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The ability to modulate and perturb genetic information is 
indispensable for studying gene function and elucidating bio-
logical mechanisms. Targetable DNA-binding proteins that 

modify genomes at specific loci have led to substantial advances 
in science, biotechnology and medicine1. Specifically, the develop-
ment of genome engineering tools based on class 2 CRISPR–Cas 
systems, which use a single effector protein such as Cas9 or Cas12, 
has revolutionized the field due to the ease of use of this technol-
ogy in a vast range of applications2. In fact, bioinformatics analyses 
have further revealed a diverse range of CRISPR–Cas systems, and 
the most recent classification encompasses six major types (I–VI)3. 
However, single-effector class 2 systems (types II, V and VI) have 
most commonly been used for nucleic acid targeting in eukaryotes, 
despite multi-subunit class 1 systems (types I, III and IV) compris-
ing about 90% of all identified systems across bacteria and archaea4. 
Continued efforts to discover and develop single-component 
class 2 CRISPR effectors beyond Cas9-based type II systems have 
resulted in new technologies with specific advantages or applica-
tions. For example, the Cas12-based type V5 and Cas13-based type 
VI6 CRISPR–Cas systems have distinct targeting and editing mecha-
nisms. Here, we describe the development of type I systems, which 
account for more than 50% of all identified CRISPR–Cas loci, for 
use as programmable transcriptional activators and repressors in 
mammalian cells.

Type I CRISPR–Cas systems use the signature Cas3 nucle-
ase–helicase to eliminate invading DNA, and are further divided 
into eight subtypes (I-A to I-G and I-U) on the basis of related,  
but subtype-specific, accessory cas genes3,4,7. The well-studied  

prototypical type I-E system of Escherichia coli K12 consists of eight 
cas genes and a downstream CRISPR array8–10. Following transcrip-
tion of the CRISPR array, the 29-bp repeat sequences flanking the 
variable spacer sequences are cleaved during CRISPR RNA (crRNA) 
biogenesis by the Cas6 endoribonuclease10. Together, five protein 
subunits (Cas8e, Cse2, Cas7, Cas5 and Cas6, previously referred 
to as CasA, CasB, CasC, CasD and CasE, respectively)4 and the 
mature 61-nucleotide crRNA form the 405 kDa CRISPR-associated 
complex for antiviral defense (Cascade)11–13 (Fig. 1a). Unlike type 
II CRISPR systems, there is no trans-activating crRNA (tracrRNA) 
required for effector complex formation. For type I CRISPR sys-
tems, Cas6 processes the CRISPR array and targeting relies on a 
single crRNA. To bind to a target, Cascade surveys the DNA to find 
a protospacer-adjacent motif (PAM) upstream of a target sequence 
with complementarity to the crRNA spacer sequence (Fig. 1b). We 
sought to harness this prokaryotic immune system for genome tar-
geting in eukaryotes.

Results
Expressing the Cascade complex in human cells. To repurpose 
Cascade for use in mammalian cells, we used a cytomegalovirus 
(CMV) promoter to express each Cascade subunit of the E. coli 
K12 system (EcoCascade). Based on available structural informa-
tion13–16, N-terminal Flag epitope tags and nuclear localization 
signals (NLSs) were attached to each EcoCascade construct. We 
used the RNA polymerase III U6 promoter to express target spac-
ers flanked by full repeat sequences for crRNA processing by Cas6 
(Fig. 1c)17. Heterologous expression of all EcoCascade constructs 
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was confirmed by western blot following transfection of each plas-
mid individually into human HEK293T cells (Fig. 1d). The cas 
genes were originally optimized based on human codon usage, 
but variable expression of these cas constructs indicated a need 
for additional codon optimization of Cas5, which was performed 
by DNA2.0 (ATUM) (DNA sequences provided in Supplementary 
Information). To determine whether EcoCascade complex forma-
tion occurred in human cells, the six plasmids encoding each of 
the five Cas subunits and the crRNA cassette were co-transfected 
into HEK293T cells. Co-immunoprecipitation by pull-down of the 
V5 epitope on Cas7 and blotting for the Flag epitope on the other  

subunits confirmed proper complex assembly (Fig. 1e). Interestingly, 
EcoCascade complexes can be purified from bacteria in the absence 
of a crRNA18; however, we observed EcoCascade formation in 
human cells only in the presence of a crRNA (Fig. 1e). Additionally, 
nuclear localization of each subunit with a single NLS was con-
firmed by immunofluorescence staining of transfected HEK293T 
cells (Fig. 1f).

Programmable transcriptional activation by EcoCascade–p300. 
Next, we sought to repurpose EcoCascade for CRISPR-based program-
mable transcriptional activation in mammalian cells. Transcriptional 
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Fig. 1 | EcoCascade expression and complex formation in human cells. a, Schematic of the type I-E CRISPR–Cas system in E. coli K-12 showing EcoCascade 
stoichiometry and crRNA processing. Genes encoding proteins that comprise the EcoCascade complex are presented in different colors. CRISPR 
repeats are indicated with red diamonds. Cas6 cleaves the primary crRNA transcript at the regions indicated with blue arrows, yielding mature crRNAs. 
b, Schematic representation of the processed crRNA with 5′ PAM recognition and base pairing at the DNA target site. c, Cas subunits driven by the 
human CMV promoter and pre-processed crRNA driven by the U6 promoter for expression and processing in mammalian cells. d, Western blot showing 
expression of human codon-optimized individual Cas proteins and GAPDH loading control in human HEK293T cells. *Second round of codon optimization. 
e, Co-immunoprecipitation and western blot showing crRNA-dependent Cascade formation following co-transfection with V5-tagged Cas7 and Flag-
tagged Cas8e, Cse2, Cas5 and Cas6 (immunoprecipitation with α-V5, and detection with α-V5 and α-Flag). IB, immunoblot; IP, immunoprecipitation.  
f, Immunofluorescence imaging showing engineered Cas subunits with NLSs, which enable import into the human nucleus. Red indicates Cas subunits. 
Scale bar, 25 µm. For d–f, two independent experiments were conducted with similar results. All samples were processed at 3 d post-transfection.
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modulation using class 2 CRISPR systems has been achieved by intro-
ducing point mutations into the endonucleolytic domains of single-
component effectors to maintain binding but not cleavage of the target 
DNA19. For example, the nuclease-deficient Cas9 (dCas9) can be engi-
neered to function as a synthetic transcriptional activator by genetic 
fusion to a transactivation or epigenome-modifying domain20–24. In 
the natural type I CRISPR–Cas immune system, target site recogni-
tion by Cascade leads to recruitment of the Cas3 nuclease to eliminate 
target DNA. However, deletion of cas3 from the endogenous type I-E 
system in E. coli has been used for a CRISPR interference strategy in 
bacteria by permitting Cascade to bind to target DNA and block tran-
scription without DNA degradation25. Therefore, we proposed that 
Cascade can be repurposed as a programmable DNA-binding tech-
nology in eukaryotes by neglecting to express cas3.

To repurpose EcoCascade as a programmable transcriptional 
activator, we explored the potential of various Cas-effector subunits 
for tethering of the activation domain. We previously demonstrated 
robust endogenous gene activation with dCas9 fused to the cata-
lytic core domain of the human acetyltransferase p300 (ref. 23). The 
EcoCascade system contains five Cas subunits available at various 
stoichiometries (Fig. 1a), providing versatile options for synthetic 
fusions to transcriptional regulatory domains and other modu-
lar engineering strategies. Following heterologous expression of 
EcoCascade with p300 fused to Cas8e, Cse2, Cas5 or Cas6, we con-
firmed EcoCascade complex formation by co-immunoprecipitation 
(Fig. 2a). The ability of each of these subunits to accommodate the 
fusion of the large p300 core catalytic domain (72 kDa) without 
abrogating complex formation suggests that the modular Cascade 
complex could be particularly useful for multiplexed targeting of 
regulatory domains at specific loci.

To test programmable endogenous gene activation in human 
cells, a panel of crRNAs was generated tiling the endogenous IL1RN 
promoter at protospacer targets downstream of known PAMs (5′-
AAG, AGG, ATG, GAG, TAG-3′)10,26–28 (Fig. 2b and Supplementary 
Table 1). Co-transfection of HEK293T cells with plasmids encoding 
EcoCascade with Cas6–p300 and individual crRNAs revealed robust 
IL1RN activation with many crRNAs, including more than 3,000-
fold IL1RN activation with cr26 (P < 0.001, Fig. 2c). Importantly, 
cr26 with EcoCascade lacking a p300 domain, or cr26 alone, did not 
activate IL1RN (Supplementary Fig. 1), suggesting target-specific 
activation by EcoCascade–p300. On the basis of EcoCascade stoi-
chiometry (Fig. 1a) and relative Cas construct expression (Fig. 1d),  
we optimized the relative masses of transfected plasmids to maxi-
mize gene activation (Supplementary Fig. 2). Additionally, the 
transactivation potential of all Cas–p300 fusions was explored with 
cr26. Relative to heterologous expression with a crRNA targeted to 
a control locus, EcoCascade containing Cas8e–p300 or Cas6–p300 
achieved significant transactivation of IL1RN (P < 0.05, Fig. 2d).

Versatility of EcoCascade for targeted gene activation. To 
investigate EcoCascade–p300 interactions at the target locus, we  

performed chromatin immunoprecipitation with an anti-Flag anti-
body followed by quantitative PCR (ChIP–qPCR) of two ampli-
cons adjacent to the target site (Fig. 2b). We observed significant 
enrichment of the target regions in EcoCascade–p300 samples co-
transfected with cr25 or cr26 compared with samples transfected 
with a control crRNA (P < 0.001, Fig. 2e). These results confirm 
EcoCascade as a programmable DNA-binding platform for efficient 
targeting of specific loci in the human genome. Intriguingly, we 
observed enhanced enrichment of IL1RN signal in samples treated 
with Flag-tagged EcoCascade–p300 and an IL1RN-targeted crRNA 
compared with samples treated with Flag-tagged dCas9–p300 and 
an IL1RN-targeted single-guide RNA (sgRNA) (Supplementary  
Fig. 3). These findings indicate increased occupancy by EcoCascade 
relative to dCas9 but could also be the result of differences in epi-
tope avidity or presentation. Targeted endogenous IL1RN activa-
tion was also achieved by tethering Cas6 to the tripartite activator 
VP64-p65-Rta (VPR)24, although both p300 and VPR tethered to 
Cas6 led to reduced activation levels compared with fusion to dCas9 
(Supplementary Fig. 4). To assess activation of other endogenous 
targets in the human genome, we targeted the HBG promoter with 
EcoCascade–p300 (Fig. 2f) and observed robust transactivation 
(Fig. 2g). The natural role of Cascade in processing crRNAs suggests 
the possibility of using arrayed spacers for multiplexed genome 
engineering. By generating a CRISPR array containing multiple 
crRNA spacers that target both IL1RN and HBG, we demonstrated 
multiplexed activation of endogenous genes (Supplementary Fig. 5). 
Together, these results demonstrate the potential for repurposing 
type I-E Cascade systems as versatile programmable transcriptional 
activators in mammalian cells.

Highly specific crRNA-dependent EcoCascade–p300 targeting. 
Rigorously assessing the specificity of genome and epigenome engi-
neering tools is essential for their successful application in basic 
research and medicine. To date, there have been varied reports 
regarding the specificity of Cas9-based genome- and epigenome-
editing technologies29–31, which has led to the development of a vari-
ety of strategies to improve specificity32. To quantify the genome-wide 
binding specificity of EcoCascade–p300, we performed chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) using the 
Flag epitope fused to the N terminus of each of the EcoCascade sub-
units. Binding of EcoCascade–p300 was highly enriched at the IL1RN 
promoter when targeting with cr25 and cr26, with no detectable 
binding observed with a HBE1-targeting control crRNA (Fig. 3a).  
Interestingly, the strength of binding signal was comparable 
between cr25 and cr26, although they differed substantially in their 
induction of IL1RN transcription (Fig. 2c). With a genome-wide 
false discovery rate (FDR) of less than 0.001, a few off-target differ-
ential binding sites were observed when comparing cr25 and cr26 to  
control crRNA (Fig. 3b,c). These sites all had substantially weaker 
binding signals than the signal at the IL1RN locus, with the excep-
tion of one genomic window that was significantly enriched with 

Fig. 2 | EcoCascade activates transcription of endogenous genes in human cells. a, Co-immunoprecipitation showing EcoCascade formation 
following co-transfection with plasmids encoding the crRNA, Flag-tagged EcoCascade subunits with V5-tagged Cas7 and various Cas–p300 fusions. 
Immunoprecipitation performed with α-V5 and immunoblot performed with α-V5 and α-Flag. Two independent experiments were conducted with similar 
results. *Second round of codon optimization. b, Schematic of the IL1RN locus along with tiled IL1RN crRNA target sites. Enrichment of H3K27 acetylation 
(H3K27ac) from the ENCODE Consortium is shown with the vertical range set to 400 to indicate regulatory regions. The two IL1RN ChIP–qPCR amplicons 
are shown in corresponding locations. c, Relative IL1RN expression following co-transfection of plasmids encoding individual crRNAs and EcoCascade 
with Cas6–p300. Three biological independent samples, mean ± s.e.m. d, Relative IL1RN expression following co-transfection of control crRNA or cr26 
and EcoCascade with various Cas–p300 effectors. Three biological independent samples, mean ± s.e.m. n.s., non-significant. e, ChIP–qPCR enrichment 
following co-transfection of individual crRNAs with EcoCascade and Cas6–p300. Immunoprecipitation performed with α-Flag and qPCR performed with 
primers for the amplicon regions designated in part b. Three biological independent samples, mean ± s.e.m., bars indicate mean fold enrichment.  
f, Schematic of the HBG locus along with HBG crRNA target sites. g, Relative HBG expression following co-transfection of individual crRNAs and EcoCascade 
with Cas6–p300. Three biological independent samples, mean ± s.e.m. All samples were processed at 3 d post-transfection. Tukey test following log 
transformation, **P < 0.001 and *P < 0.05 compared to control crRNA. Numbers above bars indicate mean relative expression. TSS, transcription start site.
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cr26 only, located on chromosome 6 about 5 kilobases (kb) from 
TAAR4P (Fig. 3c and Supplementary Fig. 6a). However, we could 
not readily detect a seed sequence complementary to cr26 within 

this region. A site near the UBB locus was enriched in the control 
crRNA-treated sample relative to both cr25- and cr26-treated sam-
ples, indicating a possible off-target site for this crRNA (Fig. 3b,c).
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To evaluate the specificity of crRNA-mediated endogenous gene 
activation with EcoCascade–p300, we performed RNA sequencing 
(RNA-seq) to quantify transcriptome-wide changes when targeting 
IL1RN with cr26 or with a GFP-targeting control crRNA (Fig. 3d).  

Targeted gene activation was highly specific to the target gene 
when EcoCascade–p300 was co-expressed with cr26, with detec-
tion of a modest change in the activation of only six other genes 
(Fig. 3d). However, we observed that addition of the p300 domain to 
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EcoCascade resulted in significant off-target transcriptional changes 
compared to EcoCascade alone (Supplementary Fig. 6b). Given the 
highly specific DNA targeting by EcoCascade (Fig. 3b,c) and cr26-
dependent activation of IL1RN (Fig. 3d), these results indicate non-
specific crRNA-independent effects of overexpression of the p300 
acetyltransferase fused to Cas6. Collectively, this genome-wide 
specificity analysis demonstrates highly specific crRNA-dependent 
targeting of EcoCascade in mammalian cells.

Expanding the Cascade toolbox with LmoCascade. Beyond the 
well-characterized EcoCascade system, bioinformatic analyses have 
revealed a plethora of additional type I CRISPR–Cas systems. To 
explore the potential for repurposing other Cascade complexes, we 
extended our results with the model type I-E EcoCascade to repur-
pose the type I-B CRISPR–Cas system of Listeria monocytogenes 
Finland_1998 (LmoCascade) (Fig. 4a). Expression of all subunits 
was confirmed in HEK293T cells following human codon optimiza-
tion with N-terminal Flag epitope tags and NLSs attached to each 
LmoCascade construct (Fig. 4b). To repurpose LmoCascade as a 
programmable transcriptional activator, we fused the catalytic core 
domain of p300 to Cas6, the predicted EcoCascade Cas6 ortholog. 
To test programmable endogenous gene activation in human cells, 
a panel of crRNAs with a predicted spacer length of 36 nucleo-
tides was generated by tiling the endogenous IL1RN promoter at 

protospacer targets downstream of the known PAM (5′-CCA-3′)33 
(Fig. 4c). Co-transfection of HEK293T cells with plasmids encod-
ing LmoCascade with Cas6–p300 and individual crRNAs revealed 
robust IL1RN activation with most crRNAs (P < 0.001, Fig. 4d). 
Additionally, the transactivation potential of all Cas–p300 fusions 
was explored with cr03. Relative to heterologous expression with 
a control crRNA, LmoCascade containing Cas8b2–p300, Cas5–
p300 or Cas6–p300 achieved significant transactivation of IL1RN 
(P < 0.001, Fig. 4e). In contrast to the panel of IL1RN-targeting 
crRNAs for EcoCascade (Fig. 2c), almost all of the LmoCascade 
crRNAs, as well as three of the four Cas–p300 effector fusions, 
achieved significant IL1RN activation (Fig. 4d,e). To further assess 
crRNA-dependent activation of other endogenous targets in the 
human genome, we targeted the HBG promoter with LmoCascade–
p300 and observed robust transactivation (Supplementary Fig. 7). 
These results demonstrate the potential to broaden our fundamen-
tal knowledge of type I CRISPR systems as we expand the CRISPR 
engineering toolbox by repurposing less characterized systems for 
use in mammalian cells.

Targeted gene repression by stable LmoCascade–KRAB expres-
sion. In addition to harnessing type I CRISPR systems for program-
mable transcriptional activation, we sought to take advantage of 
steric hindrance by the large Cascade complex, the strong binding of 
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Cascade to target DNA34 and tethering of transcriptional repressor 
domains such as Krüppel-associated box (KRAB)20,31,35 to repurpose 
LmoCascade for targeted transcriptional repression in mammalian 
cells. To achieve stable expression of LmoCascade–KRAB in human 
cells, we generated lentivirus expression constructs for each Cascade 
subunit, including the addition of a T2A-BlasticidinR sequence 
downstream of Cas6–KRAB (Supplementary Fig. 8a). Following co-
transduction of a K562-HBE1-mCherry endogenous gene reporter 
cell line36, LmoCascade–KRAB-expressing cells were selected with 
blasticidin S, followed by clonal isolation and expansion. Clone 
no. 2 was selected following confirmation of LmoCascade–KRAB 
expression by western blot analysis (Supplementary Fig. 8b).

To test programmable endogenous gene repression in human 
cells, a panel of crRNAs was generated, tiling the endogenous 

5′-untranslated region of HBE1 (Fig. 5a). Lentiviral expression 
constructs were generated for stable, independent expression 
of a crRNA and an eGFP-2A-PuroR selection cassette (Fig. 5b). 
Transduction, selection and expansion of K562-HBE1-mCherry 
cells expressing LmoCascade–KRAB (Fig. 5c) revealed HBE1 
transcriptional repression with all crRNAs (Fig. 5d). To further 
assess the repressive capacity of LmoCascade–KRAB, protein 
expression was evaluated by flow cytometry analysis of the HBE1-
mCherry reporter (Fig. 5e,f). Significant reduction in mCherry 
fluorescence was observed for all crRNA targets (P < 0.05, Fig. 5e),  
including robust repression in five of six crRNAs (P < 0.001,  
Fig. 5e). These results demonstrate the potential for repurposing 
type I CRISPR systems as programmable transcriptional repres-
sors in mammalian cells.
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Discussion
In summary, these results show that Cascade from type I-E and type 
I-B CRISPR systems can be reprogrammed for RNA-guided tran-
scriptional modulation in human cells. This new class of genome 
engineering tools has potential benefits that expand the CRISPR 
engineering toolbox. For example, the promiscuous PAM recogni-
tion of type I-E EcoCascade (5′-AAG, AGG, ATG, GAG, TAG-3′),  
and the additional PAM recognition of type I-B LmoCascade 
(5′-CCA-3′), located 5′ of the spacer in contrast to the 3′ PAM of 
type II systems16,37, provides a larger set of available CRISPR target 
sequences.

By tiling crRNAs along endogenous promoters, our study 
revealed PAM-independent (Supplementary Table 1) variation 
in the transactivation potential of crRNAs (Figs. 2b,c,f,g, 4c,d). 
The reasons for this remain to be elucidated, but these differences 
in transactivation potential are similar to those observed among 
guide RNAs (gRNAs) and crRNAs for class 2 systems. Ineffective 
class 2 effectors can gain activity when co-targeting dCas9 to 
proximal sites38, suggesting that dCas9 increases the accessibility 
of these sites. Similarly, we observed 16-fold enhanced transac-
tivation with EcoCascade–p300 and cr22 when dCas9 was co-
targeted to IL1RN (Supplementary Fig. 9). These results suggest 
a need for careful crRNA screening and selection for Cascade 
targeting to the mammalian genome; however, this selective tar-
geting by particular crRNAs may also serve as a mechanism to 
increase targeting specificity.

Additionally, the preservation of complex formation observed 
after effector tethering suggests opportunities to use the stoichi-
ometry of the Cascade complex to explore the synergistic activities 
of multiple effector domains. For dCas9, combinatorial targeting 
by tethering KRAB and DNA methyltransferases has been used to 
achieve heritable transcriptional silencing39. Furthermore, the stoi-
chiometry and architecture of Cascade have been tuned in bacte-
ria by altering crRNA protospacer length25,40. The several cas genes 
involved and their various corresponding Cas proteins also pres-
ent individual opportunities to append molecules and functional 
domains with increased flexibility.

Beyond repurposing type I CRISPR systems for targeted tran-
scriptional modulation, we also anticipate that Cascade subunits 
can be tethered to endonuclease effectors, such as the catalytic 
domains of the homodimeric FokI and monomeric I-TevI41–43 
endonucleases, for programmable editing via generation of double-
stranded breaks or single-stranded nicks in genomic DNA. In fact, 
we have observed indels characteristic of double-strand break repair 
following delivery of Cascade–I-TevI fusions in preliminary experi-
ments (Supplementary Fig. 10). Alternatively, Cascade can be co-
expressed with the Cas3 helicase–nuclease to generate a spectrum 
of long-range chromosomal deletions44.

Targeted transcriptional modulation is important for perturbing 
gene function, designing gene regulatory networks, investigating 
the function of distal regulatory elements, manipulating cellular and 
organismal phenotypes, and inducing therapeutic changes to gene 
expression. Cascade complexes from type I CRISPR–Cas systems 
provide a novel and widely applicable RNA-guided platform for tar-
geting DNA sequences in eukaryotes.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
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with IP lysis buffer, mixed with NuPAGE loading buffer and 5% β-mercaptoethanol 
and heated at 100 °C for 10 min. Samples were loaded into 10% NuPAGE Bis–Tris 
gels, and resolved as described above. Blots were blocked, incubated with mouse 
anti-Flag (1:1,000 dilution, Sigma-Aldrich, M2 clone) and mouse anti-V5 (1:40,000 
dilution, Abcam, SV5-Pk1 clone), then with goat anti-mouse-conjugated HRP 
(1:2,500 dilution, Sigma-Aldrich). Blots were visualized as described above.

RNA analysis. For qPCR, HEK293T cells were co-transfected with individual 
crRNAs (100 ng) and EcoCascade (50 ng Cas8e, 100 ng Cse2, 50 ng Cas7, 250 ng 
Cas5 and 50 ng Cas6–p300) or LmoCascade (150 ng Cas8b2, 50 ng Cas7, 75 ng 
Cas5 and 150 ng Cas6–p300) in 24-well plates. After 3 d, total RNA was isolated 
using QIAshredder and QIAGEN RNeasy kits (Qiagen). Reverse transcription 
was carried out using 500 ng total RNA per sample in a 10 µl reaction using the 
SuperScript VILO Reverse Transcription Kit (Invitrogen). Per qPCR reaction, 
1.0 µl of cDNA was used with Perfecta SYBR Green Fastmix (Quanta Biosciences) 
and run using the CFX96 Real-Time PCR Detection System (Bio-Rad). All 
sequences for qPCR primers can be found in Supplementary Table 3. All qPCR 
data are presented as fold change in RNA normalized to Gapdh expression and 
relative to samples targeting Cascade with a crRNA targeted to an irrelevant 
control locus at HBE1.

RNA sequencing. HEK293T cells were co-transfected with 3 µg total plasmid 
in 6-well plates. After 3 d, cells were washed twice with PBS and 350 µl of a 1:10 
mixture of β-mercaptoethanol and Buffer RLT (Qiagen) was added to each well. 
While on ice, cells were lysed, nucleic acid was quantified using a Nanodrop 
instrument (Thermo Fisher Scientific) and RNA quality was assessed using an 
Agilent TapeStation 2200 with RNA ScreenTape (Agilent). Using 1 µg of total 
RNA input, stranded mRNA sample preparation was performed with the Illumina 
TruSeq Stranded mRNA Library Prep Kit (Illumina) following the manufacturer’s 
protocol except that the enzymatic fragmentation time was reduced from 8 min to 
1 min. Libraries were sequenced at the Duke GCB Sequencing Core as 51 cycles 
of paired-end runs (51PE), in an Illumina HiSeq 4000 platform. Reads were 
aligned against the human reference genome GRCh38 using the aligner STAR 
v2.4.1a45 following the proposed two-pass strategy to first identify a splice junction 
database to improve the overall mapping quality. Gene counts were estimated with 
featureCounts from the subread package v1.4.6-p646, using gene annotations from 
Refseq47 and allowing for multimapping reads (parameters -M and --fraction). 
Differential expression analyses were performed using the DESeq2 package48 
filtering out non-expressed genes and fitting a negative binomial generalized linear 
model to find significantly differentially expressed genes.

Chromatin immunoprecipitation qPCR. HEK293T cells were transfected with 
40 µg total plasmid in 15 cm dishes. After 3 d, cells were fixed in 1% formaldehyde 
for 10 min at room temperature. The reaction was quenched with 0.125 M glycine 
and the cells were lysed using Farnham lysis buffer (5 mM PIPES pH 8.0, 85 mM 
KCl and 0.5% NP-40) with a protease inhibitor cocktail (Roche). Nuclei were 
collected by centrifugation at 2,000 r.p.m. for 5 min at 4 °C and lysed in RIPA 
buffer with a protease inhibitor cocktail (Roche). Chromatin was sonicated using 
a Biorupter Sonicator (Diagenode, model XL) and immunoprecipitated using an 
anti-Flag antibody (Sigma-Aldrich, M2 clone). The formaldehyde crosslinks were 
reversed by heating overnight at 65 °C and genomic DNA fragments were purified 
using a spin column. For qPCR, 500 pg of immunoprecipitated DNA was used per 
reaction. qPCR was performed as described above. The data are presented as fold 
change gDNA normalized to a region of the β-actin locus and relative to samples 
targeting Cascade with the control crRNA mentioned above. All sequences for 
qPCR primers can be found in Supplementary Table 4.

Chromatin immunoprecipitation sequencing. Reverse-crosslinked 
immunoprecipitated DNA was cleaned using PCR purification columns (Qiagen). 
DNA concentration was determined using a Qubit dsDNA High Sensitivity and 
Broad Range assay kit (Invitrogen). To prepare sequencing libraries for Illumina 
sequencing, 7 ng input of immunoprecipitated DNA was used with the Hyper 
Prep kit (Kapa Biosystems). After library preparation, samples were barcoded with 
Illumina Truseq indexes and normalized to 10 nM. Final libraries were pooled and 
run on a HiSeq 4000 to generate approximately 20 million, 50-bp single-end reads 
per sample.

Sequences for TruSeq Illumina adapters were removed from the raw reads 
using Trimmomatic v0.3249. Then, reads were aligned using Bowtie v1.0.050, 
reporting the best alignment with up to two mismatches (parameters --best --strata 
-v 2). Duplicates were removed using Picard MarkDuplicates v1.130, and low 
mappability or blacklisted regions identified by the ENCODE project51 were filtered 
out from the final BAM files. Using the sequenced input controls, binding regions 
were identified using the callpeak function in MACS2 v2.1.0.2015122252. For the 
differential binding analysis, first, a union peakset was computed by merging 
individual peak calls using bedtools2 v2.25.053. Then, reads in peaks were estimated 
using featureCounts and the difference in binding was assessed with DESeq2.

For the genomic window of 562 bp on chromosome 6 near the TAAR4P 
pseudogene displaying significant differential binding for cr25 compared with 
control cRNA, we searched for both global and local alignments of the 32-bp 

Methods
Mammalian expression plasmid construction. E. coli K-12 Cascade sequences 
were originally codon optimized by human codon usage tables using integrated 
DNA technology, synthesized as gene blocks and integrated into expression 
plasmids containing a CMV-driven cassette by Gibson cloning strategies. DNA2.0 
(ATUM) synthesized the second-round human codon-optimized constructs using 
proprietary methods. See Supplementary Text for gene sequences of E. coli K-12 
Cascade constructs. For crRNA expression, a cloning vector was constructed 
(pAPcrRNA_Eco) with a U6-driven cassette and digested with SacII and XhoI. To 
insert repeat-spacer pairs, oligonucleotides encoding the palindromic repeat and 
crRNA spacers were annealed, 5′ phosphorylated with T4 polynucleotide kinase 
(NEB) and ligated into digested pAPcrRNA_Eco. See Supplementary Fig. 11 for an 
illustration of the cloning scheme. The control crRNA used throughout this study 
targets Cascade to an irrelevant control locus at HBE1. See Supplementary Table 3 
for Cas9 gRNA target sequences23.

L. monocytogenes Finland_1998 Cascade sequences were synthesized by 
DNA2.0 (ATUM) as human codon-optimized constructs using proprietary 
methods. See Supplementary Text for the gene sequences of L. monocytogenes 
Finland_1998 Cascade constructs. For crRNA expression, a cloning vector was 
constructed (pAPcrRNA_Lmo) with a U6-driven cassette and digested with 
SacII and AgeI. To insert repeat-spacer pairs, oligonucleotides encoding the 
palindromic repeat and crRNA spacers were annealed, 5′ phosphorylated with 
T4 polynucleotide kinase (NEB) and ligated into digested pAPcrRNA_Lmo. See 
Supplementary Fig. 12 for an illustration of the cloning scheme. The control 
crRNA used throughout this study targets Cascade to an irrelevant control locus 
at HBE1. The plasmids used throughout this study are available from Addgene 
(plasmids 106270–106276, 126481–126494 and 126501).

Cell culture and transfections. HEK293T cells were maintained in Dulbecco’s 
Modified Eagle’s Medium (Invitrogen) with 10% FBS (Sigma-Aldrich) and 1% 
penicillin–streptomycin (Gibco). K562 cells were maintained in RPMI-1640 
medium (Invitrogen) with 10% FBS (Sigma-Aldrich) and 1% penicillin–
streptomycin (Gibco). Cells were incubated at 37 °C with 5% CO2. Lentivirus was 
produced in HEK293T cells using Lipofectamine 3000 (Invitrogen). All other 
transfections were performed using Lipofectamine 2000 (Invitrogen) according to 
the manufacturer’s protocol.

Immunofluorescence staining. Cells were passaged and transfected with 100 ng 
plasmid DNA on coverslips in 24-well plates. At 3 d post-transfection, cells were 
washed with PBS and fixed with 4% paraformaldehyde (Sigma-Aldrich). Cells 
were incubated with blocking buffer (5% goat serum, 0.2% Triton X-100 in PBS) 
then incubated with mouse anti-Flag (1:200 dilution, Sigma-Aldrich, M2 clone), 
followed by incubation with goat anti-mouse Alexa Fluor 647 (1:200 dilution, 
Life Technologies, A21236), and DAPI nucleic acid stain (Invitrogen). Cells were 
imaged with a Leica DMI 3000 B fluorescence microscope. Exposure time was set 
by fluorescence of the lowest expressed construct and maintained for all samples.

Western blot and co-immunoprecipitation. For protein analysis, HEK293T cells 
were transfected with 2 µg of individual Cas constructs in 6-well plates. After 3 
d, cells were lysed in RIPA buffer (Sigma-Aldrich) with a proteinase inhibitor 
cocktail (Roche). Samples were centrifuged at 12,000 r.p.m. for 5 min and the 
supernatant was isolated and quantified using a bicinchronic acid assay (BCA) 
protein standard curve (Thermo Fisher Scientific) on a BioTek Synergy 2 Multi-
Mode microplate reader. Mixed with NuPAGE loading buffer (Invitrogen) and 5% 
β-mercaptoethanol, 25 µg protein was heated at 100 °C for 10 min. Samples were 
loaded into 10% NuPAGE Bis–Tris gels (Invitrogen) with MES buffer (Invitrogen) 
and electrophoresed for 70 min at 200 V on ice. Protein was transferred to 
nitrocellulose membranes (Bio-Rad) for 1 h in 1 × tris–glycine transfer buffer 
containing 10% methanol and 0.01% SDS at 4 °C at 400 mA. The blot was blocked 
at room temperature (23 °C) for 30 min in 5% milk–TBST (50 mM Tris, 150 mM 
NaCl and 0.1% Tween-20) and incubated with mouse anti-Flag (1:1,000 dilution, 
Sigma-Aldrich, M2 clone) in 5% milk–TBST at 4 °C overnight. Blots were then 
washed in TBST and incubated with goat anti-mouse-conjugated horseradish 
peroxidase (HRP) (1:2,500 dilution, Sigma-Aldrich) in 5% milk–TBST for 
45 min at room temperature. Blots were washed in TBST then visualized using 
Western-C ECL substrate (Bio-Rad) on a ChemiDoc XRS+ system (Bio-Rad). Blots 
were stripped with Restore PLUS western blot stripping buffer (Thermo Fisher 
Scientific), blocked, and re-blotted with rabbit anti-GAPDH (1:1,000 dilution, 
Cell Signaling, 14C10) or anti-actin (1:1,000 dilution, Sigma-Aldrich, A2066) and 
goat anti-rabbit-conjugated HRP (1:2,500 dilution, Sigma-Aldrich). Blots were 
visualized again using the methods described above.

For co-immunoprecipitation analysis, co-transfections were completed using a 
V5-Cas7 construct. HEK293T cells were co-transfected in 6-well plates with 425 ng 
of each Cas construct and crRNA for 2.25 µg total plasmid DNA per condition. 
At 3 d post-transfection, cells were lysed with IP lysis buffer (Thermo Fisher 
Scientific) with a proteinase inhibitor cocktail (Roche). Samples were centrifuged 
at 12,000 r.p.m. for 5 min and the supernatant was isolated and subjected to 
immunoprecipitation using goat anti-V5-agarose conjugate (10 µl, Abcam, ab1229) 
at 4 °C overnight. The immunoprecipitation products were washed three times 

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNATuRe BIoTeCHnology

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data discussed in this publication have been deposited in NCBI’s Gene 
Expression Omnibus56,57 and are accessible through GEO Series Accession number 
GSE114859. All other relevant raw data are available from the corresponding 
author upon request.

Code availability
Custom scripts used for ChIP–seq and RNA-seq analysis are available upon request.
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cr26 sequence. Using the water program in the EMBOSS v6.6.0 package54, which 
implements the Smith–Waterman algorithm for local alignment, we were able to 
map only 8 nucleotides (26.6% of the cr26 sequence). When looking for end-to-
end alignments with the needle program implementing the Needleman–Wunsch 
algorithm, the best alignment contained 5 nucleotides on the 5′ end of the cr26 
protospacer sequence and 16 mismatches (50% sequence identity). By contrast, 
when aligning cr26 to the IL1RN gene, a nearly perfect continuous match (30 
of 32 bp, 94% sequence identity) starting at the 5′ end occured in the genomic 
location chr2:113117890–113117919. This difference suggests an alternative mode 
of binding for this potential off-target site.

Lentiviral transduction. K562-HBE1-mCherry reporter cells36 were co-transduced 
with lentivirus expressing LmoCascade subunits and Cas6–KRAB-2A-BlastR. 
Transduced cells were selected with blasticidin S (Invitrogen) at a concentration 
of 10 µg ml−1, then clonally isolated and expanded. For protein analysis, cells 
were lysed in RIPA buffer (Sigma-Aldrich) with a proteinase inhibitor cocktail 
(Roche) and a western blot was completed using 25 µg protein and mouse anti-Flag 
antibody (1:1,000 dilution, Sigma, M2 clone) using the methods described above.

LmoCascade–KRAB clone-two cells were transduced with lentivirus 
expressing individual crRNAs and selected with puromycin (Sigma-Aldrich) at a 
concentration of 1 µg ml−1. After 7 d, cells were collected, washed twice with 2 mM 
EDTA (Thermo Fisher Scientific) and 0.5% BSA (Sigma-Aldrich) in PBS. Flow 
cytometry was done with a SH800 Cell Sorter (Sony Biotechnology). Total RNA 
was isolated and used for qPCR analysis using the methods described above. The 
qPCR data are presented as fold change in RNA normalized to Gapdh expression 
and relative to samples targeting Cascade with a crRNA targeted to an irrelevant 
control locus at IL1RN.

Deep sequencing and indel analysis. HEK293T cells were co-transfected with 
600 ng total plasmid in 24-well plates. After 4 d, genomic DNA was isolated using 
QIAGEN DNeasy Blood and Tissue kit (Qiagen). In a first-round PCR, 100 ng 
of genomic DNA was amplified with genome-specific primers. A second round 
of PCR was used to add experimental barcodes and Illumina flow cell binding 
sequences. The resulting sequence libraries were diluted to 2 nM, pooled and 
sequenced with 150-bp paired-end reads on an Illumina MiSeq instrument. 
Samples were demultiplexed and analyzed for insertions and deletions with a 
local distribution of CRISPResso55 with default parameters and a 30-bp window 
around the predicted I-TeVI 5′-CNNNG-3′ cut sites. All primers for genomic DNA 
amplification can be found in Supplementary Table 5.

Statistical analysis. All data analyzed had two to three biological replicates and are 
presented as mean ± s.e.m. Logarithmic transformations were completed before 
statistical analysis where indicated. All P values were calculated by global one-way 
analysis of variance (ANOVA) with Tukey post hoc tests (α = 0.05).
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