomorphic to the closed set [−π, π]

Z = set of integers

CAVF = collision avoidance vector field

∅ = empty set

〈·, ·〉 = dot product

∠(·, ·) = angle between two vectors measured counterclockwise or clockwise for positive or negative values, respectively

V = UAV speed

∗PhD Candidate, Department of Aerospace Engineering and Engineering Mechanics, andrei.marchidan@utexas.edu
†Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics, AIAA Senior Member, bakolas@austin.utexas.edu

x = UAV position on the x-axis of the inertial frame

y = UAV position on the y-axis of the inertial frame

p = UAV position vector

ψ = UAV heading

ψd = UAV desired heading

u(t) = UAV steering control input at time t

ξ[ti ,T] = UAV position trajectory at time interval [ti,T]

T = free final time

ro = obstacle radius

rs = sensing range

S(t) = sensing space at time t

J(t) = index set for all registered obstacles at time t

O(t) = set of all inadmissible UAV positions at time t

F (t) = set of all admissible UAV positions at time t

(·)C = complement of a set operator

h(p) = collision avoidance vector field

po = position of registered obstacle

xo = obstacle position on the x-axis of the inertial frame

yo = obstacle position on the y-axis of the inertial frame

hr (p) = collision avoidance vector field for an obstacle in the relative obstacle frame

ex = x-axis unit vector

ey = y-axis unit vector

er = unit vector for the line-of-sight to the obstacle

eθ = unit vector for the obstacle tangent, perpendicular to er

hs(p) = collision avoidance vector field for a static obstacle

i(·) = inertial frame superscript

b(·) = obstacle moving frame superscript

r = radial distance of an agent from an obstacle’s center

θ = angle between the x-axis and the line-of-sight between p and po

β = angle between the desired trajectory direction and obstacle line-of-sight

Vo = obstacle speed

θo = obstacle direction with respect to x-axis

2

Vb = UAV speed in the moving obstacle frame

ψb = UAV desired heading in the moving obstacle frame

hd(p) = collision avoidance vector field for a dynamic obstacle

φ = angle between the line-of-sight and the UAV velocity

us(t) = collision avoidance control input for a static obstacle

ud(t) = collision avoidance control input for a dynamic obstacle

um(t) = collision avoidance control input for multiple obstacles

ut (t) = tracking control input for multiple obstacles CAVFs

∆ = agent distance to an obstacle

w = CAVF weight associated with an obstacle

σ∆ = sum of distances to each obstacle whose CAVF is active

ǫm = predefined weight threshold value

I. Introduction

Unmanned Aerial Vehicles (UAVs) have been widely used by both military and civil entities in missions ranging from

surveillance to search-and-rescue to convoy protection to pay-load delivery for rescue situations or even for commercial

businesses. In accomplishing these tasks, the autonomous vehicle is required to navigate without supervision in

environments populated with both static and moving obstacles. Specifically, while it is following planned trajectories

that are in accordance with high-level specifications, such as flying through different waypoints or maintaining a specific

course given by a path planning protocol, the UAV must be able to perform maneuvers to avoid pop-up threats or

obstacles that may not have been considered for the original trajectory plan. Thus, the need for decentralized, reactive,

computationally inexpensive and fast collision avoidance arises.

Flight control systems for unmanned aerial vehicles are well-studied and mature methodologies that provide

feedback controllers can guarantee accurate tracking of reference pose. As such, it is a common assumption in the

path-planning community for UAVs to assume constant altitude operation and to approximate the system with a planar

kinematic Dubins model [1]. This implies that the planning search space reduces to two geometric dimensions and that

navigation depends only on speed and steering or heading control. With these assumptions, the collision avoidance

problem can be tackled in different ways, depending on additional mission requirements.

Some of the more notable early works tackled the collision avoidanceproblem by creating a graph in the autonomous

agent’s free configuration space, considering only the geometric requirement of finding an obstacle-free path between

two points. Then, obstacle-free paths are found by applying different search algorithms that attempt to connect graph

nodes while, at the same time, may optimize different metrics. Some of the most used algorithms are Dijkstra’s [2],

3

A* [3, 4] and D* or D*-lite algorithms [5]. The configuration space graphs are usually created using either basic

sampling techniques that depend on feature density or more complex techniques that employ more advanced space

discretizations: i.e., decomposition into cells [6], Voronoi diagrams [7], projections [8] or retractions [9]. Graph-based

search algorithms, however, rely on search space granularity for speed and accuracy and, therefore, are not very suitable

for real-time applications. To speed up the process of sampling and searching for paths, a sampling-based technique

that quickly generates obstacle-free paths was developed by Lavalle [10] and was later extended to more complex

dynamics [11–13]. These new approaches, relying on randomly sampling the free configuration space, sped up the

search algorithms, however, they require both re-planning in the presence of moving obstacles and a large number of

samples and collision checks for very cluttered environments, making them computationally costly.

Other popular approaches for collision avoidance rely on curve parametrization for trajectory generation [14–16].

These geometric techniques integrate dynamic and path constraints by performing waypoint parameter optimization

in order to define splines, polynomial, logistic or Bézier curves, or even clothoids, that are feasible for more complex

systems to follow. Such constraints may relate to speed, path curvature, path length, obstacle avoidance, and many other

mission requirements. Solving these problems, however, requires high computational resources due to their nonlinear

nature, which may lead to the appearance of local minima or configurations where the autonomous agent gets stuck.

Moreover, none of these parameter optimization techniques are able to account for moving obstacles without further

assumptions, simplifications, or re-planning.

A similar class of algorithms used for collision avoidance are optimization-based algorithms that aim to solve

nonlinear programs with different NLP (nonlinear programming) solvers [17, 18] by applying direct or indirect

numerical methods. Indirect methods require deriving the necessary optimality conditions and finding the correct

adjoint variables to satisfy these conditions, whereas direct methods use a discretization of the state and input variables

in order to reduce the optimal control problem into an NLP problem. Both of these nonlinear programming techniques

cannot guarantee convergence to a feasible solution and demand good initial guesses for their decision variables, which

still makes them too computationally intensive for real-time applications.

To avoid the computational complexity of the mentioned techniques, a different approach that generates obstacle-

free paths by using artificial potential fields was developed in [19]. In this method, obstacles are associated with

repelling forces and target destinations are associated with attractive forces. Then, by considering these to be the

only forces acting on the autonomous agent, the motion plan is generated through gradient descent on the artificial

potential field. The method’s simplicity comes with two drawbacks: the existence of local minima and the lack of

a mechanism to handle input constraints, which may lead to infeasible commands that the agent must follow. The

first problem was ammended with the introduction of navigation functions [20] and harmonic potential fields [21, 22].

However, due to the high computational cost of generating harmonic potentials and the required parameter tuning

for navigation functions, these approaches are hard to implement on real-time systems and can only be applied for

4

moving obstacles through re-planning. Borrowing further from the theory of harmonic potentials and combining it

with concepts from hydrodynamics, a new class of motion planners that uses streamlines as feedback motion plans

was developed [23–26]. This new approach is able to consider convex static obstacles and obstacles that move with a

much lower speed than the agent speed for collision avoidance. While this method solves the problem of local minima

and of the high computational costs required for generating these motion plans, it does not guarantee that the required

acceleration or speed control inputs are feasible. Thus, in an effort to include kinematic constraints, new fluid motion

planners were introduced in [27] and [28] for curvature and speed constraints. These new planners, however, are unable

to handle moving obstacles with any guarantees.

This paper proposes a new approach that uses a parameterized vector field for generating constant speed collision

avoidance maneuvers around static and moving obstacles. The idea of a parametrized vector field has been used in

past works to generate guidance laws for tracking different motion patterns. The vector fields were obtained using

Lyapunov functions that guarantee convergence to the desired motion plans [1, 29] or by using a parametric consistency

condition for the agent nonholonomic constraints [30, 31]. In contrast, the parametrized vector fields presented herein

are generated directly from the decomposition of agent kinematics into normal and tangential components with respect

to the obstacle boundary. In this way, the proposed approach is more closely related to the decomposition presented

in [25], where the original dynamical system is modulated. The difference is that the proposed decomposition is

used to encode motion plan behaviors according to different goals, such as collision avoidance and constant speed

motion, by decoupling the modulation and constraining the normal and tangential velocity components with respect

to the obstacle boundary to simultaneously account for different requirements. To the best of our knowledge, our

approach of generating vector fields is new, since it uses the original agent kinematics and artificially modulates

velocity components with a new parametric proximity-based eigenvalue function. The parameters can be used to adjust

the agent’s behavior around the obstacle, by performing the transition between obstacle-free motion and collision

avoidance from different distances and with different intensities. A steering controller is described for the static and

moving obstacle case, respectively, and an ad-hoc algorithm is proposed for dealing with multiple obstacles. Then,

depending on the obstacles’ velocity and their proximity, the UAV may be required to switch between controllers due

to the appearance of new obstacles along its path. As a consequence, collision avoidance may not be guaranteed since

the switch may not lead to motion continuity between obstacle-free motion and collision avoidance or, in other words,

may bring new initial conditions that would not correspond to the desired collision avoidance vector field. Therefore,

the use of a tracking controller with proven convergence guarantees is proposed. Tracking the desired inputs leads to

the desired motion plan, provided by the collision avoidance vector fields, and obstacle avoidance is guaranteed for the

provided problem specifications while maintaining constant agent speed.

This paper is organized as follows. Section II defines the collision avoidance problem. Section III provides a new

formulation of a guidance vector field that accomplishes collision avoidance. Section IV combines these vector fields

5

Fig. 1 Snapshot at the initial planning time ti illustrating the coordinate systems and the state variables used

in the collision avoidance problem.

appropriately in order to yield a feasible controller that satisfies the collision avoidance problem requirements. Section

V illustrates and discusses numerical simulations. Finally, Section VI provides concluding remarks.

II. Formulation of the Collision Avoidance Problem

This section provides the system state space model and the mathematical formulation of the collision avoidance

problem. As in previous works [1, 32], the UAV is assumed to have access to low-level control systems capable to

provide attitude stabilization, altitude-hold and velocity tracking accurately, such that the omission of these control

dynamics would not result in significant performance errors. Therefore, consider a UAV modeled as a point-mass

system flying in a horizontal plane with constant forward speed V and direction ψ, relative to the x-axis of the inertial

frame of motion which is fixed to the plane, as illustrated in Figure 1. The UAV’s full state is expressed by its position

p := [x, y]T ∈ R2 and orientation ψ ∈ S1. The equations of motion are given by the following kinematic model:

Ûx(t) = V cosψ(t), x(ti) = xi,

Ûy(t) = V sinψ(t), y(ti) = yi,

Ûψ(t) = u(t), ψ(ti) = ψi,

(1)

where u is the steering rate input and [xi, yi]T ∈ R2 and ψi ∈ S1 are the vehicle position and heading, respectively, at

the initial planning time ti . The trajectory of the UAV obtained by integrating system (1) forward in time is denoted by

ξ[ti ,T] : [ti,T] → R2, where T > ti is the free final time and ξ[ti ,T] := {p(t) : t ∈ [ti,T]}.

Further, assume that the UAV is initially traveling at constant speed according to a high-level planning module that

6

provides a constant desired steering angle, denoted by ψd ∈ [−π, π], and therefore ψi = ψd. This assumption implies

only that, for the planning period, the UAV’s goal is to maintain the same heading and any deviation from a predefined

path would be reduced by the high-level planner, which is outside the scope of this paper.

The UAV is moving in an environment that may be populated with static and moving obstacles that can represent

no-fly zones, other UAVs, airplanes, or physical obstacles. Thus, for planning purposes, assume that each obstacle is

bounded by a circular region of a specific radius ro > 0, determined by the largest obstacle dimension. If the user

desires to incorporate vehicle size and shape into the planning procedure, the collision avoidance maneuvers may be

planned in the obstacle configuration space, as defined in [33], by using augmented obstacle boundaries and the same

point-mass model for the UAV. Moreover, assume that the UAV has a limited sensing range modeled as a circular

region of radius rs, determined by its sensor capabilities, centered at the UAV’s geometric center. As such, the UAV

sensing region at time t may be modeled in accordance with its sensing range:

S(t) = {p ∈ R2 : ‖p(t) − p‖ ≤ rs}, (2)

Due to the sensor limitations, the obstacles may be viewed as pop-up motion constraints, since they are registered by

the UAV only when they enter the circular sensing region. Let J(t) = {1,2, . . . ,n(t)} be the index set for all registered

obstacles at time t, where n(t) is the total number of obstacles found. Then, the set of all inadmissible UAV positions

is defined by:

O(t) = {p ∈ R2 : ‖p j
o(t) − p‖ ≤ r

j
o, ∀ j ∈ J(t)}, (3)

where p
j
o(t) := [x j

o(t), y jo(t)]T ∈ S(t) is the position of obstacle j inside the sensing region and r
j
o is the obstacle radius.

Therefore, the UAV motion is constrained to the free space inside the sensing region S(t), which is defined as the set

of all admissible UAV positions, i.e.,

F (t) = S(t) ∩ O(t)C. (4)

The sensing region and the admissible and inadmissible sets are illustrated in Figure 2. The collision avoidance problem

is stated as follows.

Problem 1. Consider a UAV whose equations of motion are given in (1), with a sensing radius rs, moving through

an environment with static and moving obstacles, such that O(t) , ∅. Find the steering rate input u(t), such that the

trajectory generated by (1), ξ[ti ,T], avoids collisions with any registered obstacles, while, at the same time, maintains

7

Fig. 2 Diagram illustrating the spaces involved in the collision avoidance problem.

the same course that it had before initiating the collision avoidance procedure, i.e.,

ξ[ti ,T] ∈ F (t), ∀t ∈ [ti,T] and ψ(T) = ψd .

To solve this problem, a novel approach that determines inputs through a special class of vector fields that ensure

collision avoidance and their corresponding controllers is proposed in the following sections. Note that the approach

described in Section III may be used for a different system model and as such will be presented generally for any

autonomous agent.

III. Collision Avoidance Vector Fields

Consider an autonomous agent moving according to system (1) around an obstacle of radius ro. Since collision

avoidance requires a study of the relative motion between the agent and the obstacle, two coordinate frames are

considered: one inertial frame, fixed to a point in space and determined by the unit vectors ex and ey; and one moving

frame, fixed at the obstacle geometric center and determined by unit vectors er and eθ , as illustrated in Figure 1. Note,

that in the moving frame, the direction of er is identical with the line-of-sight direction between the obstacle and the

agent.

To avoid collision with an obstacle, the agent’s trajectory must not penetrate its boundary at any point in time. This

requirement is enforced by ensuring that the agent’s velocity along the line-of-sight to the obstacle is non-negative

at the obstacle boundary. A guidance law that achieves this behavior is developed using a vector field with radial

8

velocities that are non-negative at the obstacle boundary. The concept of a collision avoidance vector field (CAVF) is

defined next.

Definition III.1. The collision avoidance vector field of a circular obstacle of radius ro centered at po ∈ R2 and moving

with velocity Vo is a spatially dependent vector field h(·) : R2 → R2 with the property that

∃ α ≥ 0 such that 〈h(pr), er〉 ≥ α ≥ 〈Vo, er〉, ∀pr ∈ R2 for which ‖ pr − po‖ = ro. (5)

Any agent whose equations of motions determine a vector field that matches the collision avoidance vector field

given in Definition III.1 will move away from the obstacle boundary in an attempt to avoid collisions with the particular

obstacle.

A. Local Collision Avoidance Vector Field for a Single Obstacle

This section proposes an approach for generating parametrized collision avoidance vector fields around one static

obstacle when the agent is supposed to move with constant speed, V , along a constant direction, determined by ψd .

Consider a static obstacle of radius ro located at po = [xo, yo]T ∈ S(t). Let hr (p) = [Ûr, r Ûθ]T be a spatially dependent

vector field in the relative frame, where p ∈ R2 is a point in space, r = ‖ p − po‖, and θ ∈ S1 is the angle that the

line-of-sight between points p and po makes with the inertial x-axis of a coordinate system centered at po, as illustrated

in Figure 1. Since the obstacle is stationary, collision avoidance is achieved if (5) is satisfied for Vo = 0, which implies

that Ûr ≥ 0 at the obstacle boundary r = ro. Therefore, consider the following system:

Ûr = −λ(r, θ)V cos β,

Ûθ = − sgn(sin β)1
r

√
V2 − Ûr2,

(6)

where V is the agent’s speed and λ(·, ·) : [ro,∞]×R→ [0,1] is a continuous function with the property that λ(ri, θ) = 1

and λ(ro, θ) ≥ 0, ∀θ ∈ S1. Note that, since the obstacle is not moving, Vo = 0 and Vb is identical to V , as seen in

Figure 1 β = ∠([cosψd, sinψd]T ,−er) ∈ [−π, π] is the angle between the desired trajectory direction in the inertial

frame ψd and the line-of-sight to the obstacle. The collision avoidance vector field for a static obstacle in the inertial

frame is denoted by hs(p) and defined through the following frame transformation of the relative collision avoidance

vector field:

hs(p) = R(−θ)hr (p), (7)

9

where R(−θ) is the standard rotation matrix:

R(−θ) =



cos(θ) sin(θ)

− sin(θ) cos(θ)



. (8)

Next, define λ(r, θ) as a velocity modulation function that is described by the continuous function (9), i.e.,

λ(r, θ) =




− 2
π

(
ϑ(θ,ψd)(1 − γ(r)) − π

2

)
, if ro ≤ r ≤ ri, ϑ(θ,ψd) ∈ (0, π/2]

γ(r), if ro ≤ r ≤ ri, ϑ(θ,ψd) ∈ (π/2, π] ∪ [−π,−π/2)

+
2
π

(
ϑ(θ,ψd)(1 − γ(r)) + π

2

)
, if ro ≤ r ≤ ri, ϑ(θ,ψd) ∈ [−π/2,0]

1, if ri < r, θ ∈ S1,

(9)

where

γ(r) =
a
[
(r − ri) − (ro − r)

]

√
(r − ri)2(ro − r)2 +

[
2a(2r − ri − ro)

]2
+ 0.5 (10)

and

ϑ(θ,ψd) = atan2(sin(θ − ψd), cos(θ − ψd)) ∈ [−π, π]. (11)

The form of γ(r) was inspired by the sigmoid-type functions with the algebraic form x√
1+x2

, where x is replaced with a

function of r that satisfies lim
r→ro

x(r) = −∞ and lim
r→ri

x(r) = ∞. With minor modifications to this sigmoid function, the

desired properties for modulating the approach velocity are obtained such that λ(ri, θ) = 1 and λ(ro, θ) ≥ 0, ∀ θ ∈ S1.

Parameters a > 0 and ri ∈ (ro, rs) can be chosen such that the vector field smoothness and reactivity are influenced

to achieve different motion patterns. In other words, the distance at which the CAVF becomes active is determined

by ri and the transition between obstacle-free motion and collision avoidance is performed more abruptly or gradually

depending on the choice of parameter a, as seen in Figure 3. Note further that ri defines a region of influence around

the obstacle and any agent inside this region of influence is considered to perform collision avoidance maneuvers.

These parameters affect the behavior of λ and consequently of the steering law. Note that ri acts as a compressive or

extensive factor of the collision avoidance trajectory, whereas a determines the behavior of a sigmoid function, similar

to the hyperbolic tangent. Thus, if ri is large, the agent has more space to steer around the obstacle and the generated

maneuver is smoother than in the case of a smaller ri . In contrast, if a is large, the agent performs a more aggressive

maneuver than in the case of a smaller a. The choice of parameters is left to the user’s desired application and agent

10

behavior.

Furthermore, function λ is used to generate a vector field that becomes tangential at the obstacle’s boundary and

that circulates around the obstacle while trying to maintain the original heading ψd . As such, the provided function λ

artificially scales the vector field as r → ro, since γ(ro) = 0 and λ(ro, θ) ≥ 0 implies that Ûr ≥ 0 at r = ro whenever

the agent approaches the obstacle. Therefore, α = 0 satisfies (5) and the equations of motion given in (7) describe a

CAVF. Moreover, circulation is achieved through a smooth transition, determined by λ, from obstacle-free motion to

tangential motion that reverses direction as the obstacle is cleared. An obstacle is considered cleared when the agent

velocity points away from the obstacle, 〈V ,−er〉 < 0, where V is the agent velocity vector. One sample vector field is

illustrated in Figure 5, where ψd = 0.

Note that the CAVF for a single static obstacle given in (7) presents a singularity whenever sin β = 0. This

singularity defines a switching line, illustrated in Figure 5 by the line determined by y = 0. The switching line

represents the set of agent states from which two actions may be performed to avoid collisions and, as a result, two

equivalent solutions to the collision avoidance problem exist. This singularity appears due to the sgn(·) function, which

is discontinuous at 0. It will be shown in the following sections how this issue may be resolved practically. Further,

note that the agent’s speed does not influence the property given in (5) and, as such, may be changed throughout the

agent’s motion without compromising the collision avoidance properties of the system.

Next, the results presented for a static obstacle are extended to the case when the obstacle is moving with constant

velocity, denoted by Vo = Vo[cos θo, sin θo]T , where Vo > 0 and θo ∈ S1 are the obstacle’s speed and heading angle

with respect to the inertial x-axis, respectively. The constant-velocity assumption is reasonable for the problem of

local collision avoidance presented in this paper, since obstacles are considered only as soon as they appear in the

agent’s sensing radius, which may be too restrictive for avoiding collisions. This limitation is determined by the agent’s

hardware and is expected in realistic situations when full knowledge of the environment is not available. Moreover, the

obstacles are modeled as noncooperative agents which also supports the assumption that their speed and direction are

constant for the duration of the collision avoidance maneuver.

To perform collision avoidance with a moving obstacle, the agent should not reach the obstacle’s boundary with

a radial speed smaller than |〈Vo, er〉|. Therefore, we propose an approach that generates a similar parametrized

CAVF around the moving obstacle, instantaneously in time, while trying to maintain as much as possible the original

vector field direction, ψd, in the inertial frame. Since the parametrized CAVF of system (7) generates a zero radial

velocity, applying this in the moving frame leads to a radial speed of |〈Vo, er〉| in the inertial frame, thus satisfying the

requirement for collision avoidance.

Let Vb be the agent’s velocity in the relative moving frame, as illustrated in Figure 1. To generate a similar

11

-5 0 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

y

(a) a = 0.1

-5 0 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
(b) a = 0.3

-5 0 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

y

(c) a = 3

-5 0 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

y

(d) a = 10

Fig. 3 Snapshots of a static obstacle CAVF, obtained for varying a values, ψd = 0, ro = 1, ri = 5

parametrized CAVF, bVb must have the same form as hs(p) from (7). Therefore, bVb = [Ûr, r Ûθ]T , with

Ûr = −λ(r, θ)Vb cos β

Ûθ = − sgn(sin β)1
r

√
V2
b
− Ûr2,

(12)

where β = ∠([cosψb, sinψb]T ,−er) = π−(θ−ψb) as seen in Figure 1. To maintain continuity between the obstacle-free

12

Fig. 4 Contours of λ(r, θ), when a = 1, ψd =

0, ro = 1, ri = 5

-5 0 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

y

Fig. 5 Snapshot of a static obstacle CAVF, ob-

tained using λ(r, θ) with a = 1, ψd = 0, ro = 1, ri =

5 in Eq. 7

vector field and the collision avoidance vector field, it is necessary to have

ψb = atan2(V sinψd − Vo sin θo, V cosψd − Vo cos θo), (13)

since the corresponding equations of motion to (12) in the inertial frame are obtained from iV = iVb +
iVo. The

relative heading ψb takes into account the obstacle’s linear motion and preserves the agent’s heading in the inertial

frame at the interface between obstacle-free motion and collision avoidance.

Next assume that the agent’s speed in the inertial frame is constant, denoted by V . Then, the magnitude of the

relative velocity, Vb, is found by solving: ‖iVb +
iVo‖ = V . As such, system (12) may be implemented and the CAVF

for a moving obstacle, hd(·), is

hd(p) = R(−θ) bVb +
iVo, (14)

where R(−θ) is the standard rotation matrix, defined in (8).

If perfect tracking of the CAVF (14) is achieved, then Ûr ≥ 0 in the moving frame or 〈hd(p), er〉 ≥ 〈Vo, er〉 whenever

r = ro, which implies that the particle will not penetrate the obstacle boundary, thus avoiding collision. A sample

vector field is illustrated in Figure 6 for a moving obstacle. The generated CAVF is rotated around the obstacle with

angle ψb , which depends on both the obstacle’s and agent’s velocity, in order to allow for maneuvers that align with

the obstacle motion and still return to the original heading ψd . Moreover, the CAVF presents strictly positive radial

speed almost everywhere on the obstacle boundary to avoid the possible collision. As a result, the CAVF guides an

13

agent found near the obstacle’s boundary along its direction of motion, by steering it almost in the same direction as

the obstacle’s velocity to avoid the immediate collision, after which the CAVF steers the agent around the obstacle to

return to the original course ψd .

Fig. 6 An instantaneous snapshot of the moving obstacle CAVF at t = 0, in the inertial frame, obtained using

λ(r, θ) with a = 1, ψd = 0, ro = 0.3, ri = 4, Vo = 0.9, θo = 2.35 in Eq. (14). The thicker vector represents the

obstacle velocity vector, whereas the thinner arrows show the scalar radii of the obstacle boundary and region

of influence.

The CAVF methodology is able to provide motion plans for an autonomous agent with guarantees on collision

avoidance for static obstacles and obstacles moving with constant velocity. In comparison to the commonly used

potential field, vector field, or navigation function techniques for collision avoidance, the CAVF is constructed directly

from agent kinematics and is able to provide constant speed plans without post-processing. In contradistinction, current

dynamical system approaches or vector field techniques, like the fluid-flow fields resulting from the application of the

circle theorem [25, 30, 31], or simple distance-based potential functions [19], provide motion plans that may not take

into account agent kinematics or speed constraints without trajectory planning or heuristics. As such, the CAVF is

constructed in accordance with the aim of control, rather than only providing a collision-free geometric path.

B. Mixed Collision Avoidance Vector Fields for Multiple Obstacles

Suppose next, that multiple obstacles are identified by the agent’s sensors and that there is a minimum separation

distance between them denoted by δ. Furthermore, suppose that the collision avoidance parameters are chosen such

that the obstacles’ radii of influence lead to overlapping CAVFs. In this case, following the streamlines of one CAVF

may lead to collision with other obstacles intersecting them. As such, the CAVFs must be mixed in a judicious way so

that collision avoidance is still guaranteed. A mixed CAVF is now defined with respect to multiple obstacles.

14

Definition III.2. Suppose there are n obstacles identified by the index set J(t) = {1,2, . . . ,n(t)} with overlapping

radii of influence, where each one is located at p j
o ∈ S(t) and has radius r

j
o > 0, for j ∈ J(t) such that ‖p j

o − pio‖ >

r
j
o + rio + δ, ∀ j, i ∈ J(t), with j , i. Their mixed collision avoidance vector field is defined as a spatially dependent

vector field h(·) : R2 → R
2 with the property that for all j ∈ J(t) there exists α j ≥ 0 such that 〈h(pr), e jr〉 ≥ α j ,

∀pr ∈ R2 that satisfies ‖pr − p
j
o‖ = r

j
o.

To generate one such CAVF, a method that mixes CAVFs by computing their weighted sum, while preserving

magnitude, is proposed in Algorithm 1. The weights associated with each vector field, denoted by w
j , are determined

by the agent’s distance to each obstacle in J(t), which is denoted in Algorithm 1 by ∆j , ∀ j ∈ J(t). The idea behind

this proximity metric comes from the fact that the agent may have to switch between two different motion plans or

follow a combination of the two: its obstacle-free motion plan or the collision avoidance maneuver proposed by an

isolated CAVF, depending on how close it is to a particular obstacle boundary. As such, if the agent is outside any

obstacle’s radius of influence, it will continue its original motion plan without any influence from the CAVFs. As the

agent enters the radius of influence of one or more obstacles and approaches the obstacles’ boundaries, it must perform

collision avoidance with respect to all influencing obstacles. Therefore, the proximity metric maps the agent’s position

into the weight range set [0,1], where a zero weight value is associated with obstacle-free motion whenever the agent

is outside the obstacle radius of influence, whereas a weight value of one is associated with tangential motion around

a single isolated obstacle whenever the agent is at that particular obstacle’s boundary. This mapping is given in lines

2-13 of Algorithm 1. Here, we assume that obstacles cannot overlap.

Next, consider the case when the agent is closest to obstacle k ∈ J(t). Then, let the value of the weight associated

with that obstacle be w
k ≥ w

j, ∀ j ∈ J(t). If this weight value is within a predefined weight threshold denoted ǫm,

w
k > ǫm, where 0 ≪ ǫm < 1, the mixed CAVF will be identical to the CAVF of obstacle k; otherwise, all weights

are normalized. This procedure is illustrated in lines 14-24 of Algorithm 1 and is required to perform the avoidance

maneuver only with respect to one obstacle, since otherwise, mixing CAVFs may not guarantee collision avoidance.

Proposition III.1. Algorithm 1 generates a mixed CAVF.

Proof. Consider n(t) obstacles with overlapping radii of influence determined by the index set J(t) = {1,2, . . . ,n(t)}.

Suppose that p ∈ S(t) is such that ‖p − p
j
o‖ ≤ r

j

i
, ∀ j ∈ J(t). Whenever ‖p − pko‖ = rko for some k ∈ J(t), applying

Algorithm 1 will result in w
k
= 1 and w

j
= 0, ∀ j , k, which implies that h(p) = hk(p). Therefore, by Definition III.2,

h(p) is a mixed CAVF. �

The application of Algorithm 1 generates a mixed CAVF that presents n singularities or switching lines, as seen in

the sample mixed CAVF illustrated in Figure 7. These switching lines suggest only that the agent does not have enough

information on which direction should move, due to the symmetry of the obstacles and the existence of two feasible

15

Algorithm 1 Mixing Collision Avoidance Vector Fields

Inputs: r, V, ψd, r
j
o, V

j
o , θ

j
o, a j, r

j

i
∀ j ∈ J(t)

Outputs: w
j , h(p)

1: σ∆ = 0
2: for each obstacle j do

3: Compute h j (p) using (7) or (14)

4: Compute ∆j =

{
r − r

j
o, if r − r

j

i
< 0

−1, otherwise.

5: σ∆ = σ∆ + ∆
j (∆j > 0)

6: for each obstacle j do

7: if σ∆ = ∆
j then

8: w
j
= 1

9: else

10: if ∆j > 0 then

11: w
j
= 1 − ∆j/σ∆

12: else

13: w
j
= 0

14: [wk, k] = maxj w
j

15: sumw =
∑

j w
j

16: if wk > ǫm then

17: w
j
= 0, ∀ j , k

18: w
k
= 1

19: else

20: if sumw = 0 then

21: w
j
= 1, ∀ j

22: else

23: for each weight j do

24: w
j
= w

j/sumw

25: h(p) = ∑
j w

jh j (p)

16

Fig. 7 An instantaneous snapshot of the mixed obstacles CAVF at t = 0, in the inertial frame, for two static

obstacles and one moving obstacle, with the following parameters: a = 1, ro = 0.3, ri = 4, Vo = 0.9, θo = π/2.

The thicker vector represents the obstacle velocity vector, while the thinner arrows show the scalar radii of the

obstacle boundary and region of influence.

collision avoidance maneuvers. In these situations, the flight control system may choose one of the two equivalent

solutions to the collision avoidance problem, that is, to turn left or right, by applying a small user-defined correction

that forces the agent to follow the CAVF on one side of the switching line. More details about the form of this practical

control correction are provided in the next section.

Moreover, when multiple moving obstacles have overlapping radii of influence, Algorithm 1 generates a mixed

CAVF that may be vanishing at certain configurations due to the vector field mixture. These configurations, however,

are guaranteed to be away from the obstacle boundary by the application of the weight threshold ǫm which induces

a single-authority region around the obstacle for its respective collision avoidance maneuvers. Furthermore, these

situations are only temporary since they would result from perfectly symmetric configurations of the obstacles with

respect to the agent and its obstacle-free motion plan. As such, the UAV will still be guaranteed to perform collision

avoidance under these conditions.

IV. UAV Vector Field Controller

This section presents an approach for using the CAVFs from Section III to generate a solution to the collision

avoidance problem described in Section II. The approach will be presented incrementally. First we demonstrate how

the local CAVF for a stationary obstacle can be converted into a steering control input. Then, we show how the CAVF

for a moving obstacle extends naturally the method proposed for a stationary obstacle, using the relative kinematics

between the UAV and the obstacle. Lastly, we show how a simple tracking controller may be used for the mixed CAVFs

17

while providing at the same time convergence guarantees to the desired collision avoidance maneuvers.

A. Collision Avoidance Controller for a Single Obstacle

Consider a UAV moving around a static obstacle of radius ro, located at po = [xo, yo]T . Suppose that the UAV

starts performing the collision avoidance maneuver when it is at a distance ri > ro from the obstacle geometric center,

that is, ‖p(ti) − po‖ = ri . Assume that the UAV’s heading matches the desired heading ψd, if it is at a distance greater

than ri , and no steering is required, which implies u(t) = 0. Converting the equations of motion (1) of a UAV into polar

coordinates results in the following form:

Ûr(t) = −V cos φ(t), r(ti) = ri,

Ûθ(t) = − V

r(t) sin φ(t), θ(ti) = atan2 (y(ti) − yo, x(ti) − xo),

Ûφ(t) = us(t), φ(ti) = φi,

(15)

where r(t) = ‖ p(t) − po‖ is the relative distance between the UAV and the obstacle geometric center, θ(t) ∈ S1, is the

angle between the inertial x-axis and the line-of-sight to the obstacle, φ(t) ∈ S1, is the angle between the line-of-sight

and the current agent velocity vector, and us(t) ∈ S1 is the new control input. By inspecting Figure 1,

β(t) = ∠(iV (ti),−er(t)), ∀t ∈ [ti, t f], (16)

where t f > ti is the time at which the UAV exits the region of influence of the considered obstacle. Therefore, the

following initial condition for φ(t) is obtained: φi = β(ti) = ∠(iV (ti),−er(ti)). This initial condition guarantees

continuity at the maneuver transfer between the high-level plan and the low-level avoidance of the CAVF by making

sure that the collision avoidance velocity vector is aligned with the obstacle-free velocity vector. Next, to determine

the control input us(t) required to achieve the behavior of (7), consider the following relation, which results from the

equivalency between system (7) and system (15):

V cos φ(t) = λ(r, θ)V cos β(t). (17)

Differentiating (17) with respect to time and using the definition of β provided in (16) yields

Ûφ(t) =
Ûλ(t) cos

(
θ(t) − ψd

)
− λ(t) Ûθ(t) sin

(
θ(t) − ψd

)

sin φ(t) . (18)

Here, the notation λ(t) denotes the implicit time-dependence of λ and Ûλ(t) denotes the total derivative of λ; in particular,

λ(t) := λ(r(t), θ(t)) and Ûλ(t) := ∂λ
∂r

dr
dt
+
∂λ
∂θ

dθ
dt

and, since Ûφ(t) = us(t), the control input must be equal to the right hand

18

side of (18). Moreover, Ûφ(t) is singular whenever sin φ(t) = 0, corresponding to the case when the UAV is moving

along the line-of-sight to the obstacle and may avoid collision by either turning left or right. As such, the control input

that guarantees collision avoidance exists but it is not unique. Hence a small user-defined correction may be performed

whenever φ(t) = kπ, where k ∈ Z, by replacing 1/sin φ(t) in (18) with kϑ = 1/sin ϑ, where 0 < |ϑ| ≪ π/2. This

change corresponds to a small deviation from the current path, which triggers the collision avoidance on one side or

another of the obstacle. Thus, we have the following control input for system (15):

us(t) =




kϑ
(Ûλ(t) cos

(
θ(t) − ψd

)
− λ(t) Ûθ(t) sin

(
θ(t) − ψd

))
, if φ(t) = kπ

1

sin φ(t)
(Ûλ(t) cos

(
θ(t) − ψd

)
− λ(t) Ûθ(t) sin

(
θ(t) − ψd

))
, otherwise.

(19)

The control input (19) may be mapped into inertial coordinates by a simple transformation between system (1) and

system (15) given by bV (t) = R(θ(t))iV (t). From this transformation, we have the following relation:

V cosψ(t) = −V cos(φ(t) + θ(t)),

V sinψ(t) = −V sin(φ(t) + θ(t)),

from which, the inertial control input for collision avoidance is

u(t) = Ûφ(t) + Ûθ(t) = us(t) + Ûθ(t). (20)

Therefore, if the initial conditions of system (1) are such that (17) is satisfied, then the application of (20) generates paths

that follow perfectly the streamlines of the static obstacle CAVF, as illustrated in Figure 8. The resulting trajectories

show how the UAV should maneuver around the obstacle to avoid collision and return to its original heading course.

Note also that the farther the agent moves away from the switching line, the less it is required to maneuver in order to

avoid collision, as can be observed in the top and bottom trajectories.

Next, consider a UAV located near a moving obstacle. Suppose, as before, that the UAV starts performing the

collision avoidance maneuver when it reaches a distance ri from the obstacle geometric center. Converting system (1)

into a relative polar coordinate frame yields

Ûr(t) = −Vb(t) cos φ(t), r(ti) = ri,

Ûθ(t) = −Vb(t)
r(t) sin φ(t), θ(ti) = atan2 (y(ti) − yo, x(ti) − xo),

Ûφ(t) = ud(t), φ(ti) = φi,

(21)

where Vb(t) is the UAV speed in the relative frame of motion, which satisfies the following set of equations obtained

19

Fig. 8 System (1) trajectories (blue) generated using (20), for a CAVF (red vector field) with the following

parameters a = 1, ri = 3, ro = 1, ψd = 0.

from mapping system (21) into the inertial frame and equating it to system (1):

V cosψ(t) = −Vb(t) cos(φ(t) + θ(t)) + Vo cos θo,

V sinψ(t) = −Vb(t) sin(φ(t) + θ(t)) + Vo sin θo .
(22)

To maintain continuity at the boundary of the CAVF, between the collision avoidance maneuver and obstacle-free

motion, the UAV’s velocity must satisfy (22) and, as such, the initial condition for φ(t) is

φi = atan2
(
Vo sin θo − V sinψd, Vo cos θo − V cosψd

)
− θ(ti). (23)

Next, to determine the control input ud(t) required to achieve similar motion patterns that CAVF (14) provides, the

following relation, which results from the equivalency between system (21) and system (12), is considered:

Vb(t) cos φ(t) = λ(r, θ)Vb(t) cos β(t), (24)

where β(t) = ∠(iVb(ti),−er(t)). Differentiating (24) with respect to time and using the definition of β given in (16),

yields

Ûφ(t) =
Ûλ(t) cos

(
θ(t) − ψb

)
− λ(t) Ûθ(t) sin

(
θ(t) − ψb

)

sin φ(t) . (25)

20

As previously noted, the right-hand side of (25) is not well-defined whenever φ(t) = kπ, for k ∈ Z. Therefore, the

following non-singular control input may be used to generate paths that follow the streamlines of the dynamic CAVF,

as long as the initial conditions agree with (23):

ud(t) =




kϑ
(Ûλ(t) cos

(
θ(t) − ψb

)
− λ(t) Ûθ(t) sin

(
θ(t) − ψb

))
, if φ(t) = kπ

1

sin φ(t)
(Ûλ(t) cos

(
θ(t) − ψb

)
− λ(t) Ûθ(t) sin

(
θ(t) − ψb

))
, otherwise.

(26)

Further, to have continuity between the control input for obstacle-free motion and for collision avoidance, the

agent’s desired heading in the moving frame must compensate for the obstacle motion. As such, making the direction

of agent’s motion in the moving frame correspond to

ψb = φi + θ(ti) = atan2(Vo sin θo − V sinψd,Vo cos θo − V cosψd), (27)

achieves the required continuity between ud(t) at r(t) = ri and u(t) at r(t) > ri .

As presented in the Appendix VII.A, the connection between the inertial and polar equations of motion is exploited

to obtain the following relation for the inertial control input that leads to collision avoidance of moving obstacles:

u(t) = Ûψ =(ud(t) + Ûθ)
V2
b
− VbVo cos(φ + θ − θo)

V2
− ÛVb

Vo sin(φ + θ − θo)
V2

, (28)

where

ÛVb =

(
1 +

V2
o

VVb

sin(φ + θ − θo) sin(ψ − θo)
)−1 ((

ud(t) + Ûθ
)Vo

V

(
Vb − Vo cos(φ + θ − θo)

)
sin(ψ − θo)

)
. (29)

Proposition IV.1. Equation (29) is non singular if the UAV speed is greater than the obstacle speed, i.e., V > Vo.

Proof. The evolution of the agent’s speed in the moving frame is singular whenever the expression 1+ V 2
o

VVb
sin(φ+ θ −

θo) sin(ψ − θo) tends to 0. This expression can be equivalently written as

(
V

Vo

) (
Vb

Vo

)
= − sin (φ + θ − θo) sin (θo − ψ). (30)

Moreover, applying the sine law in the triangle formed by the vector addition of Vb and Vo, the following relation is

obtained:

Vb

sin (θo − ψ)
=

V

sin (φ + θ − θo)
, (31)

21

-5 0 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

y

 0

 0 0

 0 2 2

(a) t ∈ [0,2] sec, τ = 0 sec

-5 -4 -3 -2 -1 0 1 2 3 4

x

-4

-3

-2

-1

0

1

2

3

4

5

y 0

 0
 2 2 2 2

 4

 4

(b) t ∈ [2,4] sec, τ = 2 sec

-6 -4 -2 0 2 4

x

-3

-2

-1

0

1

2

3

4

5

6

y

 0

 0
 2 2

 4

 4 4

 4
 6

 6

(c) t ∈ [4,6] sec, τ = 4 sec

-6 -5 -4 -3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

4

5

6

y

 0

 0
 2 2

 4

 4

 6

 6 6

 6
 8

 8

(d) t ∈ [6,8] sec, τ = 6 sec

-7 -6 -5 -4 -3 -2 -1 0 1 2

x

-2

-1

0

1

2

3

4

5

6

7

y

 0

 0
 2 2

 4

 4

 6

 6

 8

 8 8

 8

 10

 10

(e) t ∈ [8,10] sec, τ = 8 sec

-8 -6 -4 -2 0 2

x

-1

0

1

2

3

4

5

6

7

8

y

 0

 0
 2 2

 4

 4

 6

 6

 8

 8

 10

 10 10

 10 11

 11

(f) t ∈ [10,11] sec, τ = 10 sec

Fig. 9 Trajectories of system (1) (blue) generated using input u(t) defined in (28), for a CAVF (green vector

field) with the following parameters a = 1, ri = 3, ψd = 0, Vo = 0.9, θo = 2.35. The CAVF corresponds to the

vector field generated at the given times, denoted by τ.

which, in view of (30), results in a parametric condition that leads to the singularity

(
V

Vo

)2

= sin2 (φ + θ − θo). (32)

Condition (32) will not be true as long as V > Vo. �

Proposition IV.1 shows the condition under which the UAV control input (28) may be found. Therefore, if the initial

conditions of system (1) are such that (24) is satisfied, then the application of (28) will generate paths that follow the

streamlines of the dynamic obstacle CAVF, as illustrated in the sample simulation trials from Figure 9. It is important

to note that, in the case V ≤ Vo, the presented approach is not able to guarantee collision avoidance since there may

be situations with imminent collisions. One such situation may be described by an agent-obstacle configuration where

the agent is at the obstacle’s boundary in the obstacle’s path. In order to avoid collision, the agent would have to move

along the obstacle path, however, since the agent’s speed is lower than the obstacle’s speed, the agent would not be able

to remain outside the obstacle boundary. To remedy such situations another module would be required on top of the

22

collision avoidance approach to identify these imminent collision zones and to artificially bloat the obstacles such that

these imminent collision zones are incorporated within the obstacle boundary.

B. Collision Avoidance Controller for Multiple Obstacles

The previous controllers, given in (20) and (28), may be used in the mixing process presented in Algorithm 1 to

determine a controller that follows the streamlines of the mixed CAVF, as long as the correct initial conditions are used.

Proposition IV.2. Suppose there are n obstacles identified by the index set J(t) = {1,2, . . . ,n(t)} with overlapping

radii of influence. Then, an agent following the streamlines of the corresponding mixed CAVF provided by Algorithm

1, may use the following control input:

um(t) =
∑

j∈J(t)
w

ju j (t), (33)

where u j(t) is the control input for the j-th obstacle, which may be of form (20) or (28).

Proof. See Appendix A. �

As noted in Section III, the mixed CAVF presents discontinuities resulting from crossing different regions of

influence or the weight threshold imposed by Algorithm 1. Therefore, applying (33) to system (1) will not necessarily

result in trajectories that follow the streamlines of the mixed CAVF. As such, an UAV moving around multiple obstacles

will require a tracking controller that can achieve convergence to the mixed CAVF in a short amount of time. Specifically,

depending on the minimum separation between obstacles, the tracking controller has to guarantee convergence to the

vector field within enough time to clear the separation, free from any collision.

Consider the following tracking controller to be used in the case of a UAV moving around multiple obstacles with

overlapping regions of influence:

ut (t) = −K(ψ(t) − ψca(t)) + um(t), (34)

where K is a proportional gain that will be used to enforce tracking convergence, ψca(t) is the mixed CAVF heading

and um(t) is the controller defined in (33).

Proposition IV.3. For a given error tolerance eψ in UAV heading convergence to the mixed CAVF, where 0 < |eψ | ≪

π/2, and a minimum separation distance between obstacles δ > 0, the proportional gain

K =
2V(log π − log eψ)

δ
(35)

guarantees that controller ut (t) defined in (34) results in CAVF tracking.

23

-2 -1 0 1 2 3 4 5 6 7

x

-4

-3

-2

-1

0

1

2

3

4

5

6

y

Fig. 10 Application of the tracking controller (34) to system (1), where the gain K depends on the separation

distance, δ, between two static obstacles with overlapping radii of influence, r1
i

and r2
i
.

Proof. See Appendix VII.C. �

Proposition IV.3 relates the gain of the tracking controller with a desired heading error tolerance and a desired

distance within which convergence is achieved. Therefore, picking a gain K that satisfies (47) will guarantee tracking

within the given specifications.

An illustrative example is shown in Figure 10, in which two obstacles with overlapping radii of influence are

considered and the proposed tracking controller is able to follow the direction imposed by the mixed CAVF obtained

with Algorithm 1.

V. Simulation Results

This section uses three simulation scenarios with real world applications to analyze the performance of the

proposed methodology for collision avoidance. The first scenario is a UAV moving through an environment with

multiple scattered static obstacles. This scenario may represent, for example, a UAV moving at a constant height

through a forest in which every tree is modeled as a static cylinder. In the second scenario, a UAV moves through an

environment populated with multiple moving obstacles, similar to a busy airspace populated with other UAVs. Lastly,

a UAV navigates through a complex environment, populated by both static and moving obstacles.

The UAV model used for these simulations assumes constant speed throughout all of its maneuvers. This assumption

can be relaxed since the turning rate control input required to perform collision avoidance (19) and (26) is not directly

dependent on the UAV’s speed. Therefore, one may use a speed controller in parallel with the steering controllers

24

presented herein to incorporate turning rate constraints. The speed controller must, however, take into account the

obstacles’ velocities and it must be able to provide enough actuation for collision avoidance to satisfy the requirement

that the UAV’s speed must be greater than the obstacles’ speed, as presented in Section IV.

A. Collision Avoidance Scenario 1: Navigation through a densely populated workspace with static obstacles

Consider a UAV modeled by system (1) moving through a workspace with multiple static obstacles. In a realistic

setting, for example, this workspace can represent a small forest patch that contains 12 trees, where each tree is modeled

as a static circular obstacle if the UAV is moving at a constant altitude. The UAV’s control objective is to pass through

the workspace while maintaining an initial Eastward direction, ψd = 0, and while avoiding collisions. To this end, the

proposed methodology for creating a CAVF and tracking its streamlines is applied.

The results of the simulation are illustrated in Figure 12 for the following UAV initial conditions and parameters,

respectively: rs = 12 m, xi = 0, yi = 1.3, ψi = ψd = 0, V = 1 m/s, a = 1 and r
j

i
= 2 m, ∀ j ∈ J(t) = {1,2, . . . ,12}.

The trajectory was obtained using the control input presented in (34) with a gain K = 25, by tracking the mixed CAVF

illustrated in Figure 11. The gain was chosen such that it satisfies the condition for the minimum separation between

obstacles, which in the given example is δ = 0.516, and for the heading convergence error eψ = 0.01. The mixed CAVF

was obtained by applying Algorithm 1. As the agent moves through the forest patch, it has to adapt to its workspace and

switch from avoiding one obstacle to another. These switches can be seen by the short discontinuities in the steering

control, illustrated in Figure 13 by the short abrupt changes in the required steering rates, whenever the agent enters

or leaves the region determined by an obstacle’s radius of influence. The controller defined in (34) is able to make the

UAV’s heading (illustrated by the black line in Figure 13) follow closely the mixed CAVF heading (illustrated by the

green dashed line in Figure 13). Increasing gain K would result in a better convergence but more demand from the

UAV’s actuators, by requesting more angular speed, which would increase the spikes in Ûψ.

B. Collision Avoidance Scenario 2: Navigation through a densely populated workspace with moving obstacles

Consider next the case when a UAV is moving through a workspace populated by multiple moving obstacles. In a

realistic setting, this type of workspace could be representative for a high-traffic region of the airspace, where multiple

UAVs are trying to perform cooperative or non-cooperative tasks, such as search and rescue, pay-load delivery, or

surveillance. For example, suppose the workspace contains 5 other moving UAV’s, where each one is modeled as

a moving circular obstacle of radius r
j
o = 0.3 m, ∀ j ∈ J(t) = {1,2, . . . ,5}. Each obstacle is moving with constant

velocity, at different speeds and headings. The UAV’s objective is to move through this workspace while avoiding

collision with any incoming obstacles and while maintaining an Eastward general heading, ψd = 0.

The CAVF for this problem is generated by applying the methodology presented in Section III for multiple moving

obstacles with overlapping radii of influence. Therefore, the controller from Section IV is used to track the resulting

25

0 2 4 6 8 10 12

x

0

1

2

y

Fig. 11 The resulting mixed CAVF for the given small forest patch and collision avoidance parameters.

Fig. 12 Collision avoidance for a UAV (blue line) moving through a forest patch with trees modeled as circular

static obstacles of radius r
j
o = 0.3 m, ∀ j ∈ J(t).

26

0 5 10 15 20 25
-0.5

0

0.5

1

(t
)

ca

d

0 5 10 15 20 25

time (sec)

-2

0

2

4

6

d
/d

t

Fig. 13 Steering rate controls with resulting UAV headings.

CAVF. The results of the simulation are illustated in Figure 14 for the following UAV initial conditions and parameters,

respectively: xi = −3.3, yi = 0, ψi = ψd = 0, V = 1 m/s, a = 1 and r
j

i
= 3, ∀ j ∈ J(t). The trajectory was obtained

using the control input given in (34) with a time-varying gain K(t) = 11.5δ(t)−1, where δ(t) = minj∈J(t)

r j (t) − r
j
o

 is

the minimum distance to an obstacle at time t and where r j (t) =

p − p

j
o

 is the distance between the agent’s position

and the obstacle j’s position. The heading convergence error is set to be eψ = 0.01. The simulation shows an agent

performing multiple collision avoidance maneuvers around the moving obstacles. Looking at the steering rate controls

in Figure 15, note that the presented controller is able to track with accuracy the desired CAVF heading. The peaks in

the profile of steering rate versus time determine different control authority switches for collision avoidance, depending

on the obstacle proximities.

C. Collision Avoidance Scenario 3: Cluttered workspace with multiple static and moving obstacles

In the last simulation scenario, a UAV moves through a workspace that contains both static and moving obstacles.

The UAV’s goal is to avoid collisions with any obstacle while maintaining an Eastward direction of motion, ψd = 0.

The obstacles have different radii, r
j
o > 0 and may move with different speeds V

j
o ∈ [0,1), in multiple directions

θ
j
o ∈ [0,2π), ∀ j ∈ J(t) = {1,2, . . . ,7}.

As soon as the UAV registers the obstacles, it generates a mixed CAVF using Algorithm 1. Then, applying the

controller given in (34), the UAV is able to track with minimal heading error the desired vector field. The results

27

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 0 0 0

 0

 0

 0

 0

 0

 0

 0

 0 0 0

 0

 0

 0

 0

 0

 0

 0

 0 4

 0

 4

 0 4

 0

 4

 0

 4

 0

 4

(a) t ∈ [0,4] sec, τ = 0 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 0000000000

4

4

4

4

4

4

4

4

4

4

48

4

8 48

4

8

4

8

4

 8

(b) t ∈ [4,8] sec, τ = 4 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y

4

4

4444

8
8

8

8

8

8

8

8

8

8

812

8

12

812

8

12

8

12

8
 12

(c) t ∈ [8,12] sec, τ = 8 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 0000000000

4

4

4444

88

8

888
1212

12

12

12

12

12

12

12

12

✶�

✶✁✶�

✶✁

✶�

✶✁

✶�

✶✁

✶�
✶✁

(d) t ∈ [12,16] sec, τ = 12 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 0000000

44444

88888
1212121212

✂✄✂✄

✂✄

✂✄

✂✄

✂✄

✂✄

✂✄

✂✄

✂✄

20

✂✄20

✂✄

20

✂✄

20

✂✄
 20

(e) t ∈ [16,20] sec, τ = 16 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6
y 0000000000

44444

88888
1212121212

☎✆☎✆☎✆☎✆☎✆
2020

20

20

20

20

20

20

20

20

24

2024

20

24

20

24
20 24

(f) t ∈ [20,24] sec, τ = 20 sec

Fig. 14 Trajectories of system (1) (blue) generated using input u(t) defined in (28), for a CAVF (green vector

field) with the following parameters a = 1, ri = 3 m, ψd = 0, Vo = 0.9 m/s, θo = 2.35 generated at time τ.

28

0 5 10 15 20
-1

-0.5

0

0.5

1

(t
)

ca

d

0 5 10 15 20

time (sec)

-4

-2

0

2

d
/d

t

Fig. 15 Steering rate controls with resulting UAV heading versus time.

of the simulation are illustrated in Figure 16 for the following UAV initial conditions and parameters, respectively:

xi = −3.3, yi = 0, ψi = ψd = 0, V = 1 m/s, a = 1 and r
j

i
= 3, ∀ j ∈ J(t). The trajectory obtained shows a more

aggressive UAV behavior than in the previous simulations due to the immediate danger of colliding with the moving

obstacles while intercepting static obstacles in its path. The trajectory was obtained using the control input defined in

(34) with a gain K(t) that depends on the minimum distance between the UAV and the detected obstacles, as defined in

the previous simulation scenario. Overall, the proposed CAVF generates a guidance field that, when tracked accurately,

leads to trajectories free of any collisions with the sensed obstacles.

VI. Conclusion

This paper presents a new methodology for UAV collision avoidance. The approach makes use of a new class

of guidance vector fields called collision avoidance vector fields (CAVF) that are determined using a decomposition

of unmanned aerial vehicle kinematics and modulation of the UAV’s normal velocity component with respect to the

obstacle boundary. To perform the collision avoidance maneuvers prescribed by these vector fields with constant

speed, a steering law is implemented and a tracking controller guarantees convergence to the desired motion plan.

Simulations performed for three scenarios illustrate the efficacy of the presented approach. In particular, the proposed

approach based on CAVFs generates motion plans that take into account multiple static and moving obstacles with

little computational effort, making their generation appropriate for real-time applications. Furthermore, the proposed

29

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 0 0 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0
 0

 0 0 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0
 0

 0 4

 0 4

 0

 4

 0 4

 0 4 0 4

 0 4
 0

 4

(a) t ∈ [0,4] sec, τ = 0 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 00

0

00

0

0

0

0

0

0
0

00

0

00

0

0

0

0

0

0
04

4

4

4

4

4

4

4

4

4

4

4

4 4
48

48
4

8
48

48 48

484
 8

(b) t ∈ [4,8] sec, τ = 4 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 00

0

00

0

0

0

0

0

0
0

00

0

00

0

0

0

0

0

0
044

4

44

4

4

4

4

4

4 48
8

8

8

8

8

8

8

8

8

8

8

8 8
8

12

812
8

12

812

812 812

8128
 12

(c) t ∈ [8,12] sec, τ = 8 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 00000000000000

4444444
8888888

121212
12

12121212

12

✝✞

✝✟

✝✞

✝✞

✝✞ ✝✞

✝✞✝✟ ✝✞

(d) t ∈ [12,16] sec, τ = 12 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6

y 00000000000000

4444444
8888888

12121212121212 ✠✡✠✡✠✡

✠✡

✠✡✠✡✠✡✠✡

20

✠✡

20

20

20 20

20
✠✡

 20

(e) t ∈ [16,20] sec, τ = 16 sec

-4 -2 0 2 4 6 8

x

-6

-4

-2

0

2

4

6
y 00000000000000

4444444
8888888

12121212121212 ☛☞☛☞☛☞☛☞☛☞☛☞☛☞
202020

20

20202020

24

20

24

24

24 24

24

20 24

(f) t ∈ [20,24] sec, τ = 20 sec

Fig. 16 System (1) trajectories (blue) generated using (28), for a CAVF (green vector field) with the following

parameters a = 1, ri = 3 m, ψd = 0, Vo = 0.9 m/s, θo = 2.35 generated at time τ.

30

0 5 10 15 20
-0.5

0

0.5

1

(t
)

ca

d

0 5 10 15 20

time (sec)

-5

0

5

d
/d

t

Fig. 17 Steering rate controls with resulting UAV headings.

controllers generate trajectories that follow these motion plans accurately and within specified tolerances.

Further extensions of the CAVF approach include but may not be limited to introducing disturbance models

resulting from winds or modifying the approach to provide collision avoidance guarantees in the presence of obstacle

state uncertainty. Another venue for extending this methodology is cooperative multi-agent path planning, in which

case the assumption of constant velocity will be relaxed and more information would be required for planning.

VII. Acknowledgments

The authors would like to thank the National Science Foundation (Award #1562339) for sponsoring the research

work.

Appendix

A. Moving obstacle input derivation

Consider the relation between the polar and inertial forms for the agent velocity, given in (22):

V cosψ(t) = −Vb(t) cos(φ(t) + θ(t)) + Vo cos θo, (36)

V sinψ(t) = −Vb(t) sin(φ(t) + θ(t)) + Vo sin θo . (37)

31

Then, using (36) and (37), the steering angle can be identified uniquely using the atan2 function, i.e.,

ψ(t) = atan2(−Vb(t) sin(φ(t) + θ(t)) + Vo sin θo,−Vb(t) cos(φ(t) + θ(t)) + Vo cos θo). (38)

First, note that taking the sum of the squares of (36) and (37), results in the equality

V2
= Vb(t)2 + V2

o − 2Vb(t)Vo cos(φ(t) + θ(t) − θo). (39)

Then, taking the derivative of (38) and using (39), the steering control input for avoiding a moving obstacle is obtained

as given in (28).

Finally, rearranging equations (36) and (37) so that

Vb cos(φ(t) + θ(t)) = −V cosψ(t) + Vo cos θo (40)

Vb sin(φ(t) + θ(t)) = −V sinψ(t) + Vo sin θo (41)

and taking the sum of squares of the new equations yields

Vb(t)2 = V2
+ V2

o − 2VVo cos(θo − ψ(t)). (42)

Then, taking the derivative of (42) and using (28), the evolution of Vb(t) is obtained as in (29).

B. Proof for Proposition IV.2

Consider first a mixed CAVF, whose equations of motion are given by [Ûxm, Ûym]T = hm(p), resulting from two

separate CAVFs generated by isolating each obstacle with their own equations of motion: [Ûx1, Ûy1]T = h1(p) and

[Ûx2, Ûy2]T = h2(p). The mixed CAVF is given by applying Algorithm 1, i.e.,

hm(p) = w
1h1(p) + w2h2(p), (43)

from which we get the following relations:

Ûxm = w
1 Ûx1 + w

2 Ûx2,

Ûym = w
1 Ûy1 + w

2 Ûy2.

(44)

Moreover, it is known that each vector field has the same magnitude V and the following different headings: ψm =

atan2(Ûym, Ûxm) for hm, ψ1 = atan2(Ûy1, Ûx1) for h1 and ψ2 = atan2(Ûy2, Ûx2) for h2. Then, using the derivative of atan2, the

32

following evolutions for each heading angle are obtained:

Ûψ1 = (Ûx1 − Ûy1)/V,

Ûψ2 = (Ûx2 − Ûy2)/V,

Ûψm = (Ûxm − Ûym)/V .

(45)

Next, using (44) in (45), we obtain

Ûψm = (w1 Ûx1 + w
2 Ûx2 − w

1 Ûy1 − w
2 Ûy2)/V

= w
1(Ûx1 − Ûy1)/V + w2(Ûx2 − Ûy2)/V

= w
1 Ûψ1 + w

2 Ûψ2,

(46)

which implies that Ûψm = w
1 Ûψ1+w

2 Ûψ2 corresponds to the mixed CAVF for two obstacles. In the case in which there are

more than two obstacles, the same approach can be carried out similarly or by induction to show that Ûψm =
∑

j w
j Ûψj .

Therefore, the control input (33) corresponds to the heading evolution of a mixed CAVF. �

C. Proof for Proposition IV.3

Let e(t) = ψ(t) − ψca(t) be the heading error between the UAV and the mixed CAVF. Then, by applying (34) to

system (1), the error dynamics are Ûe(t) = −Ke(t)+um(t)− Ûψca(t). Therefore Ûψca = um(t), which results in Ûe(t) = −Ke(t)

and e(t) = c exp(−K(t − ti)), where c is a constant that depends on the initial heading error, c = ψ(ti) − ψca(ti).

Next, suppose that the heading error satisfies e(t) ≤ eψ, ∀t > ttrack > ti , where ttrack will be defined later.

Equivalently, c exp(−K(t − ti)) ≤ eψ , or, expressed differently, K(t − ti) ≥ log c − log eψ . Therefore, if K satisfies the

inequality

K ≥
log c − log eψ

ttrack − ti
, (47)

then e(ttrack) ≤ eψ , which implies that the heading error converges with the given tolerance, that is, e(t) ≤ eψ ∀t ≥ ttrack.

Moreover, since the agent travels with constant speed, time ttrack can be selected such that ttrack = δ/(2V), where δ is

the minimum separation distance between obstacles, assumed for mixed CAVF. Then, selecting the gain to be

K̂ =
log c − log eψ

δ
2V

− ti
(48)

guarantees convergence of the agent’s heading to the mixed CAVF within a ball of radius δ/2. Note that gain K̂ depends

on the initial error between the agent heading and the CAVF which is bounded from above by π. Therefore, gain (35)

33

that depends only on the separation distance and error tolerance can be used for any situation instead of (48). �

References

[1] Frew, E. W., Lawrence, D. A., and Morris, S., “Coordinated standoff tracking of moving targets using Lyapunov guidance

vector fields,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 2, 2008, pp. 290–306.

[2] Dijkstra, E. W., “A note on two problems in connexion with graphs,” Numerische mathematik, Vol. 1, No. 1, 1959, pp. 269–271.

[3] Hart, P. E., Nilsson, N. J., and Raphael, B., “A formal basis for the heuristic determination of minimum cost paths,” IEEE

transactions on Systems Science and Cybernetics, Vol. 4, No. 2, 1968, pp. 100–107.

[4] Yang, H., and Zhao, Y., “Trajectory planning for autonomous aerospace vehicles amid known obstacles and conflicts,” Journal

of Guidance, Control, and Dynamics, Vol. 27, No. 6, 2004, pp. 997–1008.

[5] Stentz, A., “Optimal and efficient path planning for partially known environments,” Intelligent Unmanned Ground Vehicles,

Springer, 1997, pp. 203–220.

[6] Zhu, D., and Latombe, J.-C., “New heuristic algorithms for efficient hierarchical path planning,” IEEE Transactions on

Robotics and Automation, Vol. 7, No. 1, 1991, pp. 9–20.

[7] Huttenlocher, D. P., Kedem, K., and Sharir, M., “The upper envelope of Voronoi surfaces and its applications,” Discrete &

Computational Geometry, Vol. 9, No. 3, 1993, pp. 267–291.

[8] Schwartz, J. T., and Sharir, M., “A survey of motion planning and related geometric algorithms,” Artificial Intelligence, Vol. 37,

No. 1-3, 1988, pp. 157–169.

[9] Ó’Dúnlaing, C., and Yap, C. K., “A “retraction” method for planning the motion of a disc,” Journal of Algorithms, Vol. 6,

No. 1, 1985, pp. 104–111.

[10] Kuffner, J. J., and LaValle, S. M., “RRT-connect: An efficient approach to single-query path planning,” Proceedings IEEE

International Conference on Robotics and Automation, IEEE, 2000, pp. 995–1001.

[11] Karaman, S., and Frazzoli, E., “Incremental sampling-based algorithms for optimal motion planning,” Robotics Science and

Systems VI, Vol. 104, 2010, p. 2.

[12] Frazzoli, E., Dahleh, M. A., and Feron, E., “Real-time motion planning for agile autonomous vehicles,” Journal of Guidance,

Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 116–129.

[13] Tedrake, R., Manchester, I. R., Tobenkin, M., and Roberts, J. W., “LQR-trees: Feedback motion planning via sums-of-squares

verification,” The International Journal of Robotics Research, Vol. 29, No. 8, 2010, pp. 1038–1052.

[14] Upadhyay, S., and Ratnoo, A., “Smooth path planning for unmanned aerial vehicles with airspace restrictions,” Journal of

Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1596–1612.

34

[15] Mattei, M., and Blasi, L., “Smooth flight trajectory planning in the presence of no-fly zones and obstacles,” Journal of

Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 454–462.

[16] Delingette, H., Hebert, M., and Ikeuchi, K., “Trajectory generation with curvature constraint based on energy minimization,”

Proceedings IEEE/RSJ International Conference Intelligent Robots and Systems, IEEE, 1991, pp. 206–211.

[17] Sun, C., Liu, Y.-C., Dai, R., and Grymin, D., “Two approaches for path planning of unmanned aerial vehicles with avoidance

zones,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 8, 2017, pp. 2076–2083.

[18] Frazzoli, E., Mao, Z.-H., Oh, J.-H., and Feron, E., “Resolution of conflicts involving many aircraft via semidefinite program-

ming,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 1, 2001, pp. 79–86.

[19] Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots,” Autonomous Robot Vehicles, Springer, 1986,

pp. 396–404.

[20] Rimon, E., and Koditschek, D. E., “Exact robot navigation using artificial potential functions,” IEEE Transactions on Robotics

and Automation, Vol. 8, No. 5, 1992, pp. 501–518.

[21] Connolly, C. I., Burns, J. B., and Weiss, R., “Path planning using Laplace’s equation,” Proceedings, IEEE International

Conference on Robotics and Automation, IEEE, 1990, pp. 2102–2106.

[22] Kim, J.-O., and Khosla, P. K., “Real-time obstacle avoidance using harmonic potential functions,” IEEE Transactions on

Robotics and Automation, Vol. 8, No. 3, 1992, pp. 338–349.

[23] Li, Z., and Bui, T., “Robot path planning using fluid model,” Journal of Intelligent and Robotic Systems, Vol. 21, No. 1, 1998,

pp. 29–50.

[24] Waydo, S., and Murray, R. M., “Vehicle motion planning using stream functions,” Proceedings, IEEE International Conference

on Robotics and Automation, Vol. 2, IEEE, 2003, pp. 2484–2491.

[25] Khansari-Zadeh, S. M., and Billard, A., “A dynamical system approach to realtime obstacle avoidance,” Autonomous Robots,

Vol. 32, No. 4, 2012, pp. 433–454.

[26] Yao, P., Wang, H., and Su, Z., “UAV feasible path planning based on disturbed fluid and trajectory propagation,” Chinese

Journal of Aeronautics, Vol. 28, No. 4, 2015, pp. 1163–1177.

[27] Lau, D., Eden, J., and Oetomo, D., “Fluid motion planner for nonholonomic 3-D mobile robots with kinematic constraints,”

IEEE Transactions on Robotics, Vol. 31, No. 6, 2015, pp. 1537–1547.

[28] Owen, T., Hillier, R., and Lau, D., “Smooth path planning around elliptical obstacles using potential flow for non-holonomic

robots,” Robot Soccer World Cup, Springer, 2011, pp. 329–340.

[29] Lawrence, D. A., Frew, E. W., and Pisano, W. J., “Lyapunov vector fields for autonomous unmanned aircraft flight control,”

Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1220–1229.

35

[30] Panagou, D., Tanner, H. G., and Kyriakopoulos, K. J., “Control of nonholonomic systems using reference vector fields,”

Proceedings, IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 2831–2836.

[31] Panagou, D., “Motion planning and collision avoidance using navigation vector fields,” Proceedings, IEEE International

Conference on Robotics and Automation, 2014, pp. 2513–2518.

[32] González-Arribas, D., Soler, M., and Sanjurjo-Rivo, M., “Robust aircraft trajectory planning under wind uncertainty using

optimal control,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 3, 2017, pp. 673–688.

[33] LaValle, S. M., Planning Algorithms, Cambridge University Press, Cambridge, U.K., 2006. Available at

http://planning.cs.uiuc.edu/.

36

	Introduction
	Formulation of the Collision Avoidance Problem
	Collision Avoidance Vector Fields
	Local Collision Avoidance Vector Field for a Single Obstacle
	Mixed Collision Avoidance Vector Fields for Multiple Obstacles

	UAV Vector Field Controller
	Collision Avoidance Controller for a Single Obstacle
	Collision Avoidance Controller for Multiple Obstacles

	Simulation Results
	Collision Avoidance Scenario 1: Navigation through a densely populated workspace with static obstacles
	Collision Avoidance Scenario 2: Navigation through a densely populated workspace with moving obstacles
	Collision Avoidance Scenario 3: Cluttered workspace with multiple static and moving obstacles

	Conclusion
	Acknowledgments
	Moving obstacle input derivation
	Proof for Proposition IV.2
	Proof for Proposition IV.3

