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Abstract— We consider a class of planar pursuit-evasion
games with multiple pursuers and a single evader. The evader
must reach a target set while avoiding the pursuers which
relay the pursuit among themselves. We model this multi-player
dynamic game as a two-player multi-stage game. In particular,
all the pursuers are modeled as one entity, which we refer to
as the super-pursuer, which can deploy only one pursuer of
choice at each instant of time. We discretize the decision space
of the players and formulate a zero-sum matrix game between
the super-pursuer and the evader. In the construction of the
matrix game, we explore a myopic solution approach to the
game against one that is more far-sighted. In particular, the
stage payoffs are constructed in two different ways, namely,
with a planning horizon of one stage, and with a planning
horizon which is taken to be the remaining stages of the game.
We compare the performance of the evasion policies that are
obtained in these two cases, against pursuers who engage in
relay pursuit. Finally, we compare the pursuit policies obtained
from the multi-stage matrix games using extensive numerical
simulations.

I. INTRODUCTION

Multi-player game theory is applicable to many real-

world problems, for instance, autonomous collision avoid-

ance, modeling biological behaviour and trading in markets.

Multi-player pursuit-evasion games (PEGs) are rich in the

number of parameters that govern the progress of the game.

In this paper, we address an evasion problem in which a

single evader tries to reach a specified target (goal) set,

while avoiding a group of pursuers. The pursuers engage

in a semi-cooperative pursuit strategy called relay pursuit.

We formulate the continuous dynamic game as a multi-act

matrix game. At each stage, we consider the pursuers as

being one entity, which is engaged in a zero-sum game

with the single evader. At any stage, all players have perfect

information while the fixed target set is known only to the

evader. To illustrate our modeling, we present a specific

scenario where all the players have simple dynamics. We

compare the pursuit strategy derived by solving the matrix

game to the strategy of relay pursuit based on the minimum

time of capture. Subsequently, we analyze the effectiveness

of using the metric of minimum time of capture to decide

the active pursuer.

Literature survey: Game theory with multiple players has

received a lot of attention in the past and continues to interest
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many researchers. The framework of multi-player games can

simulate many scenarios in economics, competitive envi-

ronments, and defense [1]–[3]. Multi-agent problems have

many aspects to them (static or dynamic, information and

cooperation patterns, etc.) which dictate the solution method

for the game. A team of players with a single objective

could act cooperatively [3], [4] or non-cooperatively. The

Nash equilibrium solutions for a non-cooperative group of

players, in particular, matrix games, are discussed in detail

by Basar and Olsder in [5] and Zaccour et. al in [6]. Static

games [5] are played once and have fixed payoffs for discrete

actions of the players, while dynamic games are repeated

static games or governed by continuous time equations [7].

The folk theorem is a popular result regarding the individual

game equilibria of infinitely repeated static games [8].

Multi-player pursuit evasion games with a single evader and

multiple pursuers have been dealt with by several approaches

such as using Voronoi partitions, switching pursuit strategies

and sequential pursuit [9]–[12]. A roadmap derived from a

generalized Voronoi partition of the given domain to guide

the evader was first proposed in [13] and further developed in

our previous work [14]. Discrete multi-player games played

on a grid have also received considerable attention. A greedy

pursuit policy based on the probability of finding the evader

at a specific location in the domain is presented in [15]. A

pursuit evasion game between a team of evaders and a team

of heterogeneous pursuers using greedy policies is presented

in [16]. A multi-agent pursuit evasion game in an uncertain

environment is formulated as a Markov game in [17], where

a receding horizon approach is used with a matrix game to

obtain optimal policies for the players.

Contributions: In this paper, we have multiple pursuers

engaging in relay pursuit with a single evader who has a

target point to reach in the state space while avoiding capture.

Hence, this is a multi-objective game for the evader. The

main contributions of this paper are as follows:

1) Novel formulation of a dynamic multi-player non-zero

sum PEG as a multi-act two-person zero sum game,

2) Development of a payoff function which reflects the two-

fold goal of the evader,

3) Comparison and analysis of the effectiveness of different

pursuit and evasion strategies.

Structure of the paper: Section II presents the formulation of

the target-seeking evasion problem. This problem is framed

as a multi-act two-person game and subsequently solved in

Section III. In Section IV, we describe a game scenario where



the players have simple dynamics with equal or unequal

speeds, along with results from numerical simulations. In

Section V, we present concluding remarks.

II. FORMULATION OF TARGET-SEEKING EVASION

PROBLEM

We consider a pursuit evasion game in an unconstrained

domain in R
4, with N pursuers and one evader. The upper

bound for the duration of the game is known apriori and

denoted by T̄f > 0. At any given time t ∈ [0, T̄f ], the state

of the ith pursuer, where i ∈ I := {1, 2, ..., N}, is denoted

as ξi := [xi vi]
T ∈ R

4, where xi ∈ R
2 and vi ∈ R

2

are its position and velocity, respectively. In general, let the

pursuers have the following equations of motion:

ξ̇i = fP (ξi,ui), ξi(0) = ξ̄i, (1)

where fP is a known function that satisfies regularity as-

sumptions for existence of a solution to (1) and ui denotes

the input. We impose the following constraint on the mag-

nitude of the control input: ‖ui(t)‖ ∈ {0, 1}, ∀i ∈ I, ∀t ∈
[0, T̄f ]. The position and velocity of the single evader at time

t is denoted by xe ∈ R
2 and ve ∈ R

2 respectively, and its

state is denoted by η := [xe ve]
T. The evader’s dynamics is

in general described by

η̇ = fE(η,ue), η(0) = η̄, (2)

where fE is known and satisfies similar regularity assump-

tions as fP , and ue is the evader’s input vector, with

‖ue(t)‖ ∈ {0, 1}, ∀t ∈ [0, T̄f ]. Capture is defined as

positional proximity of atleast one of the pursuers with the

evader within a pre-specified tolerance l > 0. More precisely,

the evader will be considered captured, if ∃i ∈ I : ‖xi(t)−
xe(t)‖ ≤ l for some t ∈ [0, T̄f ]. The target set, which is a

single point, is denoted by xG ∈ R
2. The tolerance criterion

for goal-reaching is represented by ǫ, which taken to be a

positive number.

A. The Problem

The target-seeking evasion problem is a dynamic multi-

player non-zero sum game. It is stated as follows: Given a

set of initial conditions for all the players in the plane, find

a time-history of input vectors for the evader to reach the

target location within a desired tolerance, while the evader

avoids capture by any pursuer. Formally,

Given ξ̄i ∀i ∈ I, η̄, xG, l, ǫ, and T̄f ,

Find Tf ∈
[

0, T̄f
]

and ue(t), ∀t ∈ [0, Tf ]
such that ‖xe(Tf ) − xG‖ ≤ ǫ and ‖xe(t) − xi(t)‖ >
l, ∀i ∈ I, ∀t ∈ [0, Tf ].

Each player has perfect information about the states of all

players of the game at all times. The pursuers relay the

pursuit amongst themselves, such that at each instant of time,

the pursuer who can capture the evader in the least amount

of time is the active pursuer. In this case, we say that the

minimum time of capture is the relay metric. The relay metric

could also be a different parameter of the game. The location

of xG is known only to the evader. In the next section, we

describe the conversion of our problem into a multi-act two

person zero-sum game.

III. CONVERSION TO A MULTI-ACT TWO-PERSON GAME

Let the game be played in K finite stages, with a constant

time step ∆t > 0. We perform a zero-order hold discretiza-

tion of the dynamics in equations (1) and (2) with ∆t as the

sampling time. Let k ∈ {0, 1, ..,K} denote the current stage

of the game, ξi(k) be the state vector of the ith pursuer at

that stage and η(k) be the state vector of the evader. Then

the new equations of motion in discrete-time are

ξi(k + 1) = fPd(ξi(k),ui(k)), ξi(0) = ξ̄i,

η(k + 1) = fEd(η(k),ue(k)), η(0) = η̄, (3)

where ui(k) and ue(k) denote the inputs of the ith pursuer

and the evader at stage k respectively. The time-discretization

of the functions fP (·) and fE(·) yields the new functions

fPd(·) and fEd(·) respectively. Since we assume that the

pursuers employ relay-pursuit, we can approximate the ac-

tions of the group of pursuers as the actions of a single entity

(the super-pursuer) which deploys one pursuer at a time.

This means that the multi-player game is essentially reduced

to a two-player game between the evader and the super-

pursuer. In addition, we consider that the game between

the evader and the super-pursuer is zero-sum at each stage,

and consequently, the entries in the payoff matrix for each

game represent the reward obtained by the evader or the cost

incurred by the super-pursuer (the team of pursuers).

A. Description of the payoff matrix of the game

At each stage k of the game, consider a matrix Mk ∈
R

N×(N+1), whose entries are the payoffs to E at that stage.

Each row of Mk represents a pure strategy played by P

and each column, a pure strategy played by E. The decision

space available to the players (the choice of control inputs

for P and E) is infinite. We consider a restricted decision

space for P , including only the actions that appear “integral”

to the pursuers’ goal of capturing the evader. In particular,

P has exactly N pure strategies, where the ith pure strategy

corresponds to the case where only the ith pursuer goes after

the evader. Similarly, E’s restricted decision space consists

of N + 1 actions, where the first N correspond to evasion

from each pursuer in turn (the jth action is to avoid only the

jth pursuer), and the (N + 1)th action is the target-seeking

behavior, which means that the evader directly heads towards

the target.

Let i be the row index of Mk and j be the column index,

where i ∈ I and j ∈ J := {1, 2, .., N + 1}. If we consider

the first N columns of Mk, each entry Mk(i, i) is the payoff

for the two-player zero sum game between only the ith

pursuer and the evader. Every other entry Mk(i, j), i 6= j,

represents a case when E tries to evade from the jth pursuer,

when actually the ith pursuer is active. This situation can

happen because while the E knows the states of all the



TABLE I

ENTRIES IN THE PAYOFF MATRIX Mk , FOR A CASE OF N = 2.

(1,1) (1,2) (1,3)
P1 in pursuit P1 in pursuit P1 in pursuit
E evading P1 E evading P2 E seeks xG

(2,1) (2,2) (2,3)
P2 in pursuit P2 in pursuit P2 in pursuit
E evading P1 E evading P2 E seeks xG

pursuers, it does not know the action chosen by P at the same

stage. Finally, the last column of the matrix Mk represents

cases where the evader is directly headed towards the target

xG, and only one pursuer is active per row. A schematic

construction of the matrix Mk is shown in Table I.

B. Time of capture function

Let us consider the construction of each entry of Mk. The

min-max time of capture of the evader by a single pursuer

plays an important role in our formulation of the matrix game

payoffs. At any time, let φ(η, ξi) denote the min-max time

of capture of the evader (whose current state is η) by the ith

pursuer (whose current state is ξi). Depending on the dy-

namics in equations (1) and (2), we may be able to calculate

φ(η, ξi) even in closed form, though more often numerical

techniques must be employed. For instance, we can obtain

φ(η, ξi), by solving a simple quadratic (when all players are

single integrators) or quartic equation (pursuers with finite

acceleration), or by numerical root-solving techniques. The

min-max time of capture is our chosen metric to represent

the risk of capture for E.

C. Elements of the payoff matrix

Each element of the payoff matrix is a numerical value

that reflects the two-fold objective of the evader: (1) to avoid

capture and (2) to reach the target location xG. The two

components of each entry are the time that P would take to

capture E, and the extent to which E’s heading is towards

xG from its current location.The target-seeking component

of E’s velocity is measured by cosψ, where ψ is the angle

between the vectors ve and xG − xe.

We have to re-construct the payoff matrix at every stage since

at least two players move. Even with a discounting factor

γ = 1 (which means that the future is as important as the

present for consideration), it is difficult to estimate the payoff

that the evader will receive at the end of K stages, since the

payoffs at each stage are dependent on the players’ states in

the current stage. Thus, the history of moves in previous

play is reflected in the changing payoff values, although

this information is not available directly to the players as

a strategy recall.

Alternatively, instead of considering discrete states on a

continuous space for each player, we could characterize

the states in a different classification based on safety or

proximity to the goal. Then, a choice of different set of pure

strategies (actions) would yield a game with a fixed payoff

matrix, and we can solve for the subgame perfect equilibria

by starting from the last stage of play. This approach,

however, has the disadvantage that some information is lost

when translating the Cartesian state space into a different

representation, since we need to heuristically classify the

states.

We have evaluated the performance of the evader when γ = 1
as well as when γ = 0. The exact steps in computing the

payoff matrix Mk at stage k are detailed in the next section,

for γ = 0 (the present stage is all that is taken into account).

D. Planning horizon: one stage

Let us first consider the case with a planning horizon of

one stage (γ = 0). Each entry of the matrix Mk is associated

with two components: one representing evasion and the other

representing the target-seeking behavior, and is constructed

as follows. For each pair of pure strategies, we calculate the

new positions of the players after playing those strategies

for one stage (execution horizon is a single stage). Then, if

the time of capture for the evader using the new positions is

smaller than the old positions, that component of the payoff

will be set to −1, since it is favorable to the pursuer. If the

new positions are favorable to the evader, the payoff will be

set to +1. If there is no change, the payoff will be zero.

Similarly, if the evader’s new position is closer to the goal

than previously, the goal component of the payoff will be set

to +1, and if the evader has moved away from the goal, the

payoff will be set to −1. Maintaining the same distance from

the goal merits zero payoff. The sum of these two quantities

yields a single entry of the matrix Mk.

All entries of Mk belong to the set {−2,−1, 0, 1, 2}. Let

the input corresponding to the realization of the ith pure

strategy of P be the n-tuplet qi, whose only non-zero entry is

equal to one and is at the ith position (that is, the ith pursuer

is active and all other pursuers have zero input). Similarly,

let pj be the input corresponding to the realization of the

jth pure strategy of E. The Algorithm (1) shows the main

steps for the assignment of payoffs to Mk:

input : η, xG, ξi ∀i ∈ I, k

output: Mk

for i← 1 to N do

for j ← 1 to N + 1 do
ξ′i = fPd(ξi, qi)
η′ = fEd(ηi,pj)
Tc = sgn(φ(η′, ξ′i)− φ(η, ξi))
Gc = sgn(‖xe − xG‖ − ‖x

′
e − xG‖)

Mk(i, j) = Tc +Gc

end

end

Algorithm 1: Payoff Assignment to Mk

E. Planning horizon: Remaining stages of the game

When γ = 1, the payoffs are designed to reflect the long-

term effects of each action. In this case, since we have an



upper bound T̄f on the duration of the game, the time-

of-capture component is bounded. For each pair of pure

strategies (i, j), we calculate the minimum time-of-capture of

E by the pursuing agent i. Note that E will play the strategy

corresponding to evasion from the pursuer j. If capture is

not possible, we set the value to T̄f . The target-seeking

component is given by cos(ψ), as described in Section III-C.

The Algorithm (2) shows the main steps for the assignment

of payoffs to Mk:

input : η, xG, ξi ∀i ∈ I, k, T̄f
output: Mk

for i← 1 to N do

for j ← 1 to N + 1 do

Tc = min(φ(η, ξi), T̄f )

Gc =
〈ve,xG−xe〉

‖ve‖‖xG−xe‖

Mk1(i, j) = Tc
Mk2(i, j) = Gc

end

end

M̂k1 = Mk1

maxi,j Mk1

Mk = M̂k1 +Mk2

Algorithm 2: Payoff Assignment to Mk

Note that we normalize the evasion component which is

given by the matrix Mk1 using the maximum entry of

the matrix. This ensures that all evasion components have

values between zero and unity, similar to the target-seeking

component. The summation of the two components in this

manner is a standard practice in multi-objective optimization

where the objectives are combined into one global criterion

[18].

F. Solution to the matrix game

Now that we have formulated the matrix game, we can

solve for the equilibrium strategies using standard tech-

niques. An equivalent non-zero sum formulation for our

problem would consider the whole N +1 player game, with

cost assignments that are functions of the states of all players.

Subsequently, verifying the existence of an equilibrium set

of pure strategies is a hard problem, in the sense that it

would require an exhaustive search among all possibilities.

However, we know that a two-player zero sum multi-act

game which is finite admits a saddle point solution in mixed

strategies [5].

The mixed strategy for each player is a vector of proba-

bilities. At any stage k, for P , we have a mixed strategy

described by a vector y ∈ R
N , with

∑

i yi = 1. Similarly for

E, we have a strategy described by z ∈ R
N+1,

∑

j zj = 1.

The ith entry of the vector y (or z) represents the probability

of the ith pure strategy being employed by P (or E).

The computation of the vectors y∗ and z∗ which solve

for the saddle point (the min-max problem) of the game

is formulated as a Linear Programming (LP) problem [6],

which can be solved using readily available solvers. The

package cvx [19] was used for the simulations that will be

presented in Section IV. We recompute Mk for every stage

of the game as the players move in the state space. The

actions (pure strategies) for a particular stage of the game are

obtained as random samples from the discrete distributions

given by y∗ and z∗ for that stage of the game.

IV. SPECIFIC EXAMPLE

In this section, we apply our proposed method of game

construction and evasion solution to a specific scenario. Let

us consider a game where all players have simple dynamics

and all the pursuers have the same speed. In particular, the

equations of motion of the players are:

ẋi = vpui, xi(0) = x̄i ∀i ∈ I

ẋe = veue, xe(0) = x̄e

The active pursuer always follows the line of sight to the

evader, that is, the pursuer engages in what is referred to as

“pure pursuit” in literature. In general, the time of capture

of the evader by any pursuer in this case depends on the

relative velocity. If the pursuer cannot capture the evader,

resulting in infinite value for the capture time φ(η, ξi), or

if the time of capture calculated is greater than T̄f , we

assign φ(η, ξi) = T̄f to ensure that the payoff values remain

finite. The calculation of the off-diagonal values of the payoff

matrix requires the time of capture when the evader is

intercepted by a pursuer. A simple method to calculate this

can be found in [20].

We consider three different cases: when the evader’s speed

is equal to that of the pursuers (ve = vp), when the evader

is slower (ve < vp) and when the evader is faster (ve > vp).

For each of these cases, we consider three different pursuit

policies. The relay-pursuit strategy based on minimum time

of capture will be referred to as RP, and the stage-by stage

optimal policy using the matrix game for one planning

horizon (γ = 0) will be referred to as SH, and the long

planning horizon policy (γ = 1) will be referred to as LH.

The evader’s policies could be long horizon (LH) or short

horizon (SH). All players use only one type of policy for the

whole game. In this section, when we refer to a game, we

will refer to the pursuer’s strategy first and then the evader’s

strategy, for instance, an “RP vs LH” game indicates that

the pursuers played relay pursuit based on minimum time

of capture and the evader used the long planning horizon

policy at each stage. For the numerical simulations, we use

randomly generated target location and initial positions for

the players.

In our numerical simulations, we considered cases with

the number of pursuers N ∈ {2, 3, ..., 7}. All pursuers have

unit speed (vp = 1) and the other parameters are chosen to

have values as follows: l = 0.1, ǫ = 0.05, T̄f = 14.2 and

ve ∈ {0.9, 1, 1.1}. Each pair of policies was tested for ∼ 103

runs of random initial conditions, where the initial distance

between the evader and the goal was ensured to be always



greater than the minimum initial distance between a pursuer

and the evader. In Table II, we see the percentage of cases

where the evader reached the target successfully for different

combinations of pursuit and evasion policies. Similarly, in

Table III, we see the percentage of games that ended in the

evader being captured. The rest of the games not represented

in the tables above do not conclude within the fixed upper

bound for duration T̄f .

From Table II, we observe that the LH evasion policy

performs better than SH evasion against RP pursuit policy in

terms of reaching the target successfully. Also, LH evasion

performs better against LH pursuit than SH evasion against

SH pursuit. Even if the inconclusive games are considered

in favor of SH evasion, LH evasion has an advantage in that

it is faster in reaching the target. Hence, as expected, the

evader benefits from keeping in mind a far-reaching effect

of its current actions rather than the short-sighted play of

choosing the best move at each stage. This holds for all

three different speeds of the evader.

The following figures (Fig.1 - Fig. 3) highlight the evader’s

play for a specific set of initial conditions with four pursuers.

The evader’s path is shown in green squares and the pursuers

are shown as red triangles. The initial position of evader is

solid green and those of the pursuers are solid red. The goal

position is shown as a solid black circle.
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Fig. 1. N = 4, Slower evader. LH evasion reaches the target
location in (b), while in (d), LH evasion brings the evader close to
the target.

In terms of pursuit policies, LH pursuit is observed to have

a slight advantage over RP pursuit against an LH evader. This

is expected since long-horizon planning takes into account

both the time to capture and the evader’s heading. Against an

SH evader, however, RP pursuit has the upper hand over SH
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Fig. 2. N = 4, Equal speeds for all players. LH evasion reaches
the target location in both (b) and (d), while in (c), SH evasion
brings the evader close to the target. In (b), the evader is close to
being captured though it has reached the target.

TABLE II

OUTCOME OF GAMES - SIMPLE DYNAMICS, TARGET REACHED

ve < vp ve = vp ve > vp
❍
❍
❍
❍P
E

LH SH LH SH LH SH

RP 8.67% 2.67% 54.73% 5.07% 51.60% 3.10%

LH 7.13% - 51.67% - 62.60% -

SH - 2.60% - 5.80% - 1.90%

pursuit. Hence, the pursuers would benefit from using either

minimum time of capture or a long-term payoff as their relay

metric.

As the evader’s speed increases, we notice that more games

are inconclusive in the time limit chosen for simulations.

Of the concluded games, it is evident that LH evasion

outperforms SH evasion against RP pursuit in terms of

reaching the target and delaying capture. Considering the

inconclusive games, the evader using LH evasion was closer

to the goal than the nearest pursuer at the time T̄f in about

3% of games compared to an evader using SH evasion policy.

TABLE III

OUTCOME OF GAMES - SIMPLE DYNAMICS, EVADER CAPTURED

ve < vp ve = vp ve > vp
❍
❍
❍
❍P
E

LH SH LH SH LH SH

RP 90.97% 96.70% 29.00% 87.00% 20.20% 90.00%

LH 92.63% - 36.67% - 22.00% -

SH - 96.97% - 26.93% - 29.10%



In Fig. 3 the faster evader’s play is shown for the same set

of initial conditions. The evader is shown in green squares

and the pursuers as red triangles and the goal in black.
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Fig. 3. N = 4, Faster evader. LH evasion reaches the target location
in (b) and (d), while in (c), SH evasion avoids capture for a long
time.

Finally, we see that in all the cases, the long planning horizon

policy (γ = 1) does perform better than a single-stage

planning policy against relay pursuit using minimum time

of capture as the relay metric. In terms of pursuit strategy,

the relay pursuit using long-horizon payoff as the metric

performs better than the relay pursuit using minimum-time

as the metric. Hence, the long-term payoff is an effective

alternative to minimum time of capture as a relay metric.

V. CONCLUSION

In this paper, we have addressed a problem of evasion from

multiple pursuers by reducing it to a multi-act, two player

zero-sum game. The proposed solution approach employs

the well-known framework of matrix games. In particular, at

each time step, we solve a relevant matrix game to account

for the dynamic nature of the game. It turns out that the

method presented in this paper can be easily extended to

games with more complex dynamics for the players, as long

as the payoff components are computationally inexpensive

to obtain. Further, based on extensive simulations, we argue

that in most cases, long-term planning is more effective

for evasion than a myopic strategy, in particular against the

pursuers playing relay pursuit.

We would like to extend this framework to more complex

games, such as games restricted to compact domains and/or

domains containing regions that must be avoided (i.e., ob-

stacles). Finally, we would like to explore the possibility of

providing guarantees on the performance of the evader, as

well as analyze and quantify the sensitivity of the evader’s

strategy to the discounting factor.
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