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Abstract—This work is concerned with the development of
distributed spatial partitioning algorithms for locational opti-
mization problems involving networks of agents with planar
rigid body dynamics subject to communication constraints. The
domain of the problems we consider is a three-dimensional,
non-flat manifold embedded in the state space of the agents,
which we refer to as the terminal manifold. The approach
we propose allows us to associate the partition of the three-
dimensional terminal manifold, which is induced by a non-
quadratic proximity metric and comprised of non-convex cells,
with a one-parameter family of partitions of two-dimensional,
flat manifolds, which are induced by (parametric) quadratic
proximity metrics and comprised of convex polygonal cells. By
exploiting the special structure of the parametric partitions, we
develop distributed partitioning algorithms that converge in a
finite number of steps. Subsequently, we utilize the solutions to
the latter problems to solve a class of locational optimization
problems over the terminal manifold. Numerical simulations that
illustrate the capabilities of the proposed algorithms are also
presented.

I. INTRODUCTION

In this paper, we propose distributed algorithms for Voronoi-
like partitioning and locational optimization problems involv-
ing networks of planar rigid bodies with limited communi-
cation capabilities. On one hand, the partitioning algorithms
are intended to allow the agents of the network to com-
pute their regions of influence over a three-dimensional non-
flat manifold embedded in their six-dimensional state space
in the presence of communication constraints. This three-
dimensional manifold, which we refer to as the terminal
manifold, consists of all the states that can be reached by the
agents of the network with zero linear and angular velocities.
The proposed partitioning algorithms yield a Voronoi-like
partition of the terminal manifold, which is a subdivision of
the latter into a finite collection of non-overlapping, but not
necessarily convex, cells that are in one-to-one correspondence
with the agents of the network (generators of this Voronoi-
like partition). On the other hand, the locational optimization
problem seeks for the optimal configurations of the agents of
the network on the terminal manifold with respect to a relevant
performance index.

At this point, we wish to emphasize that our goal is
the development of partitioning and locational optimization
algorithms that can be implemented in a distributed way. In
particular, in the proposed framework, every agent will be able
to perform the necessary computations for the characterization
of its own cell independently from the other agents of the same
network (for instance, no global grid of the terminal manifold
will be employed). In addition, for these computations, the
agents will rely on (local) information which can exchange
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with their neighbors in the topology induced by the Voronoi-
like partition (two agents are neighbors, if the boundaries of
their cells have a non-trivial intersection).

One of the most well-studied locational optimization prob-
lems for multi-agent networks is the so-called coverage prob-
lem in the Euclidean plane, whose performance index is the
expected value of the square of the Euclidean distance metric
for a given density function. It turns out that the minimizers
of this problem are the centroids of the cells of the standard
Voronoi partition generated by the multi-agent network [1]-
[5]. Despite the existence of a significant body of work on
consensus-type problems for multi-agent networks evolving
in SE(2) or SE(3) [6]-[9], as well as more abstract non-
Euclidean spaces including connected, compact, and homo-
geneous manifolds [10]-[13], no significant efforts have been
reported for addressing locational optimization problems in
similar settings.

We wish to emphasize at this point that with the exception of
standard Voronoi partitions of convex and compact subsets of a
Euclidean space, whose proximity metric is the Euclidean dis-
tance, the development of distributed algorithms for Voronoi-
like partitioning problems with non-Euclidean (generalized)
proximity metrics and non-flat domains can be a complex
task. This increased complexity can be mainly attributed to
the fact that the latter partitions may be comprised of cells
that are non-convex in general. In addition, the ability of
a partitioning algorithm to be implemented in a distributed
fashion hinges upon the ability of each agent to discover its
neighbors in the topology of this partition (in this context, two
agents are neighbors if the boundaries of their cells have a non-
trivial intersection [14]) without having global knowledge of
the partition a priori. In the case of standard Voronoi partitions,
it is well known that each agent can discover its neighbors (in
this special case, two agents are neighbors if their cells share
a common edge, in two dimensions, or a common face, in
higher dimensions) by means of simple distributed algorithms
that exploit basic geometric properties of the standard Voronoi
diagram and its dual, the Delaunay triangulation or graph [1],
[15]-[17]. However, it is not obvious how the heading angles
or the inertial properties of the agents, when the latter are
modeled as rigid bodies, will affect both the structure of the
cells that comprise the partition (these cells may not even be
convex, as we have already mentioned) and their neighboring
relations with the other agents from the same network.

Literature review: Voronoi partitions are useful tools for
the development of distributed algorithms for control and
optimization problems involving multi-agent networks and
sensor networks [1], [2], [18]-[25]. Voronoi-like partitions
whose proximity metrics do not solely stem from geometric
considerations, such as the Euclidean distance, but encode in-
stead information about the dynamics of the agents, which we



will collectively refer to as state-dependent proximity metrics,
have been studied extensively in our previous work (see, for
instance, [14], [22], [26]-[29]). In particular, Refs. [27]-[29],
which were originally motivated by [30], present partitioning
algorithms that allow the agents of a network to compute
their own cells from partitions that are induced by state-
dependent proximity metrics independently from each other. In
these references, however, communication constraints are not
accounted. In addition, the applicability of the algorithms pre-
sented in these references is limited to partitioning problems
over compact subsets of flat spaces (that is, linear or affine
subspaces) with quadratic proximity metrics. The solutions
of such problems turn out to be affine partitions comprised
of convex polygonal cells whose combinatorial complexity is
similar to that of standard Voronoi partitions.

Statement of contributions: The first objective of this work is
the development of distributed algorithms for the computation
of a Voronoi-like partition of the three-dimensional terminal
manifold, whose proximity metric is taken to be the cost that
will be incurred by an agent of the network for its transition
to an arbitrary state in this manifold. This transition cost will
be measured in terms of the decrease of a relevant (gener-
alized) energy metric that occurs during the corresponding
state transition. This proximity metric is non-quadratic and
state-dependent. Consequently, the cells that comprise this
Voronoi-like partition may be non-convex, in general, and they
cannot be computed by directly applying any of the available
techniques in the relevant literature [31], [32]. To address this
difficult, at a first glance, partitioning problem, we propose
an approach that is based on a special embedding technique.
With this technique, the original partitioning problem is asso-
ciated with a one-parameter family of partitioning problems
whose domains are two-dimensional flat sub-manifolds of the
terminal manifold and their proximity metrics are (parametric)
quadratic functions. It turns out that the solution to each of
these parametric partitioning problems corresponds to an affine
partition comprised of convex polygonal cells with a modest
combinatorial complexity. In this work, we exploit the special
structure of these affine partitions in order to develop a novel
distributed partitioning algorithm for their computation. The
proposed algorithm, which leverages a certain optimization-
based interpretation of the partitioning problem, finds exactly a
representative sample of boundary points for any of the cells of
the affine partition in a finite number of steps. This is in sharp
contradistinction with the partitioning algorithms presented in
our previous work [27]-[29], which can find boundary points
of the cells that comprise an affine partition only asymptoti-
cally (practically, the algorithms proposed in these references
can achieve accuracy that is comparable with that achieved by
the algorithm proposed herein only after a significantly large
number of iterations). After the solution to each parametric
two-dimensional partitioning problem has been characterized,
one can immediately obtain the solution to the original three-
dimensional partitioning problem by stacking appropriately the
former solutions next to each other and along the parameter
axis. In this way, we characterize the three-dimensional and
non-convex cells that comprise the partition of the (non-flat)
terminal manifold, which are hard to compute directly, by
repeatedly applying efficient algorithms for the computation
of the convex polygonal cells that comprise each parametric
affine partition. We wish to emphasize at this point that some
of the key ideas and techniques of the proposed finite steps and

distributed partitioning algorithms for affine partitions and in
particular, their optimization-based philosophy, constitute fun-
damental contributions to partitioning problems for spatially
distributed multi-agent networks, and their applicability could
potentially be extended to more general classes of problems.

It is important to highlight that the partitioning algorithms
proposed herein allow the agents of the network to compute
their own cells independently from their teammates based on
local information only (distributed partitioning algorithms). To
achieve this, we present an iterative scheme that seeks to find
a communication range for each agent of the network that is
sufficiently large to allow the latter to communicate directly
with its neighbors in the topology of the Voronoi-like partition,
which is not known a priori. The main challenge here comes
from the fact that the proximity metric that determines the
topology of the Voronoi-like partition is different from the
Euclidean distance that in turn determines whether two agents
are close enough to communicate with each other or not.

The second objective of this work is to address a certain
class of coverage-type locational optimization problems over
the terminal manifold in a distributed way. To this aim, we
use the proposed Voronoi-like partitioning algorithms in order
to allow each agent of the network to find its minimizing
state based on information that is encoded in its own cell.
It turns out that the minimizing position of each agent is
an appropriately weighted average of the optimal positions
of a family of locational optimization problems whose do-
mains correspond to two-dimensional, flat sub-manifolds of
the (three-dimensional) terminal manifold. On the other hand,
we show that the minimizing heading angle of each agent for
the original locational optimization problem can be computed
directly by solving a trigonometric algebraic equation over a
compact interval, which admits a solution always.

Structure of the paper: The rest of the paper is orga-
nized as follows. Section II presents the formulation of the
partitioning problem subject to communication constraints.
In Section III, we embed the original partitioning problem
into a one-parameter family of partitioning problems that can
be addressed by means of distributed algorithms. Distributed
solutions to coverage-type locational optimization problems
are presented in Section IV. Section V presents numerical
simulations, and finally, Section VI concludes the paper with a
summary of remarks together with directions for future work.

II. PROBLEM FORMULATION
A. Notation

We denote by R™ the set of n-dimensional real vectors
and by Ry, the set of non-negative real numbers. The set
of integers and the set of non-negative integers are denoted by
Z and Z>, respectively. We write || to denote the 2-norm of
a vector € R™. The unit circle in R? will be denoted by S*,
that is, S! := {& € R? : |z| = 1}. Given a unit vector e in
R2, we will write e € S! (note the vector e is written in bold
font). If ¥ is the angular parameter that corresponds to a unit
vector e = e(1) in St (for instance, e(¥) = [cosd, sind]T),
we will write ¥ € S! instead of ¥ € [2km, (2k + 1)x[, for
some k € Z, with a slight abuse of notation (note that the
angular parameter ¢ is written in normal font). In addition,
we write B(z;n) to denote the closed ball of radius n > 0
around = € R, that is, B(z;n) := {z € R" : |z —z| < n}.
Given two (column) vectors a € R™, 3 € R™2, we denote



by col(ex, B) the (ny + no)-dimensional real (column) vector
that corresponds to their concatenation. The notation can be
extended in the natural way for the concatenation of three or
more vectors. In addition, given a vector c € @ C R™+n2,
where ¢ = col(e,3), « € A C R™ and B € B C R"2,
we write @ = m4(c) and B = mg(c) (note that m4(-)
and 7g(-) are projection operators). Furthermore, bd(A) and
int(.A) denote, respectively, the boundary and the interior of
a set A. The relative boundary and the relative interior of a
set A will be denoted by rbd(.A) and rint(.A), respectively.
Given two points , 3 € R™, we denote by [, 3] the line
segment connecting them (including the two endpoints), that
is, [a, Bl =={x eR": z=ta+(1—-1t)3, 0<t <1} In
addition, we denote by |, 8] and [«, 3] the set [, B]\{a}
and the set [, B]\{B}, respectively. Furthermore, given a
symmetric matrix P = PT € R"*", we denote by A\yin(P)
and Apax(P) its minimum and maximum (real) eigenvalues,
respectively. Similarly, the minimum and the maximum sin-
gular values of a matrix A € R™*" are denoted by op,in(A)
and opax(A), respectively. Given two matrices A and B, we
denote by bdiag(A,B) their corresponding block diagonal
matrix. Moreover, we write P,, and K,, to denote the convex
(open) cone of n x n positive definite (symmetric) matrices
and the set of n X n skew symmetric matrices, respectively.
Finally, we will denote by SO(3) the rotation group for three-
dimensional spaces.

B. Equations of Motion

We consider a team of n agents distributed in the con-
figuration space Q = X X S, where X C R2; we write
q = col(x,?) to denote a configuration vector in Q, where
x = mx(q) € X and ¥ € S'. We assume that the i-th
agent from the team, where ¢ € Z,, := {1,...,n}, is initially
located at g := col(x?,60?), where ¥ € X and 69 € S!
denote, respectively, its position and heading angle at time
t = 0 measured with respect to an inertial reference frame. It
is assumed that @) # x9, for all i,j € Z, with i # j. The
joint vector of the initial positions of the n agents is denoted
by X0, that is, X° := col(z?,...,2%). The set comprised
of the initial positions of the n agents will be denoted by
{XO°}, that is, {X°} := {=¥ € X, i € Z,}. Note that
X% € X" whereas {X°} C X. The joint vectors of the
initial configurations and initial heading angles are denoted
by Q°, where Q" := col(q?,...,q"), and ®°, where O :=
col(6Y,...,09), respectively. The set of initial configurations
will be denoted by {Q°}, where {Q°} := {q) € Q, i € Z,,}.
Note again that Q° € Q™ whereas {Q°} C Q. It is also
assumed that each agent has a prescribed initial velocity, which
is denoted by v) € R3. In particular, v? := col(?, w?) € R3,
where v € R? and w) € R correspond, respectively, to
the (initial) linear velocity and angular velocity of the -
th agent expressed in a body-fixed frame. In addition, we
denote the initial state vector of the i-th agent by z?, where

z) = col(q?,v?). The state space of the i-th agent will be

K3
denoted by Z, where Z := X X R3. Again, the joint vector
of initial states and the corresponding set are denoted by Z°,

where Z° € Z", and {Z°}, where {Z"} C Z, respectively.

The kinematics of the i-th agent are described in an inertial
frame by the following vector equation:

q; = T(0:)v;, q;(0) = g7, (1)

where g; := col(x;,0;) € Q and v; := col(v;,w;) € R3
denote, respectively, its configuration (whose components are
measured with respect to an inertial reference frame) and its
velocity vector (whose components are measured with respect
to a body-fixed reference frame) at time ¢. Note that for a
given ¥ € S', the rotation matrix T'(¥) € SO(3), where

T (V) := bdiag(T1(9),1), T1(9) := [y ~sinV ]

sind cos? (2)
acts upon v;, which is the velocity of the i-th agent in the
body-fixed frame, to generate q;, which is the i-th agent’s
velocity in the inertial frame. Note that in the kinematic model
described by (1), the heading angle 6; of the i-th agent does

not necessarily match with the direction of its linear velocity.

Next, we express the dynamics of the i-th agent in the body-
fixed frame as follows:

Mv; + C(v;)v; + g(qi) = T, v;(0) =07, (3
with M := diag(m,m,J) € Ps, where m > 0 is the
mass of each agent and J > 0 is its moment of inertia, and
C(v;) € Ks, for all v; € R®. In addition, the terms C(v;)v;
and g(q;) correspond, respectively, to the resultant centripetal-
Coriolis and gravitational forces / moments applied to the i-th
agent [33], [34]. Furthermore, 7; denotes the control input of
the ¢-th agent. Finally, we will denote the joint state vector of
the i-th agent at time ¢ by z;, where z; := col(g;,v;) € 2.

C. Communication Among the Agents

It is assumed that the ¢-th agent can only communicate with
the agents from the same network that lie within its “communi-
cation range,” which is denoted by ;. Given 7; > 0, we denote
by N.(4,7;) the index-set of all the agents of the network that
lie within the communication range of the ¢-th agent, that is,
Ne(iymi) == {0 € T,\{i} : ) € B(x;n;)}. In particular, we
assume that the i-th agent sends a message omni-directionally,
which can reach any point within its communication range
(broadcast communication), requesting any agent that received
this message to send back a confirmation message. From
that point onwards, the i-th agent can establish direct com-
munication channels with any agents lying in B(z?;7;) so
that it can directly exchange information with them (point-to-
point communication). We will assume that each agent can
determine the relative configurations of the agents lying in
its communication range with respect to itself via exchange
of relevant information. In addition, we will assume that this
exchange of information can take place infinitely fast. In other
words, we won’t explicitly account for any communication
delays although, we will briefly present ways that would allow
us to account for such delays in practice.

It is interesting to note that if A is a compact subset of
R2, then there exists a closed ball B(x°; ), centered at some
point x° € X with radius p > 0, such that X C B(x°; pu),
from which it is easy to show that X C B(z?;2u), for all i €
T,. The situation is illustrated in Fig. 1. Therefore, by taking
n; = 2u, it is guaranteed that N.(¢,n;) = Z,\{¢}. As we will
see later on, requiring that n; > 2y for all + € Z,, may be an
unnecessarily strong assumption. This is because in order for
an agent to be able to compute its own cell from a Voronoi-
like partition, it may not be necessary to communicate with
every other agent from the same network. It is important to
note that by maintaining a large communication range that can
cover the whole position space, X, at each time, an agent may



Fig. 1. Consider a square position space X that is contained in a
closed ball B(x°; ). We observe that all the agents of the network
can communicate with each other by maintaining a communication
range that is greater than or equal to 2u (note that this lower
bound is attained when, for instance, two different agents are located,
respectively, at the vertices A and B, where AB is a diagonal of the
square domain). In most cases, however, the required communication
range can be significantly smaller than 2.

be incurring an unnecessarily high communication cost (e.g.,
battery usage). This is clearly illustrated in Fig. 1 in which the
communication range 7); of the ¢-th agent is sufficiently large to
contain all of its neighbors in the topology of the Voronoi-like
partition illustrated in the same figure (in this topology, two
agents are neighbors if their polygonal cells share a common
edge) and at the same time it is significantly smaller than 2.
In this work, we will assume that all the agents can adjust
their communication ranges so that the latter are sufficiently,
but not unnecessarily, large to allow them to collect all the
(local) information required for the computation of their own
cells from the Voronoi-like partition. This perspective is in
agreement with the paradigm for distributed computation of
standard Voronoi partitions that was proposed in [2], [15]. The
approach that we will employ in this work is, however, very
different from the one adopted in these references.

D. The Fartitioning Problem over the Terminal Manifold T

In this section, we will provide the exact formulation of the
partitioning problem over the terminal manifold 7. In simple
words, our objective is to subdivide the terminal manifold
T into n non-overlapping regions, which we will refer to
as Voronoi cells or simply cells. In addition, each cell will
be uniquely associated with an agent of the network and
in particular, it will exclusively consist of points in 7 that
are “closer” to its corresponding agent than to any other
agent of the network. Here, the closeness between the agents
and an arbitrary point in 7 will be measured in terms of
an appropriate proximity metric. In particular, for a given
z) € {Z°}, we take the proximity (generalized) metric to
be the function §(+; 2) : T — R>( with

3(q; ) = s(q; 2))™Ms(q; 27), “)
where q := col(x,4) and
s(q; 20) == col(A(a? — x), (1 — cos(6) — 9))

+ T(67)v) (5)

i -

In the last equation, A is a known diagonal matrix in Py and
€ is a known positive constant. The choice of the proximity
metric is motivated by the fact that in Lyapunov-based analysis
for steering problems in SE(2) or SE(3) [33]-[35], functions
similar to § are used as generalized energy metrics or Lya-
punov candidate functions. Specifically, the quantity 6(q; 2?)
can be interpreted as the decrease of a relevant generalized
energy that the ¢-th agent will incur for the transition from its
initial state 2 to the state z7(q) € T, for a given q € Q.
By plugging (5) in (4), it follows that

5(a; 20) = m|A @) —x)[2 + [M* o)
+e2J(1 — cos(8Y — 0))?
+ 2m(x? — x)TAT(09)v)
+ 2eJw? (1 — cos(6Y — ). (6)

It is important to note that the proximity metric J is a
non-quadratic function of q. The exact formulation of the
partitioning problem over 7 is given next.

Problem 1: Partitioning Problem over ‘T Subject to Com-
munication Constraints: Suppose that X is a compact and
convex polygonal subset of R? which is contained in the
closed ball B(x°;u) of radius g > 0 that is centered at
some point x° € X, and let Z° := col(2?,...,2Y), where
z? = col(q?,v?), i € T, be the initial joint state of the multi-
agent network in Z". In addition, let n; > 0 be the communi-
cation range of the ¢-th agent, which is an adjustable quantity
for all i € Z,,, and let H := col(n1, . ..,ny). Then, determine
a collection of sets W(Z% H) := {W'(2);m;), i € Z,,} of
the terminal manifold 7~ such that:

() T =Ujer, B'(z0sm),

(i) rint(B* (273 7)) Nrint (W7 (295 n;)) = @, for all 4,5 €
I’ﬂ,’ Z 7é j’

(i) A state z7(q) € T, where z7(q) := col(q,0) and
q € Q, belongs to W' (2Y;n;) for some i € Z,,, if, and
only if, §(q; 2) < d(q; 27), for all j € N.(i,7;), where
§(q; 29) is defined in Eq. (6).

Remark 1 Note that the purpose of conditions (i) and (ii)
is to ensure that the collection of sets W(Z° H) :=
{0"(2%;m,), i € Z,,} forms a partition of 7 in the strict
mathematical sense; in particular, condition (i) ensures that
W (Z°; H) achieves complete covering of 7~ whereas con-
dition (ii) guarantees that the cells comprising 0(Z%; H)
will not overlap with each other. It should also be noted that
the presence of the communication constraints described in
Section II-B are reflected in condition (iii) of Problem 1. By
virtue of this condition, the ¢-th agent is confined to compare
its proximity to a state z7-(q) € T with the agents that lie
within its communication range only.

Remark 2 Besides the existence of communication con-
straints, the facts that the proximity metric in Problem 1 is
non-quadratic and its domain is non-flat make this problem
challenging (for instance, the cells that comprise 203(Z°; H)
may be non-convex, in general). In particular, Problem 1
cannot be directly associated with any well-studied family of
partitioning problems and it is not clear how it can be solved
in a distributed way.



III. THE ONE-PARAMETER FAMILY OF PARTITIONING
PROBLEMS

In this section, we will address the original three-
dimensional partitioning problem over the terminal manifold
T (Problem 1) by embedding it into a one-parameter family
of two-dimensional partitioning problems. Specifically, the
domain of each parametric problem is a two-dimensional sub-
manifold 7y of T, which consists of all states z € T whose
heading angle components are equal to a given ¢ € S!, that
is, Ty ={z €T C Z:2z=2zy9(x), x € X}, where
z9(x) 1= col(x, 9, 0). Note that for a given ¥ € S!, the two-
dimensional manifold 7"y is homeomorphic, in the topological
sense, to the manifold Qy := {q = col(x,9) € Q: x € X},
which is in turn homeomorphic to X'; we write Ty ~ Qg
and Qy ~ X. To address the parametric partitioning problem
in Ty, for a given ¥ € S!', we will need a (generalized)
proximity metric that, in contrast with 4, reflects the fact that
the heading angle component of an arbitrary terminal state
in Ty is constant. In particular, given ¥ € S' and i € T,,
we define the generalized distance of the ¢-th agent, which is
emanating from the state z¥ € {Z°} to a state zy9(x) € Ty,
to be the function §y(+;2?) : X — R where

89(x; z7) := 0(col(x, V); 20). (7)

In light of (6) and (7), we can write dy(x; 2) more compactly
as follows:

§9(x;20) = T2 (20 — %) + 2(2) — x)"rh + o), (8)

where IT := mAZ2 and

rh = mAT(0))v), (%a)
ol = e2J(1 — cos(6) —9))* + |M%v?|2
+ 2eJw? (1 — cos(6) — 19)). (9b)

By completing the square in (8), we take
S9(x;2)) = |H%(X —x)? - 2(x — w?)TH%l_I*%rg + ol
=% (x — 20 — T i) — [T 302 4 o,
We immediately conclude that
69(x: =) = [T1* (x — €0)[ + p. (10)
g =al + I lrh, ph = —[I 282+ 0% (1)
Note that, because dy(x;2z?) > 0 for all x € RZ?, it is

necessarily true that pujy € R for all ¢ € Z,,, given that
why = 69(€;2Y). In view of (10), we conclude that the
proximity metric, dy, for the parametric partitioning prob-
lem over the (two-dimensional and flat) sub-manifold T
of the (three-dimensional and non-flat) terminal manifold
T is a (parametric) quadratic function of x, for any given
¥ € S'. Based on the previous observation and the fact that
Ts ~ Qy ~ X, it is expected (and will be proven later
on) that the solution to the resulting partitioning problem
will be a so-called affine partition [36]. Affine partitions of
convex polygonal domains are comprised of convex polygonal
cells and their combinatorial complexity is similar to that of
standard Voronoi partitions [36].

Next, we formulate precisely the parametric partitioning
problem over a sub-manifold 7y of the terminal manifold
T, for a given ¥ € S'.

Problem 2: Parametric Partitioning Problem over T y Sub-
ject to Communication Constraints: Suppose that X is a con-

vex and compact polygonal subset of R? which is contained
in the closed ball B(x°; i) of radius o > 0 that is centered
at some point x° € X, and let ¥ € S be given. In addition,
let Z° := col(2Y,...,20), where 2¥ = col(q?, v?), i € Z,,
be the initial joint state of the multi-agent network in Z".
Furthermore, let 7; > 0 be the communication range of the
i-th agent, which is an adjustable quantity for all ¢+ € Z,,, and
let also H := col(#,...,ny,). Then, determine a collection
of sets Wy(Z% H) = {W}(2Y;m;), i € I,} of the sub-
manifold Ty of T such that:

() To =Uiez, Bo(=timi),
(i) rint(Wy(29;7:)) N rint(B(29;7;)) = @, forall i, j €
In, i #J,
(ili) A state zy(x) € Ty, where zy(x) := col(x,?,0) and
x € X, belongs to the cell W} (2Y;7;) for some i €
7, if, and only if, dy(x; 2)) < dy(x;2)) for all j €
N.(i,m;), where §y(x; 2?) is defined in Eq. (10).

A. Analysis of the Partitioning Problem over Ty in the
Absence of Communication Constraints

Next, we propose an algorithmic solution technique for
Problem 2 in the absence of communication constraints, that
is, for the special case when n; > 2u, for all ¢ € Z,,, where p
is defined as in the formulation of Problem 2. For this special
case, we will simplify the notation used in Problem 2 by de-
noting the collection of sets as Wy (Z°) = {WV}(2Y), i € T,,}.
In the absence of communication constraints, condition (iii)
of Problem 2 will have to change accordingly. In particular,
for a given ¥ € S', a state z = zy(x) € Ty, where
z9(x) := col(x,9,0) and x € X, will belong to Wy (z?)
if, and only if, dy(x;2Y) < %(x;z?), for all j € Z,\{i}.
This means that, in the absence of communication constraints,
the i-th agent will have to compare its transition cost to a
state zy(x) € Ty with all the agents of the network always
(compare with the formulation of Problem 2). We will say
that, in the presence of communication constraints, any agent
has a smaller set of competitors than it has in the absence of
communication constraints.

Lemma 1: Let Wy(Z°) = {W}(2Y), i € Z,} denote the
solution to Problem 2, when 7n; > 2u for all © € Z,,. Then,
Wy(2)) C Wy(22;m;), for all n; € [0,2u] and Wy(2)) =
By (2 mi) for all m; > 2p.

It is interesting to note that Lemma 1 brings to light an
important issue regarding the well-posedness of Problem 2.
Consider, for instance, the scenario in which no other agent
lies within the communication range of the ¢-th agent besides
itself. In this case, the i-th agent has no competitors and will
conclude incorrectly that its own cell, 27 (20;7;), coincides
with the whole sub-manifold 7 y. Along the same lines, the
fact that (205 7;) 2 Wy(2Y) for all n; € [0,2u], which in
turn implies that U;ez, 85 (22;1m:) D Uiez, Biy(2Y), for all
n; € [0, 2p[, suggests the existence of two possibilities:

Case 1: Some of the cells of Wy(Z° H) have overlapping
(relative) interiors, which is a violation of condition (ii) of
Problem 2.

Case 2: The collection of sets 2y(Z") has “coverage holes”
in the sense that U;ez, Wy (z?) C Ty, which is a violation
of condition (i) of Problem 2.



However, as we will see later in this section, 2 y(Z°) is an
affine partition, where the word partition should be understood
in the strict mathematical sense, and as such it does not
have any coverage holes. In other words, in the absence of
communication constraints, that is, when n; > 2u for all
i € I, Problem 2 will always be well-posed. Therefore, Case
2 will never occur. By contrast, Case 1 is likely to occur, that
is, the cells that comprise Uy (Z"; H) may overlap with each
other (in which case, the collection of sets 2 (Z%; H) does
not form a partition of 7 in the strict mathematical sense).

On the other hand, as we have mentioned before, requiring
that n; > 2u for all ¢ € Z, can be a very conservative
condition in many cases. This is because in order for the -
th agent to be able to compute its own cell in Wy (Z% H),
which is the solution of Problem 2 in the general case,
when communication constraints come into play (that is, the
condition 7; > 2u does not necessarily hold true for all
i € I,), it suffices to have a communication range that will
cover all of its neighbors “in the topology” of 2.,9(Z"), which
is the solution of Problem 2 in the absence of communication
constraints (that is, when 7; > 2u for all ¢ € Z,,). Recall that
the ¢-th and the j-th agents of the network are neighbors in the
topology of 2, (Z°), if, and only if, the boundaries of their
corresponding cells have a non-trivial intersection. Finding a
lower bound on the communication range of each agent so
that Problem 2 is well-posed without requiring 7; > 2u for
all © € Z,, will be the topic of Section III-C. In this section,
we will focus on the computation of the solution to Problem 2
with no communication constraints; this problem, as we have
already mentioned, is always well-posed.

Before we proceed to the description of the proposed
algorithm, we will present and examine the key features of
the solution to Problem 2 in the absence of communication
constraints To this aim, let us consider a pair of generators
(29,29) € {Z°} x {ZO} / # j. Their corresponding bisector
w1th respect to the generalized metric dy, which is denoted
as B(z,27;0s), w111 cons1st of all states in 7Ty that are
equldlstant from z? and 2? with respect to dy, that is, the
states zy(x) € Tg, where x € X satisfies the following
equation:

5o (x;2Y) = 69(x; 29). (12)

J
It turns out that B(z) ,zj ;09) is a line segment that lies in
To.

Proposition I: For a given ¢ € S', the bisector
B (z z? dg9) corresponding to the pair of generators
(29, 27) € {Z°}x{Z°}, i # j, with respect to the generalized
metric Jy is the loci of all states zy(x) € Ty, where x € X
satisfies the following equation:

x'yy(z),2)) = Co(27, 2)), (13)
with
vo(z), 2)) = 2T0(&} — &), (14a)
1 1 i .
Co(2),2)) == [TI2 &7 — T2 &51° + py — pfy,  (14b)

where &}, &), p%) and 1)) satisfy (11).
The derivation of (13) follows readily after substitution of (10)
in (12). Note that the left hand side of Eq. (13) defines a linear

functional over X. Therefore, the same equation describes a
particular level set of a linear functional, which implies [37]

Fig. 2. The projection of the bisector B(ZZ,ZJ,(Sﬁ) into X is a

line segment which is neither (by default) perpend1cular to the line
segment [a:, , wo] (note that the points &9 and a: are the projections
of z{ and zo into X, respectively) nor it passes through the midpoint
of the same segment as does the bisector of = and ::c in a standard
Voronoi partition, which is shown in dashed l1ne It also corresponds
to the collection of all pomts in X that belong to the intersections
of the c-level sets of 6y (+; 2{) and dy(+; 2Y), for all ¢ > 0.

that the collection of all points x that satisfy this equation
corresponds to a straight line in A’. This straight line is
orthogonal to the vector ~yy(2?, z; V) and its distance from the
origin x = 0 (point O in Fig. 2) 1s equal to [Co(27, 2.
Alternatively, the projection of B(z? (519) for a g1ven
9 € S!, into X corresponds to the collectlon of all pomts that
belong to the intersection of the c-level sets of dy(+; 2Y) and
d9(-; 27), that is, the sets {x € X : dy(x;2{) = c} and {x €
X 519(x 2Y) = ¢}, respectively, for all ¢ > 0. Note that these

level sets are ellipsoids centered at & and 519, respect1vely
It is interesting to note that the projection of B(z? 619)
into X divides the latter into two compact sets (assummg that
X is also compact), namely C;; and C;;, which have non-
overlapping interiors. In part1cular the set C; i consists of all
points x € X for which §y(x;2?) < dy(x;2?) whereas Cj;
consists of all points x € X for Wh1ch 0y (x;2]) > du(x; z?).
Fig. 2 illustrates the key points of the previous discussion.

In light of the previous discussion, we will now associate
the solution to the parametric partitioning problem (Problem 2)
with an affine partition of X C R2.

Proposition 2: Let ¥ € S!' be given, and let Z° :=
col(2),...,20), where 2z = col(g),v?) and ¢} =
col(z?,609). In addition, let Wy(Z°) := {W,(2?), i € T,}
denote the solution to Problem 2, when n; > 2y for all « € Z,,.
Then, 2B 9(Z°) is an affine partition with combinatorial com-

plexity O(n)!.

Proof: In light of Eq. (13), the bisector B( »'519),
which is the image of the set {x € X : x ")’19(2 zo) =
Co(z7,2])} under the function zy(-), is a straight line that

lies in Ty, for all the pairs of distinct generators (27, 2) €
{Z°} x {Z°}, i # j. In addition, for any state zy(x) € Ty
that does not belong to the bisector of any pair of dis-
tinct generators, there is a unique index ¢ € 7, such that

'We denote by ©(f(n)) the set of functions F' : Z~q — [0, c0) for which
there exist ¢1, c2 > 0 and ng € Zxo such that ¢ f(n) < F(n) < caf(n),
for all n > ng.



0g(x;27) < dy(x;2y), for all k € Z,\{f}. We conclude
that 2B (Z°) is an affine partition in 7T y. The result on
the combinatorial complexity of 2(Z°) follows immediately
from Theorem 18.2.3 in [36, p. 439]. ]

Note that the partition Wy(Z°) = {W}(2Y), i € Z,}
of Ty is homeomorphic, in the topological sense, to a
partition Xy(Z°%) = {X(2)), i € Z,} of X (recall that
X ~ Ty), where X5(2)) = ma(Uy(2))). Practically,
this means that instead of computing 2(Z°), we should
compute X y(Z°), which is the affine partition generated by
the point-set {Ey} = {&}, € R?, i € Z,} with respect to
the (generalized) proximity metric dy. Despite the fact that
the set {Ey} is the new set of generators, we will continue
writing X' 9(Z°) instead of X y(Ey) in order to emphasize
the correspondence between the cells of X'y and the agents
of the network, which are originally located at the point-
set {Z°} € Z. In our previous work [28], [29], we have
proposed partitioning algorithms that allow the agents of a
network to compute approximations of the boundaries of their
own cells independently from their teammates. The approach
proposed in these references suggests that the characterization
of the boundary bd(X(2?)) of the cell Xj)(2?) of the i-
th agent can be achieved with the application of a bisection
search algorithm over a family of rays {I'(¢},e), e € S'}
that emanate from point £, and cover X. In particular, the
goal of the line search algorithm is to find the intersection of
the ray I'(¢}, e) and the (unknown) boundary bd (X L(z0)) of
X(2?). In this way, one obtains a convenient parametrization
of bd(X7}(2!)) in terms of the unit vector e € S'.

Next, we will present the key ideas of the approach pre-
sented in [28], [29] by adopting, however, an optimization
point of view in lieu of the geometric perspective utilized
therein. This more abstract perspective will help us set the
scene for the development of a novel exact partitioning algo-
rithm, which will be presented in Section III-B. First, we will
make the mild assumption® that {Ey} C int(X). Next, we
consider the following two (mutually exclusive) cases:

Case I: Point £, does not belong to the interior of X’ 19( 9. In
this case, it is not guaranteed that the intersection of the ray
I'(¢),e) and the boundary bd(X}(2?)) will be non-empty
for all e € S'. If, for some e € S', this intersection is non-
empty, then it will either be comprised of two (unknown)
points, which are denoted by xj(i;e) and xj(i;e), or will
correspond to a whole edge of the convex polygon X(2?),
denoted as [:cﬂ(z' e),z5(i;e)] (a singular case occurs when
xj(i;e) = x5(ise), which implies that the intersection
bd(Xy(2))NT(&5, e) is a singleton and in particular, a vertex
of the convex polygon X% (2?)). In both of these two subcases,
we have that

(15a)
(15b)

’Note that by removing this rather mild assumption, our analysis will
change only but slightly, yet the presentation will become more complex
since we will have to discuss separately a list of singular cases that are of
low interest in practice.

where
Qﬁ(i; e, Z,) :=infRy(i;e,Z,), (16a)
09(i5e,Z,) :=supRy(i;e,Z,), (16b)
Ro(ise,I,) :={0>0: &)+ e c X and
(€} + e 2{) < min 0,(E) + pes =)} (160)

In view of (15a)-(16c), it follows that x}(i;e) (resp.,
xj (i; e)) enjoys the following two properties: 1) it is the point
in the segment of I'(§}), e) contained in X that is the furthest
(resp., nearest) to &}, in terms of the Euclidean distance, and
2) it is closer to the i-th agent, in terms of the proximity
metric dy, than to any other agent from the same network.
The characterization of x}(i; e) and xj(i; e) is based on the
observation that at these two points, the continuous function
Di(3Z,) : X — R, where

(L) = 0y (x;2)) —

should change sign as one traverses the ray I'(£%, e) without
exiting X’ (except from some special cases). In particular,
we have that D) (x;Z,) > 0 for all x € [¢}, x}(i;e)], and
Di(x;Z,) < 0 for all x €]ay(i;e), x5 (i;e)[. The sign of
Dy, will change one more time, if zj(i;e) # x}(i;e, X),
where x;(i;e, X) is the point of intersection of I'(£},e)
with bd(X), that is, {x}(i;e,X)} = I'(§j,e) N bd(X);
in this last case, we have that Dj(x;Z,) > 0 for all
x €)xf(i;e), x)y(i; e, X))

min  dy(x; 2Y), (17)

JET\{i} T

If, on the other hand, the intersection of I'(¢},e) and
bd(X}(2?)) is empty, then Ry(ise,Z,) = & and we set

0,(i;e, 7, ) = 400 and g4(i; e,Z,) := —o0; in addition, both
a:% (4 e) and x5 (i; e) will be assigned null values. Intuitively,
when the intersection of I'(¢%, e) and bd(X(2?)) is empty,
we have that D (x;Z,) > 0 for all x € ['(£5,e) N X, that
is, the cost that the ¢-th agent will incur to reach any state
z9(x) € Ty with x € [€}, x/,(i; e, X)] is strictly greater than
the cost that will be incurred by at least one different agent
from the same network to reach the same state.

Case 2: Point &, is an interior point of X7 (2{). In this
case, the intersection of T'(£},e) and bd(X)(z )) will be
a singleton, namely {x}(i;e)}, for all e € Sl; we also
set xy(ise) = &,. In this case, D)(x;Z,) < 0 for all
x € [€,, x5 (i;e)] and, if in addition x5 (i; e) # x)(i;e, X),
then DY) (x;Z,) > 0 for all x €]z} (i;e), (i€, X)].

The two cases that we previously described are illustrated
in Fig. 3. We observe therein that & ¢ int(X}(2))),
and consequently, for different e € S!, the intersection
bd(X}(2))) N T(€,,e) will either be empty or consist of
two pomts (except from the singular cases in which the ray

(Eﬁ, e) passes through vertex A or vertex B). By contrast,
¢l € int(X) (= ?)), which means that bd(AXY (= 2)NT(&y,e)

will be a smgleton for all e € S*.

As shown in [27]-[29], in which similar classes of partition-
ing problems were considered, one can utilize simple bisection
search algorithms to characterize x} (i; €) and x5 (i; e). Such
algorithms generate sequences of ‘“query” points that will
eventually converge within the prescribed error tolerance to
the desired, unknown points of interest. Because, as is stressed
in [16], there are many practical problems in which a Voronoi-



(ieX)

mz’?(]* €, ‘X///).
D) >0/
N/

Fig. 3. Point &) belongs to the interior of X7, which implies that
the intersection of the ray T'(&), e) with the boundary bd (&) of
the cell A% 7 will be a smgleton for all e € S'. On the other hand,
point &5 does not belong to X'y, and in this case, the intersection of
I'(&y, e) with bd(Xy) can 1) be empty, 2) consist of two points or
3) be a single point (vertex of a cell), namely point A or point B.

like partition of a given set have to be known with high ac-
curacy, the tolerance error for the bisection search algorithms
that seek for ) (i;e) and x}(i; e) should be very small or,
equivalently, a large number of “query” points have to be
generated during the iterative process. It is also possible that
the bisection search may end up performing vacuous searches
along rays that do not intersect with the boundary of the cell
of interest, in which cases @} (i;e) and x5 (i;e) should be
assigned null values, as we have already explained. Note that
during a vacuous search, the bisection search algorithm, which
is an exhaustive and consistent algorithm, will generate the
maximum number of query points (maximum number of steps)
that the prescribed error tolerance dictates before it returns a
null output. As we will see next, a careful analysis based on the
interpretation of the problems of finding x (i; ) and x5 (i; e)
as optimization problems, which we discussed before, will
reveal that it is possible to characterize these points exactly at
a finite number of steps, which is in sharp contradistinction
with the bisection-based algorithm, which can characterize the
same points only asymptotically.

B. An Exact and Finite-Steps Algorithm for the Partitioning
Problem over Ty in the Absence of Communication Con-
straints

Motivated by the previous discussion, we will next propose
a partitioning algorithm that characterizes exactly and in a
finite number of steps the boundary points of the i-th cell of
the Voronoi-like partition X y(Z°) of X, for any i € Z,.
This algorithm aims at finding the boundary points of the
cell X%(2?) by solving the two optimization problems that
are described in terms of Egs. (16a)-(16c). The main idea
of the proposed approach lies in the fact that the solutions
to the previous optimization problems correspond to two
points, namely, x} (¢;e) and x4 (i;e), at which, as we have
mentioned, the sign of a certain continuous function changes
as one traverses the ray I'(£), e) without exiting X (except
from some special cases); in other words, the points mg(i; e)
and x5 (i; e) should be roots of the latter function. Next we
describe the process for finding these two points by leveraging
the previous remarks.

First we observe that if, for a given e € S! and i € Z,,, the

set Ry(i; e, Z,), which is defined in Eq. (16¢), is non-empty,
then o, (i;e,Z;,) and 0y(i; €, Z,,), which are defined in (16a)
and (16b) respectively, will be (finite) non-negative numbers
that belong necessarily to the set Ry(; e, Z,)U{|x} (i; e, X)—
&}|}, where |z} (i; e, X)—&}| is equal to the length of the line
segment that corresponds to the restriction of I'(€}), e) in X (as
we have already mentioned, x;(i; e, X') denotes the point of
intersection of I'(£%, e) and bd(X)) and Ry (i; e, Z,,) denotes
the set of non-negative numbers that satisfy the following
equation (in p):

09 (&) + 0e; 2)) = b9 (€5 + 0e; 27), (18)
for all j € Z,\{i}; we denote each of these solutions by
09(3; j, €) and thus, Ry(i;e,Z,) := {o9(i; k,e) € R>g, k €

Z,\{i}}. Note that, in view of (18), all points y € X with

y=£&,+ ge where p € Ry(i;e,Z,), will also belong to the

bisector B(z{, 2Y; 8y) that corresponds to the pair (z{,29) €

{Z%} x {ZO} Equat1on (18) can also be written as follows:
P e? + uly = o*M¥ e + |IT* (&) — &) 2
+20(&) — &) Tle +
from which it follows that o =
following linear equation:

ay(isj,e)o+ Bo(i,j) =0, j € L\{i}, (20)
where ay(i; ], e) = 2(&% — &))" Me and By(i,j) = p) —
Wy + \H% (&, — £§)|2. Therefore,

o) — Fo =1 — T (&) — €))P

2(¢5 - E%)TH@
provided that the vector TI(&}, — &%) is not orthogonal to the

vector e; otherwise, in the definition of the set Ry(i;e,Z,)
we should replace Z,,\{i} with Z,,\ {4, j}. Note that the vector

(19)
09(i;7,€e) satisfies the

) 2n

(519 %) is orthogonal to e if, and only if, the vector
Yo (29, ?) which is defined in (14a), is orthogonal to e.
Since the vector ’m(zz,zg) is orthogonal to the bisector

B(29, zj ; 09) (refer to the discussion following Proposmon 1),

we conclude (assuming & # 519) that TI(&} — 519) is orthogo-
nal to the vector e if, and only if, e is parallel to the bisector
B(29, z;; 9:55). Obviously, in the latter case the intersection of
the ray I'(£}), e) and the bisector B(z{, 2; d) will be empty,
and consequently, Eq. (18) will have no solution.

In addition, we should remove from Z, each index j
for which either gy(i;j,e) < 0 or the corresponding point
Yy = 51'9 + 09(i;j,e)e does not belong to the interior of
X, that is, py(i;7,e) > |x(i;e, X) — &}|. Finally, if there
exists a non-empty set J, where J C Z,\{i,j}, such that
00(454, L) = 09(3;£,Z,) for all £ € 7, then all the indices in
J should be removed from Z,,, to avoid any duplicates. After
removing all these indices, which we refer to as inadmissible,
we obtain an index set Z! = Z/(i;e,d) (henceforth, we
will simply write Z, to avoid the notational clutter), which
is a subset of Z,\{i}. Let us assume that Z/ contains
N = N(i;e,d) elements with 1 < N < n — 1 (later on,
we will separately discuss the special case in which Z,) = @
or, equivalently, N = 0 when necessary). We subsequently
associate the index set Zy = Zn(i,e,9) := {1,...,N} to
the index-set {j1,...,jn}, which in turn corresponds to the
permutation of Z, with

0< Qﬁ(i;jlae) < - < Qﬁ(la]N7e) < |£c19(z,e,X)



where index(-;4) is a bijective mapping from Zy to Z. such
that j, := index(k;i), for k € Zy. Furthermore, to each
0v(1; ji, e) with k € Ty, we associate the following point:
Ty (i; ju, €) ==&y + oo (is jr,e)e, k€Iy.  (22)
In addition, for a given e € S, we define the function
Ai(;e): (&), e) N X — R, where
Al(x;e) :=dg(x;2)) — ;I&}IID/ 59(x; 2). (23)
A key observation that our algorithm will exploit is that
Ai(;e) is a continuous function whose sign is preserved
over each of the following line segments: &}, @y (4; 71, €)]
and |xy(i; jk, €), xy(i; jry1,€)|, forall k € Zy N[1, N — 1],
and |zy(i; jn, e), x)y(i; e, X)[. Note that the endpoints of
the previous intervals correspond to candidate roots of the
equation A% = 0. For this reason together with the continuity
of AY, it follows that the sign of A} does not change over each
of these intervals (sign changes can occur only at the endpoints
of the previous intervals that are roots of the equation A% = 0).
Let us now consider the following two cases’

Case I: If Alj(x;e) > 0 for any x €€}, xy(i;51,€)|
(and thus, as we have already explained, for all €
1€5, 29(i5j1,€)[, in view of the continuity of A}), then &)
will not belong to the interior of X'j. Thus, it is possible that
the intersection of T" and bd(X’}) will be empty in which case
both )] and x§ will be assigned null values. Note that in this
last case, A% (x;e) > 0 for all x €]€)), z/y[.

If the intersection of I' and bd(X’) is non-empty, or equiv-
alently, it is not true that A% (x;e) > 0 for all x €]&}, =y,
then this intersection will either consist of two points, namely
xy and xj, or it will correspond to a whole edge of X
that is denoted by [z}, x5]. (When xj = x5, we have a
singular case in which the previous edge is condensed to
a single vertex of X’}). Next, we describe how to charac-
terize xj and x§. In particular, if & € Zy N [1,N — 1],
is the smallest index for which Al(x;e) < 0 for any
x €lxy(i; jk, €), To(i; jrr1, €)[, then we set 7V := ji. If there
is no such index k, the only possibility is that A% (x; e) < 0 for
any X €|y (i; jn, e), [, in which case we set jV (i; €) := jn
and &} := xy(i;5" (ise), e).

We continue with the characterization of x§. To this
aim, we seek for the smallest index ¢ € Zy N [k, N — 1]
such that A%(x;e) > 0 for any (and thus for all) x €
ey (4 jo, €), @9 (i; jos1,€)[. If such index ¢ exists, we set
jo(i;€e) := jo and x5 := xy(i; j°(i; €), e). Otherwise, there
are two possibilities. The first one is that A% (x; e) > 0 for any
x €]xy(i; N, €), [, in which case we set 4 (i; e) := jy and
x5 = xy(i; 72 (i; €), ). The second one is that A% (x;e) < 0
for any x €]a, x}[, in which case we set x5 = ;.

Case 2: If, on the other hand, A%(x; e) < 0 for any (and
thus for all) x € [£5, 29 (4;51,e)[, then &, will belong to
the interior of X. In this case, we set z := &) and in
order to find w@, we need to find first the smallest index
k € Iy N [1,N — 1] such that Al(x;e) > 0 for any
X €lxy(i;jk, e), xy(i;jrt1.€)[. If such k exists, we set
Jj4(ise) == jr and x§ := y(i;j°(i;e), e). Otherwise, we
check if Al (x;e) > 0 for any x €]xy(i; jn, €), [, in which

3In the discussion of these two cases and in order to avoid the notational
clutter, we will remove the arguments from the following variables: mg, mﬁ,

x!y, X% and T, given that both i, £ and e will be fixed.

case we set j°(ije) :=
Finally, if Al(x;e) <
xh =zl

jn and xf = xy(i55°(ise), e).
0 for any x €]&}, x)[, we set

In the special case when Z/, = &, we consider again two
cases. Specifically, if it holds true that

L=0(€5:2Y) < min (€ 2D),
Hy (&5: %) eI\ (i} (€55 20)
then xj := &, and x4 = ;. Otherwise, both x4 and x}
will be assigned null values.
The pseudo-code of the algorithm that we just described
is given in Algorithm 1. The outputs of Algorithm 1 are the

Algorithm 1 Exact Line Search Algorithm

1: procedure EXLSEARCH

2. Input data: Z°, 9

3: Input variables: i, e, I,

4: Output variables: x3 (i;e), x5(i;e)
5: 70« T,\{i}

6 for j € Z/ do

7: if j is inadmissible then

s 1) — I\ {5}

9: In:=1{1,...,length(Z))}

10: if Zyy = @ then

11: if Mi’g < mingezn\{i} (519(539; Zg) then

12: xy(ise) «+ &5 x5(ise) « (i e, X)

13: else

14: xy (i;e) < null; x5 (i; e) < null
return

15: for { € Iy do

16: Je < index(¢;1)

17: compute x5 (i; ¢, €) via (22)

18: if / = 1 then

1 x  (wo(is ju,€) + €5)/2

20: else

21: X (a:lg(i;jg,e)—&—:c@(i;jg,l,e))/Q

22: Di + Al(x;e)

23 Dy — Ah((zo(isin, e) +xy(ise, X)) /2;e)
24: if ©7 < 0 then

25: xy(ise) + &

26: jo <+ min{f e IyU{N +1}: D, >0} -1
27: if 72 # null then

28: x5 (i;e) < xy(i;index(j2;4), )

29: else

30: xf(ie) « xy(i;e, X)

31: else

32: jV < min{f e N +1}: D) <0} -1

33: if 7V # null then

34: x)(i;e) < xy(i;index(jV;1), )

35: j% < min{l € Iy N[j",N]: ©},, >0}
36: if 7% # null then

37: x5 (i;e) < xy(i;index(j%;19), e)

38: else

39: x5 (i e) « xly(i;e, X)

40: else

41: xy (i;e) < null; x5 (i; e) + null

two points, x (i;e) and x4 (i;e), for a given i € Z,, and a
given unit vector e. To obtain a polygonal approximation of
the boundary bd(X}(2?)) of the cell X% (2!), we will utilize
a finite grid E over S!, where E := {ey, k € Z>o N [1,k]}



and k is a positive integer (design parameter). The idea is to
characterize @} (i; e) and x (i; e) for each e € E and remove
all points Y (i; €) that coincide with £7. The implementation
details of this idea are given in Algorithm 2. Note that the
polygonal approximation of the cell X;(z!) obtained in this
way is exact at x (i;e) and x4 (i;e) for each e € E and
is computed in a finite number of steps, in contrast with
our previous work [27]-[29], in which these boundary points
were only characterized asymptotically via a bisection search
algorithm.

Algorithm 2 Independent Computation of a Cell by its
Associated Agent

1: procedure CELLCOMP

2. Input data: Z°, 9

3: Input variables: i, E, I,

4: Output variables: bd(Xy)

5: S+ o .

6: for each k € {1,...,k} do

7: e < e

8: {xj(i;e),x5(i;e)} = EXLSEARCH(i, ey, ZL,;
2°.9)

9: Sk Sk_1

10: if x5 (i;e) # null then

11: S <« S U {331%(2, e)}

12: if (i;e) # £, then

13: Si < S U {(BZ(Z, e)}

14 bd(X}Y) + S

C. Analysis of the Partitioning Problem in the Presence of
Communication Constraints

Next, we present a distributed algorithm that solves Prob-
lem 2 in the presence of communication constraints, that is,
when it is not necessarily true that n; > 2u, for all ¢ € T2
In this case, the ¢-th agent of the network may not be able
to correctly characterize the minimum or the maximum of
MRy (i;e,T,) given that it may not be in position to exchange
information with all the other agents. This in turn would imply
that the ¢-th agent may not be able to correctly compute the
boundary points of its own cell. We will henceforth denote
by Xy (Z°; H), where Xo(Z% H) = {X}(=0in:), i € I,}
and X% (20:m;) = ma (WY (2);m;)) for i € I, the partition
of X for a given ¥ € S! in the presence of communication
constraints. As before, the cells of Xy(Z% H) are homeo-
morphic, in the topological sense, to the cells of Wy (Z°; H).
It should be noted that the ¢-th agent is now confined to search
for the minimum and the maximum of the following set:

Ry (is e, Ne(i,m:)) == {0 € R>o : €, +oec X and
o(€ +oesz) < min 05(&) +0e;2)}

in lieu of Ry(i;e,Z,), which is defined in (16¢c). Now, let
us henceforth denote by A (i;0,(Z°)) the index set of the
neighbors of the i-th agent in the topology of the partition
U (Z°) when 7; > 2u (no communication constraints). Note
that the neighbors of the i-th agent in the topology of .,9(Z°)

4The reader interested in applications in which the condition 7; > 2u holds
true for all 4 € Z,, (in such applications, the communication constraints will
not play a significant role in the partitioning problem) may skip this section

and go directly to Section III-D.

are the agents whose cells share a common edge with 5% (2?),
which is a convex polygonal cell.

Before we proceed any further, it is important to stress that
the outcome of Algorithm 2 would remain the same, even if
we have replaced Z° (input data) with the joint state vector
that corresponds to the concatenation of the initial states of the
i-th agent and its neighbors in the topology of the partition
Wy (Z°). As we have previously explained, the neighbors of
the i-th agent are the only agents involved in the necessary
computations for the characterization of its cell, 2y (2)). Be-
cause of this fact, one can claim that Algorithm 2 can be easily
implemented in a distributed way. The important nuance here
is that the i-th agent is in no position to know its neighbors
without having computed its own cell first; however, an agent
cannot compute its own cell in a distributed way without
knowing its neighbors, which leads us to a cyclic argument.
Therefore, in the presence of communication constraints (in
which case it is not necessarily true that n; > 2u), the i-th
agent will have to adjust its communication range, 7);, so that
it includes at least the agents that correspond to its neighbors
in the topology of 2y (Z°) (which is the partition that solves
Problem 2, when n; > 2u for all ¢ € Z,,). The objective of the
i-th agent is to use a communication range 7; € [0,2u] that
strikes a balance between being sufficiently large to allow it to
communicate with its neighbors and being as small as possible
in order to keep the incurred communication cost low. In other
words, the ¢-th agent is seeking for a communication range
n; € [0,2u] such that N.(i,7;) 2 N (i;0(Z")), which in
turn implies that 0% (2Y;n;) = B} (2Y), as we show next.

Proposition 3: Let By(Z°) := {B}(2?), i € Z,,} denote
the Voronoi-like partition that solves Problem 2, when n; > 2u
for all 7 € Z,, (absence of communication constraints). If, for
a given i € Z,, there exists 7;" €]0, 2] such that N (i,7;) 2
N (i;985(Z°)), then By (2%;n;) = Wiy (2Y), for all n; > nr.

Proof: Tt suffices to show that
X (2)im:) = ma (B (275m:)) = w2 (W (27)) = Xp(27),
for any n; > n;. By its definition, every cell of the affine parti-
tion X' y(Z") can be written as the intersection of n— 1 closed
half-spaces confined in X, which is by hypothesis a compact
and convex polygonal set. In particular, the cell X (2?), i €
T, can be written as follows [36]: X} (2?) = ﬂjezn\){i}cij,
where C;j = {x € X : dp(x;2]) < dy(x;2%)} for
j € Z,\{i}. We conclude that X (2?) is a convex polygon
which may only share its edges with its neighboring cells,
which implies that X(2{) = Njen(i;x,(20)Cij» Where
N(i; X9(Z°)) = N (i;8(Z°)). Therefore,
Njez,\(i} Cis = NieaCij = Njen(ix,(20)Cij»
for any index-set J with N(i; X4(Z°)) € J C Z,\{i}. The
result follows readily by taking J := N.(,n}). [ ]
In view of Proposition 3, the inclusion /\/’C(i7 ) 2
N (i;985(Z°)) implies that
@ﬁ(i;eaNc(iani)) :Eﬁ(i;eazn)a (243)
0,(ise, Ne(i,m:) = 0, (i€, Ly). (24b)
It should be stressed here that the ¢-th agent needs to be
in position to determine whether the inclusion N (,7;) 2
N (i;%9(Z°)) holds true or not, via a relevant stopping crite-

rion whose verification is solely relied on (local) information
obtained from agents lying within its communication range.



The following proposition stresses an important monotonicity
property enjoyed by Voronoi-like partitions, which will prove
useful in the subsequent analysis.

Proposition 4: Let N (i;209(Z°)) denote the index-set of
the neighbors of the i-th agent in the topology of Uy(Z°),
for a given ¥ € S', and let NV C N C N(i;By(ZY)).
In addition, let {Z'} = {2 € {z%, j € N’} u {=2}
and {Z"} = {2} € {ZO} j € N"} U {20}, and let
Z' and Z" denote the corresponding joint vectors in Z™
and Z"?, respectively, where n; := card(N’) + 1 and
ny = card(N"') + 1. Moreover, let By(Z') and By (Z")
denote the partitions that solve Problem 2 when 7; > 2u for all
i € I,,, with Z’ and Z" in lieu of Z°, respectively. In addition,
let Wy (20| Z’) and V(22| Z") denote, respectively, the cells
from the partition ,(Z’) and Wy(Z") that are associated
with the agent emanating from the state z0. Then,

By(2712') 2 Bo(2712") 2 By (=) (25)
Remark 3 Proposition 4 implies that the cell associated with
a particular agent will either remain the same or expand, if
any agents are removed from its network. This result is quite
intuitive given that the more agents the network has, the harder
would be for any of its agents to “claim” that a particular state
in Ty is closer to them than to any of their teammates (since
there are more ‘“competitors”). It is interesting to note that
Lemma 1 is a direct consequence of Proposition 4.

Next, we propose an algorithm that will allow the i-th agent
to discover all of its neighboring agents in the topology of
0,9(Z°) by adjusting appropriately its communication range.
To this aim, let 7; = 7Y > 0 be the initial communication
range of the i-th agent and let 2% (2);1?) be its corresponding
cell. Now let n} > n? be its communication range at stage
k = 1 which is such that N.(i,n}) 2 N.(i,7Y). Let
¢ € Ne(i,n})\N.(i,1?). Then the (-th agent, which was not
within the communication range of the i-th agent at stage
k = 0, can directly exchange information with the Ilatter
via a communication channel established at stage & = 1.
In addition, let us assume that the ¢-th agent is closer, in
terms of the metric dy, to at least one of the points in the
relative boundary of 2 (2Y;71?). Then, we claim that the
communication range 79 is not sufficiently large to allow the
i-th agent to exchange information with all of its neighbors in
the topology of W, (Z°), that is, N.(i,1?) C N (i;By(ZY)).
Next, we prove this claim.

Proposition 5: Let 771 s 17Z > 0 and suppose that

No(i,nF ) D No(i,nF) for some k € Zsg. If there is ¢ €
N(4, nzcﬂ)\/\/’ (4, 771) such that dy(x;2)) < dy(x;2Y) for
some x € bd(X%(2Y;nF)), then N.(i,nF) C N (i; %@(ZO)).

Proof: By hypothesis, there is a state zy(x) €
thd (B (22;7F)) € B (2%7F) 4such that §y(x;2)) <
by(x; 2?). Therefore, zy(x) §é By (z; ), and we conclude
immediately that By (2;nF) 2 B} (2Y). This in turn im-
plies that N.(i,7¥) C N (3 ‘Ug(ZO)) in light of Proposi-
tion 4. We claim that actually N.(i,7¥) € N(i;B4(Z°))
for if N.(i,nF) = N(z U5(Z°)), then we would have
W24k = %’( 9), which contradicts the fact that
0 (25nF) 2 Wy (= ), which we have already proved. We
conclude that A, (i,nF) S N(i;89(Z°)). [ ]

The upshot of Proposition 5 is that, at stage k, the i-th

agent should increase its communication range to 77;”1 > nk,
if it is not true that all the points in the relative boundary
of its own cell, which was computed at stage k, are closer
to it than to any other agent that would lie within the closed
ball B(z{;7"™"). The previous observation leads naturally to
the following update law for the ¢-th agent’s communication
range:

0t = min{ynf, 20}, k€ Zso, (26)
where fy > 1 (typically, v = 2). Note that otherwise, that is, if
S89(x;29) > 8y(x; 2?) for every x € bd(X(22;7F)) and for
any £ € N (3, 771““)\/\/'0(1'7 n¥), we will not be able to conclude
with certainty that N.(i,7F) D N (i;0(Z")). The i-th agent
will have to keep increasing its communication range until it
successfully discovers all of its neighbors in the topology of
0,(Z°). The occurrence of this event should be checked at
each step via a relevant stopping criterion.

Unfortunately, the techniques and the stopping criteria used
in [1], [15] for the discovery of the neighbors of an agent
in the topology of the standard Voronoi partition cannot be
used in our case. This is because the index-sets N_(7,7;)
and N (i;%09(Z")) are not induced by the same metric; in
particular, the first one is induced by the Euclidean distance
whereas the second one by the (generalized) proximity metric
dy. Next, we show how one can account for this “metric
mismatch.” To this aim, let 6})(n;) denote the maximum value
of §y(+;2?) over X% (29;7;), that is,

65 (i) = max{dy(x;2%) 1 x € Xh(20;m:)}. (27)
Because in the formulation of the partitioning problem over
T the position space X is assumed to be a convex and
compact polygonal set, all the cells of Xy(Z°; H) will also
be compact and convex polygons. Therefore, the restriction
of the convex quadratic function d§y in the cell X (2);7;)
will always attain its maximum value in bd(X%(z?;7;)), and
specifically, at one (or more) of its vertices [38], for all = € Z,,.
Now let x4 ();) be the corresponding maximizer, which is not
necessarily unique. Unless Xy(7);) belongs to the boundary of
X, there exists at least one j € N.(i,7;) such that the latter
point is equidistant from the i-th and the j-th agents in terms of

09, that is, 0y (%o (1:); 2) = 09 (X (m:); 2) = 05(n;). In this
case, it 1s also true that Xy(n;) € bd(gﬂ(m)) N bd(E5 (),
where 819(771) = {x € X : §y(x;2)) < 85(mi)}, for
¢ =i, j, are the 8 (n;)-sub-level sets of b9 (-5 27) and 6y (- 2),
respectlvely, Wthh are (closed) ellipsoids in X centered at

¢i and &). Note that E4(m;) = {x € X : |H2(£19 -
x)? < 61 Y(n;) — gy}, which implies that &) C {x €
X |H2(£J -x)? < &)} = Eﬁ(nl) (the previous
inclusion follows readily in view of xf, > 0). In the light of
the Rayleigh quotient inequality together with the definition

of E7(n;), we have that
5:9(%) 2 |HE(539 - X)|2 2 Amin(H”é% - X|27
for all x € E7(1;), which in turn implies that
‘519 - X| < (nz)/Arnin(H) = %(m),

for all x € Eﬂ(m). It follows immediately that
B(&5;¢i(m:)) 2 Ey(n;). Now, let us consider the stripe S
that is formed by the collection of all balls of radius ()
which are translations of B(&};7%(n;)) and are tangent to

(28)



the boundary of X(2?;7;), as is illustrated in Fig. 4 (in this
figure, the balls of the str1pe S are depicted with dashed lines).
Note that any generator 519 € {Ey} that does not belong to

(2 ,m) and whose distance from bd(X’}(29;7;)), in terms
of 8y(+; 27), is less than or equal to &)(n;) will belong to S.
In addmon the stripe S will be contalned itself in the closed
ball ( 9:40%(n;)), which is centered at the initial location
of the ¢-th agent and has radius

Yy (mi) = vy (mi) + di (), (29)
where dj)(n;) denotes the maximum (Euclidean) distance
between ¥ and the boundary of X (z?;7;), that is,

dy(n;) = max{|a] — x|, x € bd(Xy(2];m))}-
Again, the maximum in the previous expression will be

attained at one (or more) of the vertices of the convex and
compact polygon X (2?;n;) [38].

Propositton 6: The closed ball B(z?;7;) will contain the
point-set {E},} = {&), ¢ € N(i; mﬁ(ZO))} provided that
;> mm{wﬂ(m) 2u}, where % (n;) is defined in (29).

Proof: Let &5 € {E%}. By definition, the cell X%(29) €
X(Z°) that is assomated with &5 will share a common edge
with the cell X% (2)) € Xy(Z°). Consequently, there exists
a point x € bd(X %(z?)) that is “equidistant” with respect
to 8y from the i-th and the ¢-th agents, that is, dy(x;2)) =
89 (x; 2Y). Now let &%) = maXy e xi (20) 09 (Y; 2Y). We claim

that 51’9 = 6(2u), where &5(-) is defined in (27). To prove
this, we ﬁrst show that the non-negative (and thus lower
bounded) function &(-) is a non-increasing function of 7;
over [0,2u]. To this aim, it suffices to note that given two
communication ranges, namely n} and n;, with n} > n;, we
have that N.(i,7;) € Nc(i,m;), which in turn implies that
WL (29 m)) C W (29;7m;), in view of Proposition 4. We also
know that N.(i,2u) 2 N(i;U0y(Z°%) = N(i; Xy(Z7)),
which implies that X% (29;2u) = X (2?). Then, in view
of the monotone convergence theorem from real analysis, it
follows readily that maxyexg(z?) 89 (y; 20) = 8% = 04 (2u) =
limy_,o0 8 (nf), where {nf}rez., is a non- increasing se-
quence of positive numbers such that limg ;o nt = 2u
The fact that 6% (n;) is a non-increasing function of 7; also
implies that for any n; € [0,2u] and for the same point
x € bd(Xy(2))) € Xy(22;m;), which is not necessarily a
boundary point of X (2Y;7,), it holds that

0y (x5 27) < by = 0j(2u) < 5y(mi), [0, 24).
However if 69(x; 20) < 6 (771) then x belongs to the ellipsoid
Ey(n)) = {x € X : |IT* (&} — x)* < §(m)}, which is
contained necessarlly in S U X% (2% 7;). Because, Efg(m) C
(SU XZ( 20:m;)) € B(x 177/’19(771)), we conclude that ¢ €

( PRl %9 (7]1)) u

Before we proceed any further, we will need the following
lemma.

for all n; €

Lemma 2: Let 7 > 0 and w > 0 be such that |[v)| < ¥ and
|w?| < w, for all i € Z,, respectively. Then, |r}| <7, where
7 := Amax(A)m7, for all i € Z,, and all ¥ € S'.

Proof: In view of Eq. (9a), we have that
ryl < m[ATH(O)V)| < momax(A)T1(0])07| =
MAmax(A) V0] < Apax(A)mp, for all i € Z,, where
we have used the facts that opa(A) = /Amax(A2) =

A2 (A) = Apax(A), given that A is a diagonal matrix
in Py, and |T1(69)0?] V0|, given that T1(6?) is an

orthogonal matrix. |
Next, we present a condition that will serve as the stopping

criterion of the iterative process for the discovery of the
neighbors of the i-th agent.

Proposition 7: Let v, w, and T be positive constants defined
as in Lemma 2 and let ¥ € S' be given. In addition, suppose
that for a given 7; > 0, we have that n; > crlby(n;) (crlb:
communication range lower bound), where

erlby (1;) := min{v (i) +7/Amin(T0), 2}, (30)
where 1% (n;) is defined as in (29). Then, the closed ball
B(zY;m;) contains all the neighbors of the i-th agent in
the topology of the partition 2,9(Z°), which corresponds to

the solution of Problem 2 when 7n; > 2u, for all 1 € 7,
that is, N.(i,m;) 2 N(i;%0(Z")), which also implies that
o(20mi) =Wy (2]).

Proof: In view of Proposition 6 and its proof, it follows
that &) € B(z0;4%(n;)) for each j € N(i;B9(Z°)) given
that n; > crlby(n;) > min{4% (n;), 2}, which in turn holds
true in the light of (30). Consequently,

o —afl = Jo? — & + € — o] <

< (i) + |77

< aby(ni) + UmaX(H_1)|Tf9|

< Py(mi) + 7/ Amin (1),
where in the previous derivation we have also used the
triangle inequality together with Lemma 2, and the fact that
Omax(IT™Y) = 1/ min(II) = 1/Anin(IT), which holds true
given that IT is a diagonal matrix in P, (note that in this case,
Umin(H = \//\min(l_-[2 \/)\mln = )\min(H))- We
conclude that if n; > crlbl(n;), where crlbfg(m) is defined
as in (30), then the closed ball B(w?;m) will contain the
set {x0, ¢ € N(i;%y(Z°))}, from which we immediately
conclude that NV, (i,7;) 2 N (i;B5(Z°)). [

) — & + 1) — ]|

Remark 4 It is important to note that (30) is an implicit
inequality, given that 7); appears at both of its sides.

The step-by-step description of the distributed algorithm for
the computation of the (boundary of) cell X (=) is given
in Algorithm 3. This algorithm also provides a value Y >
0 such that the inequality 7; > crlbj(n;) holds true for the

communication range 7; = 7.

Remark 5 In the proposed approach, the i-th agent computes
its own cell independently from the other agents of the same
network while discovering in parallel its neighbors in the
topology of the Voronoi-like partition. In addition, we have
made the assumption that the ¢-th agent can essentially execute
Algorithm 3 “instantaneously.” It is actually not difficult to
explicitly account for the effect of the time period between
the execution of two consecutive while loops of Algorithm 3
on the required communication range of the i-th agent. To this
aim, let us denote by 7 an upper bound on this time period.
Then, the update law for the communication range of the i-th
agent at stage k + 1 should be given by

k+1

nitt = min{ynF + on, 24}, (1)



Algorithm 3 Distributed Algorlthm for the Independent Com-
putation of the i-th Cell of X y(Z°; H) by the i-th Agent

1: procedure DISTRCELLCOMP

2: Input data: Z°, 9

3: Input variables: i, E, n;, v

4: Output variables: bd(Xy), 7}

5: k e 0

6: T) N

nA{ZD) (0 (20 e N i)} U (20}

8 bd(X}(Z))) = cELLcOMP(i, B, N, (i,nF); Z2,9)

9: compute crlbﬁ(nl ) via (30)

10: while 7]1 < crlbly(n¥) do

1 ek

12: {20} + {20 € {2°}: (e N(i,niT)}uU
=)

13: bd(X5(Z),,)) = cELLCOMP(i,E,N (i, n}™");
Z}11,9) ,

14: compute crlby(nF™) via (30)

15: k«—k+1

16: bd(X’ ) + bd(Xy(ZY))

17: 7719 — 771

where 7 := 20T with © be defined as in Proposition 7. Note
that the correction term, 07, corresponds to the maximum
increase on the relative distance between the ¢-th agent and
any other agent from the same network that can take place
within 7 units of time.

D. The Partitioning Problem over the Terminal Manifold ‘T

After having addressed the partitioning problems over the
terminal manifold 7Ty for each ¥ € S' (Problem 2), the
solution to the partitioning problem over 7 (Problem 1)
will follow readily by stacking the solutions to the para-
metric problems next to each other as the parameter ¢ runs
through S'. In particular, in the special case in which no
communication constraints are enforced, that is, n; > 2u
for all ¢+ € Z,,, we have that the solution to Problem 2 is
simply the partition B(Z°) := {B'(2), i € Z,}, where
W' (2Y) 1= Uges: [ By (2?) x {9}], i € Z,. In the presence
of communication constraints, there is one additional step that
needs to be made, namely to find a uniform lower bound on 7;
that is independent of 1. In particular, Proposition 7 together
with Algorithm 3 allow us to characterize a positive number
7} such that B (20;n,) = ‘Hﬁ( 9) for all n; > 7719 and for
a given ¥ € S'. Then, the maximum of 7% over S!, which
is always attained and is denoted by n;, will be such that
m’l( ’L ’ 7’1) mz( ) fOI' all i Z 771

Remark 6 In order to simplify the presentation, it will be
henceforth assumed that the communication range of the i-th
agent, n;, satisfies the following inequality: n; > n7, for all
1 € T, and consequently, there will be no need to distinguish
between the partition 2(Z°) and the partition 20(Z°; H) and
their cells.

IV. COVERAGE-TYPE LOCATIONAL OPTIMIZATION IN Ty
AND T

In this section, we address a class of coverage-type loca-

tional optimization problems for multi-agent networks with

Fig. 4. The ¢-th agent will increase its communication ran%e
until it discovers all of its neighbors in the topology of Wy(Z

(or, equivalently, in the topology of X 79( 9)). To s1mp11fy thls
illustration, we have assumed that py = ,uﬂ = 0, which implies

that the ellipsoids 819 (n:), 819(77,) and Eg (n;) are all equal modulo
a linear translation.

planar rigid body dynamics based on a “divide and conquer”
approach that leverages the proposed Voronoi-like partitions

of Ty and T.

A. Locational Optimization over T y

In a nutshell, the locational optimization problem over 7T y,
for a given ¥ € S!, seeks for the joint position vector of
the network, X™* := col(x7},...,2}), that minimizes the

n
performance index Hy(-) : X" — R>q with

Ho( / 89(x; zo ()1 (x)dx,

where Xy := 7 (%) and ¢1(-) : X — Rxg is a continuous
and non-negative function (density function over X’). Note
that in the formulation of the locational optimization problem
over Ty, the joint vector X* corresponds to the concatenation
of the initial positions of the agents of the network that are
optimal in the following sense: if the ¢-th agent is located
at the configuration col(x},?) with zero angular and linear
velocities, for each 7 € Z,,, then Hy will attain its minimum
value. Next, we characterize the minimizers of Hy. In the light
of (10), we have that

V=3 [ Moo toax

€Ly,

+Z/ pydr(x

€Ly,

(32)

(33)

where & and yf, satisfy the respective equatlons in Eq (1 1)
after the following substitutions: 69 = ¥, v? = 0, and w?
(these substitutions are made in order to account for the fact
that the states of all the agents of the network are confined to
the two-dimensional sub-manifold 7 ). It follows that 519 =
x and i, = 0. Therefore,

2.

i€L,

o1 (%)% (x — 20)2dx.  (34)

Xy

Ho(X°) =



The minimizer of H,y(X"), which is denoted as X * satisfies
the first-order necessary condition for optimality [37], [39]:
(0H9(X%)/0xN)d; >0, i€T,, (35)

for any feasible direction d; € R? of X at {. Because the set

X is convex (and compact), according to the formulation of
0

Problem 2, we can replace d; in (35) with the vector x — ;.
In addition, if 2} is an interior point of X, then (35) becomes

OMHy(X%)/0x) =0, ic€I,. (36)
In the light of the discussion in [3, pp. 128-131], one can show
that

(am(XO)/a:c?)T = —/ 201 () TI(x — x))dx. (37)
X5

Thus, the solution of (36) is given by
— / 61 ()xd) /D1 (X)) =t 2lyye (3B)
= fz\” P1(x

denotes the centroid of X w1th respect to the density function
¢1(+). Note that by its deﬁnition, which is given in (38), the
centroid wzml o lies in the interior of the convex cell X.

for ¢« € 7,, where Dy ( x)dx and x!

cm|d

Proposition 8: The function Hy(-) : X" — Rs(, where
Ho(XO) satisfies (32) for X° € X", attains its minimum
value at the joint position vector of the network X™* :=
col(z! Lo Tomp)» Where mimw is the centroid of X'} (2Y)
with respect to ¢ (-) that satisfies Eq. (38), for all i € Z,,.

Proof: The (strict) convexity of |[TIZ (x — 92 as a
function of x?, implies that Hy(-) is a convex function of
X 0 (see, for 1nstance [40, p. 79]) The fact that the centroid
wcmw of the convex cell X% (z?), which is by its definition an
interior point of the latter cell and consequently of the domain
X, is the unique solution to the equation OHy(XY)/0z) =0,
for all i € Z,,, implies that X* = col(x! Tl - L) 18 the
unique global minimizer of the convex function 7—[19(-5 in X".
Note that the fact that x* em|® is an isolated solution to (36) in
the interior of X' precludes the existence of a boundary point
of X that satisfies (35) and is also a minimizer of Hy(-) (the
set of minimizers of Hy(-) is necessarily a convex, and thus
connected, set [39]). [ |

Remark 7 The upshot of Proposition 8 is that the projection
of the minimizing state of each agent into X corresponds
to the centroid of its associated cell in the affine partition
X y. This result mirrors the solution to popular coverage-type
locational optimization problems addressed in the literature
(see [3] and references therein). On the other hand, the solution
to the locational optimization problem over 7~ is much more
interesting, as we will see next.

B. Locational Optimization over the Terminal Manifold T

Next, we analyze and address the locational optimization
problem over 7. To this aim, we consider a continuous and
non-negative function ¢(-) : @ — Rxg, which will play the
role of the density function over Q. To facilitate the presenta-
tion, we will assume that for any q € Q, ¢(q) = ¢1(x)p2(¥),
where ¢1(+) : X — R and ¢2(-) : S' — Rx( are known
continuous, non-negative functions. In addition, ¢(-) is a 27-
periodic function.

We will be seeking for the joint configuration of the
network, Q* := col(q7,...,q;) € Q", that minimizes the
performance index H(-) : @" — R>(, where

()
-3 / 5(a 27(a))é(a)da,

€Ly,
where Q' = 7go(W'(2?)) or, equivalently, Q' :=
Ugest [XG x {U}], where X = mx(Uy(2?)). It follows
immediately that

(39)

HQ) =Y / T (x - €5)*6(a)da
i€y,
+ ) / pyd(a)da, (40)
€L,

where &) and ) are deﬁned in the respectwe equations in
(11), after substltutlng 1/ =0 and u) = 0 therein. It follows
that £, = x¥, and ) = 52J(1 - cos(90 ¥))2. In addition,
we have that H(Q") can be written as follows: H(Q") =
’Hl(XO) + H2(©Y), where

=2 ITI% (x — 20)[dq, (41a)
€L,
Z q)2J(1 — cos(8? — 1))%dq. (41b)
€L,

In view of (41a) and the discussion in [3, pp. 128-131], it
follows that

(OH(Q°)/020)" = (M1 (X°)/0?)"
—— [ 20@i(x - a)da

—2IT [ ¢2(0)
Sl

Rz (x)xdxdd + 2( _ ¢(q)dq) Hm?
xi Qi

— om / ¢2<ﬂ>¢1<x3>wzmwdﬁ+2¢<gi>nw?, “2)

where ®(Q") := fg, q)dq = [, @1 (X%)po(9)d? (total

“mass’ of Q ) Given that <I>(Q1) > 0, when Ql Q has a
non-empty interior, we immediately conclude that the solution
to the equation 9H(Q")/dx? = 0 is given by

ot = (| 212l 00)/ (D)
Furthermore, in view of (41), we have that

OH(Q) /060 = 0H4(O°)/06°
- /S i $1(x) 92 (V) (Bl /967 ) dxdd)

(43)

= [ oo 000, @
Therefore, OH(Q°)/69 = 0 is equivalent to
/ D1 (X5)p2(9)(1 — cos(B? — 1)) sin(h? —9)dv = 0. (45)
Sl

By applying standard trigonometric identities, Eq. (45) can be



written as follow:

sin(0?) / D (X%)po(19) cos(9)dv)
st
— COS(G?)/ D1 (X5) P (1) sin(v9)d)
Sl
~ 1ssin(260) / B () o () cos(20)d
Sl

+1/2.c08(267) / B (X))o (9) sin(20)d9 = 0. (46)
Sl

By using the following identity: A cosf+ Bsinf = C cos(f—
X), where C' := /A2 4+ B? and tanx = B/A, Eq. (46) can
be written as follows:

C1 cos(6) — x1) — O cos(26) — x2) = 0, 47

where the positive constants C'; and Cy and the angles x; and
X2 can be computed accordingly. It is easy to see that (47) will
always have a solution in [0, 2] given that the graphs of the
functions f;(+) : [0,27] — R, ¢ = 1,2, with values f1(¢) :=
Cycos(9 — x1) and fo(¥) := Cocos(20 — x2) will always
intersect. To see this, simply note that fi(-) and fo(-) are,
respectively, 27-periodic and m-periodic functions, from which
it follows that both of them attain every single value in the
intervals [—C1, C1] and [—C4, Cs] as ¢ runs through [0, 27].
If C; > C5 (the case C; < (5 can be treated similarly),
then there will be ¥1,92 € [0,2n] with ¥ # 2 such that
f1(91) € [-C1, —C5], which implies that f1(d¥1) < f2(¥1),
and fi(d¥2) €]Cs, Cy], which implies that f;(d2) > f2(J2).
Consequently, the sign of the expression on the left hand side
of Eq. (47) will necessarily change from negative at ¥ = 1J; to
positive at 9 = 95 (or vice versa). This implies the existence
of a root of Eq. (47) in [0,2x]. Finally, if C; = Cs, then
Eq. (47) becomes: 09 — y; = 4(20% — xa + 2kn), which
always has a solution in [0, 27] for some k € Z.

Proposition 9: The function H(-) : Q" — Rx, where
H(QP) is given in (39), attains its minimum value at the joint
configuration Q* := col(q7,...,q;) with gF = col(x},9}),
where 7 is defined in Eq. (43) and ¢} belongs necessarily
to the non-empty subset of the compact interval [0, 27] that is
comprised of the roots of Eq. (45), for all ¢ € Z,,.

Remark 8 Proposition 9 implies that the position component
of the minimizer of H that is associated with the i-th agent
corresponds to the weighted average of the centroids of the
cells of this agent from the solution to each parametric
partitioning problem in Ty, for ¥ € S. This result is intuitive.
On the other hand, one can find the optimal heading angle
of the i-th agent by solving a single trigonometric equation,
namely Eq. (45), in the compact interval [0,27], (the latter
equation always admits a solution, as we have already shown).

V. NUMERICAL SIMULATIONS

For our simulations, we consider a network of ten agents
whose initial positions, heading angles, and linear and angular
velocities are chosen randomly. For these simulations, we have
used the following data: J = 0.1, m = 1, ¢ = 0.5, and
A :=0.5I5. The density function ¢;(-) in X was taken to be
¢1(z,y) = exp(0.1((z — 4)* + (y — 5)* — 0.15((z — 4)* +
(y—>5)*))), whereas ¢2(9) = 1 (no preference is attached to a
particular terminal heading angle). Finally, the set X is taken
to be the square domain [0, 8] x [0, 8].
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0 2 4 6 8

(a) Partition X y(Z°), 9 = Z.

Z. (b) Partition X (Z°), ¥ = Z*.

0 2 4 6 8

(c) Partition X 3(Z9), ¥ = =.

(d) Partition Xy (Z0), ¥ = 4%,

Fig. 5. The partition X»(Z°) of X, which is generated by a set
of ten planar rigid bodies (their configurations in @ correspond to
the red triangles), may change significantly for different ¥ € S!.
In these figures, the magenta triangles correspond to the minimizing

configurations of Hy in Qy, whereas the “x” markers correspond

to the centroids of the cells of X y(Z°) with respect to the density
function ¢ (-), whose contours are also illustrated. Finally, the “x”
markers denote the points from the set 2y := {&}, ¢ € Z10}.

Figure 5 illustrates the projection of the cells of the partition
Wy (ZO) of Ty into X, when ¥ = /3 (Fig. 5(a)), ¥ = 27/3
(Fig. 5(b)), ¥ = 7 (Fig. 5(c)) and ¥ = 4x/3 (Fig. 5(d)).
Figure 6 shows the three-dimensional view of different cells
of W(Z°). As we can see in this figure, the three-dimensional
(non-convex) cell of each agent corresponds to the outcome
of stacking together the two-dimensional (convex) cells of the
same agent from the solutions to the one-parameter family
of two-dimensional partitioning problems over 7y, as the
parameter 1 runs through S'.

VI. CONCLUSION

In this paper, we have developed distributed algorithms for
spatial partitioning and locational optimization problems for
multi-agent networks in SE(2). Two of the distinctive features
of the problems considered herein is that 1) their domain is a
non-flat manifold embedded in a higher-dimensional ambient
space and 2) the proximity metric that measures the distance
between an agent and a state in the latter manifold is a non-
quadratic function. The key idea of our approach was to embed
the original partitioning problem into a one-parameter family
of problems whose domains have the required linear structure
and their proximity metrics are parametric quadratic functions.
In our future work, we plan to extend the ideas and techniques
proposed in this work to partitioning and deployment prob-
lems involving heterogeneous multi-agent networks such as
networks whose agents have different dynamics.
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(a) Projection of cell B2 (2J) into (b) Projection of cell WO (2?) into

Q=X xSk

Q = X x Sl

§

(c) Projection of cell 28(2J) into (d) Projection of cell W'0(29)

Q=X xSk

Fig.

into @ := X x S

6.  Three-dimensional plots of the sets Q%(23), Q°(27),

Q8(23), and Q'°(2,), which correspond to the projections of the

cells B2(29), WO (27), WB(23),

and ' (2Y,), respectively, into
1

the configuration space Q := X X S-.
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