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Abstract—In this project, competition-winning deep neural
networks with pretrained weights are used for image-based gen-
der recognition and age estimation. Transfer learning is explored
using both VGG19 and VGGFace pretrained models by testing
the effects of changes in various design schemes and training
parameters in order to improve prediction accuracy. Training
techniques such as input standardization, data augmentation, and
label distribution age encoding are compared. Finally, a hierarchy
of deep CNNs is tested that first classifies subjects by gender, and
then uses separate male and female age models to predict age.
A gender recognition accuracy of 98.7% and an MAE of 4.1
years is achieved. This paper shows that, with proper training
techniques, good results can be obtained by retasking existing
convolutional filters towards a new purpose.

Index Terms—transfer learning, deep learning, convolutional
neural network, age estimation, gender classification

I. INTRODUCTION

Deep learning has developed rapidly recently due to the
availability and large scale of labeled data, and high perfor-
mance computing. Deep learning is currently one of the most
popular machine learning techniques in Artificial Intelligence
(AI) [1], [2], [3], [4], [5]. In computer vision, many classical
techniques of feature extraction and subspace learning have
been eclipsed due to the recent good performance in deep
learning. Traditionally, good results have been obtained using
combinations of classifiers, regressors, hand-crafted features,
facial landmarks, and dimensionality reduction [6] [7] [8].
Neural networks, however, have taken the scene with their
ability to learn and memorize features, and keep improving
in accuracy as more data are observed. Thus Deep Neural
Networks (DNNs) have far surpassed traditional classification
and regression techniques, and have even surpassed human
performance on a number of well-known benchmarks [9] [10].

II. RELATED WORKS

In a modern interconnected information society, it is critical
to identify or verify individuals accurately at real-time. Due
to its significant role in human computer interaction (HCI),
internet access control, and security control and surveillance,
face-based demographical research has attracted great attention
in both research communities and industries [11]. MORPH-II
[12] has been the subject of many studies concerning age and
gender estimation. As such, it is a good way to compare the

efficacy of different techniques. Han et al. [9] gauges human
age estimation by crowd-sourcing estimates on two popular
face-image databases. They found estimates on the FG-NET
dataset to be off by an average of 4.7 years. They mention that
that number might be low because it is easy to guess the ages
of babies and children without much variation in predictions.
In fact, the average age error on FG-NET subjects older than
15 is 7.4 years, which is similar to the human error of 7.2
years that was calculated on the PSCO dataset. In the same
study, Han et al. use a hierarchy of support vector machines
(SVMs) and biologically-inspired features (BIFs) to obtain an
average age estimation error of 4.2 years on the MORPH-II
database.

Deep learning is promising to allow for the full utilization
of large datasets in order to solve machine learning problems.
Amongst the different types of deep learning architectures,
convolutional neural networks (CNN) have been proven to be
very effective for human demographics estimation due to their
proficiency at extracting precise details from images. Such
studies include age estimation [13], [14], [15] and gender
classification [16], [17], [18] . Niu et al. [19] obtain an error of
3.28 years using ordinal regression CNNs and random splits
of the MORPH-II dataset where 80% of the images are used
for training and 20% are used for testing.

Rothe et al. [13] considered deep CNNs for age clas-
sification problems. The VGG-16 architecture and IMDB-
WIKI dataset are employed in this study. With a random split
of 80% for training and 20% for testing on MORPH-II, it
achieves a MAE of 2.68 with additional fine-tuning on IMDB-
WIKI dataset before fine-tuning on MORPH-II dataset. Later,
Antipov et al. [20] extend the work from [13] and consider
the problems of selection of optimal CNN architecture and
training strategies. They conclude that Label Distribution Age
Encoding (LDAE) [21] is an optimal way for the target en-
coding to train a CNN for an age estimation task. It is showed
that face recognition pretraining is more effective for deep
gender and age CNNs comparing to general task pretraining.
Following the subsetting scheme in [22] for MORPH-II, it
achieves a MAE of 2.99 years with VGG-16 pretrained CNN
for facial recognition, and a gender classification accuracy of
99.3% with ResNet-50 pretrained CNN for facial recognition.
Their model also won the ChaLearn Apparent age estimation
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challenge in 2016 [16].
In this paper, transfer learning is employed to tackle the

problem of recognizing a person’s age and gender from an
image using deep CNNs. A variety of network designs and
training techniques are explored. We consider dynamic LDAE,
which outperforms the static LDAE considered in [20]. A
gender-specified hierarchical age model is proposed in this
study. Experimental results demonstrate its effectiveness over
the general age model.

III. TRANSFER LEARNING

Because of the vastness and complexity of deep neural
network architecture, designing and testing models is expen-
sive and time-consuming. When approaching an AI problem,
quick results can be obtained by utilizing a technique known
as transfer learning. In transfer learning, the weights and
convolutional filters that are proficient at one task, can be
reused for a different task requiring only a small amount of
retraining. This involves using a network architecture with
preloaded weights, modifying it slightly, and then retraining
part or all of the model to output predictions for the new task.
The filters learned by one task, such as classifying animals,
are used to extract features from images that can then be
interpreted by the retrained portion of the neural network
in order to perform its new task. In this paper, the deep
convolutional neural network known as VGG [23] is used to
study transfer learning using two different types of pretraining.

A. VGG19
VGG19 [23] is a DNN architecture developed by Karen

Simonyan and Andrew Zisserman of the Visual Geometry
Group at Oxford. The “19” in the name refers to the number
of weight layers in the network. VGG16 was considered to
be more successful in the ImageNet competition in 2014 and
tied with GoogLeNet, however, the extra depth of VGG19
was leveraged to achieve better results than VGG16 in some
instances. The original VGG architectures consist of five stacks
of convolutional layers, each followed by max pooling layers.
The top layers are the same across all VGG designs and consist
of two fully-connected layers, each of size 4096 with 50%
dropout, and a fully-connected softmax layer of size 1000.

B. VGGFace
Shortly after the release of the VGG architectures, the

Visual Geometry Group published another paper called “Deep
Face Recognition” [24]. In this paper, VGG16 is trained from
scratch for facial recognition using a dataset of 2.6 million
face images. Prior studies have shown that transfer learning
using neural networks with facial recognition pretraining can
produce highly effective results for gender recognition and age
estimation [16]. Since facial recognition neural networks have
already been trained to distinguish human features, the features
that they extract may be more useful for determining age and
gender from a photo than the features extracted by a more
general neural network. In this study, VGGFace, VGG16 with
facial recognition weights, is also examined for its proficiency
at age and gender classification.

IV. THE DATASETS

Machine learning models rely on the quality of data that
feed them. Mislabeled data and excessive noise can cause
models to start learning the wrong things. In deep learning,
large and accurate datasets are essential to obtaining good
performance. In this study, the MORPH-II dataset is used to
train and test models.

A. MORPH-II

MORPH-II [12] is a good candidate for gender and age
or other face image studies for a few reasons. The images
captured are of the subjects’ heads and most are positioned in
front of a gray background – which helps reduce background
noise. Age labels and other information are provided about
the subjects such as race, gender, and a unique identifier. A
visual inspection of the images, however, reveals a few noisy
variation. The subjects’ heads are tilted in different directions,
and may be of varying distance from the camera. Pixelations
are apparent in most images, and some images have vastly
different tint. The dataset consists of 55,134 images with
subject ages ranging from 16 to 77 years old. 84.6% of the
dataset is male, and 77.22% of the dataset is black. As seen in
table I, few images exist of subjects 50 years of age and older.
Because of this, a subsetting strategy has been adopted by the
academic community from the works of Guo and Mu [22].
They propose to divide the dataset into three subsets. The first
two, S1 and S2, consist of only blacks and whites, and have
a 3:1 male to female ratio. S3 contains all of the remaining
images.

TABLE I
AGE BY GENDER IN MORPH-II

<20 20-29 30-39 40-49 50+ Total

Male 6649 14009 12436 10082 3468 46644
Female 836 2305 2924 1978 447 8490
Total 7485 16314 15360 12060 3915 55134

Fig. 1. A depiction of subsetting scheme on a cleaned version of
MORPH-II, following the subsetting proposed by Guo and Mu [22].

B. MORPH-II Cleaned

A survey of the MORPH-II dataset revealed several incon-
sistencies. Some subjects had different dates of birth. Others
had multiple race labels or both gender labels. In order to
combat the effects of “dirty data”, such inconsistency in age,
gender and race has been manually identified and cleaned
up for MORPH-II dataset. More details can be found in
[25]. Hereafter, the MORPH-II cleaned data are used in this
project. Following the subsetting scheme proposed in [22],



our subsetting scheme is shown in figure 1. Sets 1 and 2 both
contain 10,280 images, and set 3 contains 34,344 images.

C. MORPH-II Equalized

Preprocessed MORPH-II dataset are also considered in our
preliminary study for performance evaluation. In this case,
MORPH-II images are first cropped to fit the subjects’ faces.
During the process, the images are rotated such that the
subjects’ eyes are aligned. Images are grayscaled, and the
lighting of the images is equalized. This dataset, known as
MORPH-II equalized, is used in the early testing stages of
our preliminary study due to its small input vector size [26].
The full-sized images are either 200x240 or 400x480 having
input vector sizes of 144,000 and 576,000 respectively, but the
equalized images only produce 4,200 data points.

V. TRAINING PARAMETERS

To compare the effects of changes in transfer learning
techniques, all training parameters are kept consistent unless
otherwise specified. For MORPH-II, all images are scaled
down to 200x240. All input is standardized before being fed
into the network. The batch size is set to 50, and models
are trained for 60 epochs. The original dropout rate of 0.5 is
retained, and the ReLU activation function is used in all weight
layers. The Adadelta optimizer is used with its default values.
Gender models use the binary cross entropy loss function, and
age models use mean absolute error (MAE). Results for age
estimation are reported as an MAE, which is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (1)

As such, MAE is the average of the absolute differences
between the predicted age and the subject’s actual age. For
gender, the results are reported as an accuracy – the number
of correct predictions over the size of the test set.
S1 is used to train the models. During the parameter training

process, models are supplied with a validation set of 500
random samples from S3. To show the performance of models
as data are added, the training set is split into several sets
that are trained upon serially. This also helps avoid the issues
that arise from using too much computer memory. The model
parameters with the lowest loss on the validation set sample
is saved and then fully validated on S2 ∪ S3, a set of 44,624
images.

VI. TOP-LAYER RETRAINING

A common practice in transfer learning is to remove the
top layers of a DNN, and then replace them with a different
top. In VGG19, the top of the network is responsible for
interpreting the output of the many underlying convolutional
layers, so the same feature extractions are performed, but the
new top layers produce predictions for the new task. The added
top layers must be retrained from scratch, and are commonly
initialized with random weights. During the training process,
the rest of the network is frozen, so the weights in those layers
maintain their initialized values and do not change during

training. VGG19, for example, can be modified to be trained
for gender recognition using the design shown in figure 2.
Note that in these experiments the dense layer sizes have been
decreased to shorten training time and lower graphics card
memory consumption. The output layer has been reduced to
just two neurons – one for a prediction of male and the other
for a prediction of female. The ILSVRC (ImageNet Large
Scale Vision Recognition Challenge) weights are frozen inside
of VGG19 in the first 16 convolutional layers. Using a model’s
ImageNet weights is known as general task pretraining, and
can produce surprisingly good results on a wide variety of
datasets [27] [16] [28].

Fig. 2. A new top for VGG19. All weights are initialized randomly
and then the network learns how to discern male from female by
examining the output of the convolutional layers.

A. Dense Layer Size

There are many factors that can be considered when re-
training the top layers of a neural network. An obvious first
choice is to test the size and number of fully-connected layers.
As seen in figure 3, using only one dense layer seems to
inhibit much of the learning process. Loss decreases more
quickly when two dense layers are used. This gives traction
the argument that more neurons will lead to a higher accuracy.
A lower loss does not exactly equate to better validation
results, but the general trend is that accuracy increases as loss
decreases. The largest top layers, 2048x2 (two dense layers
of 2048 neurons) and 4096x2, take several epochs before loss
starts decreasing. This effect could be because of the randomly
initialized weights. When the top layers are initialized with
random weights, it takes more time for large layers to adjust
and begin fitting the data. Much smaller dense layers, such as
16x2 and 32x2, also work for gender recognition with about
95% accuracy. Age estimation requires larger dense layers than
gender to produce good results.

B. Epochs

Another commonly explored training parameter is the num-
ber of epochs for which to train a model. An epoch is one
pass through all of the data in the training set. Depending on
the dataset, depth of the network, regularization techniques,
and a variety of other factors, an optimal number of epochs
might be high or low. Too few epochs and the network will



Fig. 3. These are the losses on a short training test using different
sizes and numbers of fully-connected layers. The models were trained
on 20,000 images and validated on 5,000.

be underlearned. Too many epochs and the model becomes
overfit. In both of these instances, validation loss will be higher
than usual, and it is unlikely that a near-optimal model will
be produced. Figure 4 below shows the S2 ∪ S3 test results
at increasing numbers of epochs. For this test, the optimal
number of epochs seems to be around 90 where an MAE of
4.753 is achieved. ArgMax and expected value are ways of
decoding age from the softmax layer of the neural net and are
explained in section VII-D1.

Fig. 4. With epochs, there is a breaking point where a model goes
from underlearned to overfit. Usually the best model occurs at that
point.

C. Dropout Regularization

One method of combatting overfitting is to add dropout
to weight layers. In the 2014 paper that introduces dropout,
Srivastava et al. state that it “provides a way of approximately
combining exponentially many different neural network archi-
tectures efficiently” [29]. When dropout is added to a weight
layer, neurons are randomly selected to be removed from the
network at each iteration. Those neurons are omitted both
when the mini-batch is being fed through the network, and

also during backpropagation. The number of neurons removed
from the layer is determined by the dropout rate which is
set manually. In VGG19, dropout is only used in the top
fully-connected layers. Using a higher dropout rate provides
more of a regularizing effect, but causes the model to not
learn as quickly. In figure 5, dropout can be seen preventing
overfitting as the training set losses stay higher, but the test set
losses decrease. In table II, the best and final models are also
compared. During training, the model that achieves the lowest
loss on the validation set is saved and is considered the “best”
model. After the last epoch of the last set of trained images, the
final model is saved. The best model usually outperforms the
final model except if the lowest loss happens to be obtained
very early on in the training process. If the model overfits
the validation set, a very good loss and accuracy might be
recorded, but when fully tested, the performance is mediocre.
In the dropout results table, the best result is seen with lower
dropout because it acts like a model that is trained for more
epochs than 60 which is optimal in this case.

TABLE II
DROPOUT RESULTS

0.3 0.4 0.5 0.6 0.7

Best 4.768 5.002 5.192 4.915 5.056
Final 4.953 4.949 6.065 5.698 5.143

Fig. 5. With lower dropout, the validation loss can be seen to improve
more quickly, but it does not reach the depths of the losses that occur
at a higher dropout rate. Especially towards the end of the training
process, higher dropout can be seen achieving lower losses.

VII. TRAINING TECHNIQUES

In addition to changes in the network, many different
training techniques were compared in order to observe their
effects on gender recognition and age estimation. Training
techniques are ways of training a model that can result in
better accuracy. Improvements due to the training techniques
explored in this section do not result from changes in the
network, but from changes in the data.



A. Input Standardization

When VGG was originally submitted to the ImageNet
competition, the creators trained on images that had been zero-
centered. This means that the average was calculated for the
training set and subtracted from each pixel value before being
fed into the network. Like zero-centering, standardizing image
data also centers it at zero, but additionally gives the pixel
values a normal spread. When standardizing training data, the
validation and test data must also be standardized with respect
to the training data. The mean x̄, and standard deviation σ, of
S1 can be seen in table III. Once they have been calculated,
the formula:

Pi − x̄
σ

(2)

can be applied to P which is the set of all pixel values (red,
green, and blue) in S1. As seen in figure 6, standardizing
the input data produces immediately better results. Not only
does the model begin to fit the dataset faster, it also reaches a
higher accuracy than the zero-centered dataset. The accuracies
shown in figure 6 are validation set accuracy during each epoch
of training. Once trained, the standardized model reaches a
gender classification accuracy of 96.209% on the full S2 ∪S3

test set. This is 1.083% higher than the performance of the
model trained on a zero-centered S1.

TABLE III
S1 MEAN AND STANDARD DEVIATION

x̄ σ

S1 142.46 59.85

Fig. 6. Standardizing the input helps VGG19 reach higher accuracy
faster.

B. Data Augmentation

Data augmentation techniques are commonly used to train
neural networks [30] [31]. Since large and accurate datasets
are rare and usually private, data augmentation can be used
to create more data with which to train a network. For this
project, 12-crop resampling was tested. This involves taking

a crop from each corner of the image and the center of the
image, and resizing the image down to crop size. These six
samples are then flipped horizontally to produce twelve unique
images. Figure 7 shows an example of a MORPH-II image
after 10-crop resampling has been applied (12-crop resampling
without the resized image). Using this technique and the
training parameters described in section V, an MAE of 5.028
years was obtained. This is a slight increase in performance
over the 5.192 MAE of the baseline test, but a drawback is that
the network must be trained on 123k 160x200 images instead
of 10k 200x240 images, taking 8 times as long to train.

Fig. 7. The original 200x240 images are cropped and flipped to
become ten 160x200 images.

C. More Data

Many suggest that a large dataset is integral to deep
learning. A sales pitch for deep learning is that deep neural
networks can learn more from the data and thereby surpass
traditional statistical methods. To test the effects of a larger
dataset, the training data are doubled in size by making use
of S2. S1 ∪S2 becomes a set of 20,560 images and is trained
upon, while S3 is used for testing. The sales pitch appears to
ring true as the model achieves an MAE of 4.690 years. Part
of the drop in MAE is due to the drop in female population.
In S2 ∪ S3, females make up 13.1% of the population but in
S3 the female population is 9.6%.

D. Label Distribution Age Encoding (LDAE)

LDAE is a method of encoding age that has proven more
effective than simple one-hot encoding [16]. LDAE recognizes
that people age differently, so it helps to view a person’s age,
denoted by A, as a small scope of potential ages rather than
just a binary truth. In this method, the formula:

f(i|A,α) =
1√
2πα

e−
(i−A)2

2α2 (3)

is used to calculate a probability at each age to encode age
labels. In the formula A is the age label, i is the age for which
a probability should be produced, and α is a hyperparameter
that affects the spread of the age probabilities.

1) ArgMax and Expected Value: Two ways that an age can
be decoded from the output of a neural network are known as
ArgMax and expected value. ArgMax uses the age that has the
highest probability. Expected value multiplies the probability
at each age by the age and then sums the products. In most



cases, expected value gives more accurate predictions, but the
age MAEs are usually fairly close.

2) Dynamic LDAE: In general, it is easier to mistake an old
person’s age by a large amount than a young person’s age. To
represent the differing certainty between young and old, the α
value in Equation 3 is increased linearly as age increases. In
this paper, dynamic LDAE is proposed as follows: an overall α
of 2.5 is considered, with a higher α for old ages and a lower
α for young ages. To illustrate: During training, age labels are
encoded with LDAE from the ages of 5 to 85. The resulting
input vector has 81 dimensions, each containing a probability
for the corresponding age. For example, considering α with a
range from 1 to 4, and for age A, the dynamic α is estimated
by:

g(α|A) =
range(α)

81
∗ (A− 5) + 1. (4)

An illustration of the input vector encodings can be seen in
figure 8. It improves the accuracy as seen in table IV.

TABLE IV
DYNAMIC LDAE RESULTS

One-Hot α = 2.5 α = 1-3.5 α = 1-4

MAE 5.250 5.192 4.861 4.778

Fig. 8. Training image age labels are encoded with dynamic LDAE.
Eight age encodings are shown as α ranges from 1 to 4 and age
ranges 16 to 79.

VIII. RESULTS WITH VGGFACE

All of the tests from sections VI and VII use VGG19
with its ILSVRC weights. This section considers transfer
learning with the VGG16 architecture pretrained for facial
recognition. Although VGG19 is capable of detecting the
subtlest differences to separate millions of images into 1000
classes, some of the filters it has learned activate on mundane
objects or animal fur, so they do not produce strong activations
on images containing human faces. Since VGGFace was orig-
inally trained to separate several captures of 2662 individual
faces [24], every filter in VGGFace is geared towards finding
human facial features. The models in this section were trained
using most of the same parameters as above and no extra data
augmentation or generalization techniques. As can be seen
in tables V and VI, VGGFace takes far fewer epochs to fit
the training data even though it is a smaller network. Gender

validation set accuracy, for example, reaches 98% during the
first epoch of S1. Because of this, smaller increments of epochs
must be searched to find the best resulting models. All models
in this section are still trained on S1 and tested on S2 ∪ S3.
As expected, VGGFace produces better results than a general
task VGG19 network.

TABLE V
VGGFACE EXPECTED VALUE MAE

Epoch 5 10 15 20 25 30 35

MAE 4.800 4.483 4.443 4.468 4.322 4.377 4.323

TABLE VI
VGGFACE GENDER PREDICTION ACCURACY

Epoch 3 6 9 12 15 18 21

Accy. 98.59% 98.47% 98.68% 98.53% 98.65% 98.64% 98.56%

IX. GENDER-SPECIFIED HIERARCHAL AGE MODEL

In the past, hierarchies of classifiers have used multiple
feature labels of datasets to increase classification accuracy.
Test data are separated into different classes before being
classified again by models trained specifically for each class.
Guo and Mu use a hierarchy of KPLS (kernel partial least
squares) race and gender classifiers with BIFs to obtain a
MORPH-II MAE of 4.18 years [22]. It makes sense that men
and women would have different features that are indicative of
age, so a hierarchy of deep CNN models might also produce
better age estimation results than a single model used for
both genders. Because female image data are fairly limited
in MORPH-II, an 80/20 train/test split was devised such that
no subjects who appear in the training data are also in the
testing data. A gender model was trained for the hierarchy
using the same 80% portion of the training data and it achieved
an accuracy of 98.60%.

Fig. 9. In this design, images are classified as male or female before
estimating age with the corresponding model.

The female age model achieved an MAE of 5.22 years
after being trained for 25 epochs on all female images in the
training set. The male age model achieved an MAE of 3.79
years after 20 epochs. The deep CNN hierarchy achieved an



MAE of 4.10 years which outperforms all other age estimation
models in this document. This experiment shows that with
enough training data, a hierarchy of deep CNNs can surpass a
single model trained for general age estimation. Additionally,
the model can make age and gender predictions at a rate of
62.62 frames per second meaning that it is suitable for real-
time age and gender estimation deployment. Table VII shows
a comparison of the results from this paper alongside other
MORPH-II studies.

TABLE VII
MORPH-II RESULTS WITH COMPARISON

Approach Year Train Test Age Gender

BIF+OLPP
[32]

2010 S1, S2 S2 ∪ S3,
S1 ∪ S3

4.45 97.84%

BIF+KPLS
[22]

2011 S1, S2 S2 ∪ S3,
S1 ∪ S3

4.18 98.20%

VGG19 2018 S1 S2 ∪ S3 4.75 96.6%
VGGFace 2018 S1 S2 ∪ S3 4.32 98.68%
Gender-
Specified

2018 80% 20% 4.10 98.60%

X. CONCLUSION

Although VGG19 was not originally trained to recognize
faces, good results for gender recognition and age estimation
can still be obtained using transfer learning techniques. Trans-
fer learning with a pretrained model that is more pertinent
to the task, such as VGGFace, can produce results that beat
other gender recognition and age estimation techniques, and
can even exceed human performance. Changes in network
designs and training techniques can be studied without having
to spend weeks training models from scratch. The models for
this paper were all trained using a GTX 1060 Max-Q and
a GTX 1070. This paper has shown the advantages offered
by certain model designs, training techniques, and pretrained
weights. It has also demonstrated that hierarchies of AI models
offer promise and should be considered when implementing a
classification system.

Future Work The results shown here surpass nearly all
results obtained before 2012 simply by leveraging new deep
learning technology. They are, however, far from what is
possible. A live demo of these AI models revealed flaws.
Age estimations were occasionally wildly off for minorities
in the dataset such as Asians, Hispanics, women, children,
and elderly people. Additionally, gender predictions seemed
largely based on the absence or presence of long hair and
could change by the tilt of the head. To address these types of
issues further training techniques could be studied that help to
generalize and stabilize prediction accuracy. Larger and more
balanced datasets could be used as training data. Newer types
of deep CNN architectures could be adapted to age and gender
estimation and might yield better results even with general
task weights. Increasingly deep hierarchies of models can be
considered for appropriately large datasets. Combinations of
datasets and fusions of features could be what’s on the horizon
for the advancement of deep learning. Finally, training models

from scratch specifically for age and gender predictions would
probably produce better results.
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