
YOLO-LITE: A Real-Time Object Detection
Algorithm Optimized for Non-GPU Computers

Rachel Huang*
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, United States

rachuang22@gmail.com

Jonathan Pedoeem*
Electrical Engineering

The Cooper Union
New York, United States

pedoeem@cooper.edu

Cuixian Chen
Mathematics and Statistics

UNC Wilmington
North Carolina, United States

chenc@uncw.edu

Abstract—This paper focuses on YOLO-LITE, a real-time
object detection model developed to run on portable devices
such as a laptop or cellphone lacking a Graphics Processing
Unit (GPU). The model was first trained on the PASCAL VOC
dataset then on the COCO dataset, achieving a mAP of 33.81%
and 12.26% respectively. YOLO-LITE runs at about 21 FPS on a
non-GPU computer and 10 FPS after implemented onto a website
with only 7 layers and 482 million FLOPS. This speed is 3.8×
faster than the fastest state of art model, SSD MobilenetvI. Based
on the original object detection algorithm YOLOV2, YOLO-
LITE was designed to create a smaller, faster, and more efficient
model increasing the accessibility of real-time object detection to
a variety of devices.

Index Terms—object detection; YOLO; neural networks; deep
learning; non-GPU; mobile

I. INTRODUCTION

In recent years, object detection has become a significant
field of computer vision. The goal of object detection is to
detect and classify objects leading to many specialized fields
and applications such as face detection and face recognition.
Vision is not only the ability to see a picture in ones head
but also the ability to understand and infer from the image
that is seen. The ability to replicate vision in computers is
necessary to progress day to day technology. Object detection
addresses this issue by predicting the location of objects
through bounding boxes while simultaneously classifying each
object in a given image [1], [2], [3].

In addition, with recent developments in technology such
as autonomous vehicles, precision and accuracy are no longer
the only relevant factors. A model’s ability to perform object
detection in real-time is necessary in order to accommodate
for a vehicle’s real-time environment. An efficient and fast
object detection algorithm is key to the success of autonomous
vehicles [4], augmented reality devices [5], and other intel-
ligent systems. A lightweight algorithm can be applied to
many everyday devices, such as an Internet connected doorbell
or thermostat. Currently, the state-of-the-art object detection
algorithms used in cars rely heavily on sensor output from
expensive radars and depth sensors. Other techniques that
are solely computer based require immense amount of GPU
power and even then are not always real-time, making them

*equal authorship

Fig. 1. Example images passed through our YOLO-LITE COCO model.

impractical for everyday applications. The general trend in
computer vision is to make larger and deeper networks to
achieve higher accuracy [6], [7], [8], [9]. However, such
improvement in accuracy with heavy computational cost may
not be helpful to face the challenge in many real world
applications which require real-time performance carried out
in a computationally limited platform.

Previous methods, such as You-Only-Look-Once (YOLO)
[10] and Regional-based Convolutional Neural Networks (R-
CNN) [11], have successfully achieved an efficient and accu-
rate model with high mean average precision (mAP); however,
their frames per second (FPS) on non-GPU computers render

ar
X

iv
:1

81
1.

05
58

8v
1

 [c
s.C

V
]

14
 N

ov
 2

01
8

them useless for real-time use. In this paper, YOLO-LITE is
presented to address this problem. Using the You Only Look
Once (YOLO) [10] algorithm as a starting point, YOLO-LITE
is an attempt to get a real time object detection algorithm on
a standard non-GPU computer.

II. RELATED WORK

There has been much work in developing object detection
algorithms using a standard camera with no additional sensors.
State-of-the-art object detection algorithms use deep neural
networks.

Convolutional Neural Networks (CNNs) is the main archi-
tecture that is used for computer vision. Instead of having
fully-connected layers, a CNN has a convolution layer where
a filter is convolved with different parts of the input to create
the output. The use of a convolution layer allows for relational
patterns to be drawn from an input. In addition, a convolution
layer tends to have less weights that need to be learned than a
fully connected layer as filters do not need an assigned weight
from every input to every output.

A. R-CNN

Regional-based convolutional neural networks (R-CNN)
[11] consider region proposals for object detection in images.
From each region proposal, a feature vector is extracted and
fed into a convolutional neural network. For each class, the
feature vectors are evaluated with Support Vector Machines
(SVM). Although R-CNN results in high accuracy, the model
is not able to achieve real-time speed even with Fast R-CNN
[12] and Faster R-CNN [13] due to the expensive training
process and the inefficiency of region proposition.

B. YOLO

You Only Look Once (YOLO) [10] was developed to
create a one step process involving detection and classification.
Bounding box and class predictions are made after one eval-
uation of the input image. The fastest architecture of YOLO
is able to achieve 45 FPS and a smaller version, Tiny-YOLO,
achieves up to 244 FPS (Tiny YOLOv2) on a computer with
a GPU.

The idea of YOLO differs from other traditional systems
in that bounding box predictions and class predictions are
done simultaneously. The input image is first divided into a
S× S grid. Next, B bounding boxes are defined in every grid
cell, each with a confidence score. Confidence here refers to
the probability an object exists in each bounding box and is
defined as:

C = Pr (Object) ∗ IOU truth
pred (1)

where IOU, intersection over union, represents a fraction
between 0 and 1. Intersection is the overlapping area between
the predicted bounding box and ground truth, and union is
the total area between both predicted and ground truth as
illustrated in Figure 2. Ideally, the IOU should be close to
1, indicating that the predicted bounding box is close to the
ground truth.

Fig. 2. Illustration depicting the definitions of intersection and union.

Simultaneously, while the bounding boxes are made, each
grid cell also predicts C conditional class probability. The
class-specific probability for each grid cell [10] is defined as:

Pr (Classi|Object) ∗ Pr (Object) ∗ IOU truth
pred

=Pr (Classi) ∗ IOU truth
pred . (2)

YOLO uses the following equation below to calculate loss
and ultimately optimize confidence:

Loss =

λcoord

s2∑
i=0

A∑
j=0

1
obj
ij [(bxi − bx̂i)

2 + (byi − bŷi)
2]

+ λcoord

s2∑
i=0

A∑
j=0

1
obj
ij [(

√
bwi −

√
bŵi)

2 + (
√
bhi −

√
bĥi

)2]

+
s2∑
i=0

A∑
j=0

1
obj
ij (Ci − Ĉi)

2

+ λnoobj

s2∑
i=0

A∑
j=0

1
noobj
ij (Ci − Ĉi)

2

+
s2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2. (3)

The loss function is used to correct the center and the
bounding box of each prediction. Each image is divided into
an S × S grid, with A bounding boxes for each grid. The bx

and by variables refer to the center of each prediction, while bw

and bh refer to the bounding box dimensions. The λcoord and
λnoobj variables are used to increase emphasis on boxes with
objects, and lower the emphasis on boxes with no objects. C
refers to the confidence, and p(c) refers to the classification
prediction. The 1obj

ij is 1 if the jth bounding box in the ith cell
is responsible for the prediction of the object, and 0 otherwise.
1
obj
i is 1 if the object is in cell i and 0 otherwise. The loss

indicates the performance of the model, with a lower loss
indicating higher performance.

While loss is used to gauge performance of a model, the
accuracy of predictions made by models in object detection

Model Layers FLOPS (B) FPS mAP Dataset
YOLOv1 26 not reported 45 63.4 VOC

YOLOv1-Tiny 9 not reported 155 52.7 VOC
YOLOv2 32 62.94 40 48.1 COCO

YOLOv2-Tiny 16 5.41 244 23.7 COCO
YOLOv3 106 140.69 20 57.9 COCO

YOLOv3-Tiny 24 5.56 220 33.1 COCO

TABLE I
PERFORMANCE OF EACH VERSION OF YOLO.

are calculated through the average precision equation shown
below:

avgPrecision =
n∑

k=1

P (k)∆r(k). (4)

P(k) here refers to the precision at threshold k while ∆r(k)
refers to the change in recall.

The neural network architecture of YOLO contains 24
convolutional layers and 2 fully connected layers. YOLO is
later improved with different versions such as YOLOv2 or
YOLOv3 in order to minimize localization errors and increase
mAP. As seen in Table I, a condensed version of YOLOv2,
Tiny-YOLOv2 [14], has a mAP of 23.7% and the lowest
floating point operations per second (FLOPS) of 5.41 billion.

When Tiny-YOLOv2 runs on a non-GPU laptop (Dell XPS
13), the model speed decreases from 244 FPS to about 2.4
FPS. With this constriction, real-time object detection is not
easily accessible on many devices without a GPU, such as
most cellphones or laptops.

III. YOLO-LITE ARCHITECTURE

Our goal with YOLO-LITE is to develop an architecture that
can run at a minimum of ∼ 10 frames per second (FPS) on a
non-GPU powered computer with a mAP of 30% on PASCAL
VOC. This goal is determined from looking at the state-of-the-
art and creating a reasonable benchmark to reach. YOLO-LITE
offers two main contributions to the field of object detection:

1) Demonstrates the capability of shallow networks with
fast non-GPU object detection applications.

2) Suggests that batch normalization is not necessary for
shallow networks and, in fact, slows down the overall
speed of the network.

While some works [15], [16], [17] focused on creating an
original convolution layer or pruning methods in order to
shrink the size of the network, YOLO-LITE focuses on taking
what already existed and pushing it to its limits of accuracy
and speed. Additionally, YOLO-LITE focuses on speed and
not overall physical size of the network and weights.

Experimentation was done with an agile mindset. Using
Tiny-YOLOv2 as a starting point, different layers were re-
moved and added and then trained on Pascal VOC 2007 &
2012 for about 10-12 hours. All of the iterations used the
same last layer as Tiny-YOLOv2. This layer is responsible for
splitting the feature map into the SxS grid for predicting the
bounding boxes. The trials were then tested on the validation
set of Pascal 2007 to calculate mAP. Pascal VOC was used

for the development of the architecture, since its small size
allows for quicker training. The best performing model was
used as a platform for the next round of iterations.

While there was a focus on trying to intuit what would
improve mAP and FPS, it was hard to find good indicators.
From the beginning, it was assumed that the FLOPS count
would correlate with FPS; this proved to be true. However,
adding more filters, making filters bigger, and adding more
layers did not easily translate to an improved mAP.

A. Setup

Darknet, the framework created to develop YOLO was used
to train and test the models. The training was done on a
Alienware Aura R7, with a Intel i7 CPU, and a Nvidia 1070
GPU. Testing for the frames per second were done on a Dell
XPS 13 laptop, using Darkflow’s live demo example script.

B. PASCAL VOC and COCO Datasets

YOLO-LITE was trained on two datasets. The model was
first trained using a combination of PASCAL VOC 2007 and
2012 [18]. It contains 20 classes with approximately 5,000
training images in the dataset.

The highest performing model trained on PASCAL VOC
was then retrained on the second dataset, COCO 2014 [19],
containing 80 classes with approximately 40,000 training
images. Figure 3 shows some example images with object
segmentation taken from the COCO dataset.

TABLE II
PASCAL VOC AND COCO DATSETS

Dataset Training Images Number of Classes
PASCAL VOC 2007 + 2012 5,011 20

COCO 2014 40,775 80

C. Indicators for Speed and Precision

Table III reveals what was successful and what was not
when developing YOLO-LITE. The loss which is reported in
Table III, was not a good indicator of mAP. While a high loss
indicates a low mAP there is no exact relationship between the
two. This is due to the fact that the losses listed in Equation 3
are not defined exactly by the mAP but rather a combination of
different features. The training time, when taken in conjugation
with the amount of epochs, was a very good indicator of FPS
as seen from Trials 3, 6 etc. The FLOPS count was also a good
indicator, but given that the FLOPS count does not take into
consideration the calculations and time necessary for batch
normalization, it was not as good as considering at the epoch
rate.

Trials 4, 5, 8, and 10 showed that there was no clear rela-
tionship between adding more layers and filters and improving
accuracy.

TABLE III
RESULTS FOR EACH TRIAL RUN ON PASCAL VOC.

Model Layers mAP FPS FLOPS Time Loss

Tiny-YOLOv2 (TY) 9 40.48% 2.4 6.97 B 12 hours 1.26
TY- No Batch Normal-
ization (NB)

9 35.83% 3 6.97 B 12 hours 0.85

Trial 1 7 12.64% 1.56 28.69 B 10 hours 1.91
Trial 2 9 30.24% 6.94 1.55 B 5 hours 1.37
Trial 2 (NB) 9 23.49% 12.5 1.55 B 6 hours 1.56
Trial 3 7 34.59% 9.5 482 M 10 hours 1.68
Trial 3 (NB) 7 33.57% 21 482 M 7 hours 1.64
Trial 4 8 2.35% 5.2 1.03 B 10 hours 1.93
Trial 5 7 .55% 3.5 426 M 7 hours 2.4
Trial 6 7 29.33% 9.7 618 M 11 hours 1.91
Trial 7 8 16.84% 5.7 482 M 7 hours 2.3
Trial 8 8 24.22% 7.8 490 M 13 hours 1.3
Trial 9 7 28.64% 21 846 M 12 hours 1.5
Trial 10 7 23.44% 8.2 1.661 B 10 hours 1.55
Trial 11 7 15.91% 21 118 M 12 hours 1.35
Trial 12 8 26.90% 6.9 71 M 9 hours 1.74
Trial 12 (NB) 8 25.16% 15.6 71 M 12 hours 1.35
Trial 13 8 39.04% 5.8 1.083 B 11 hours 1.42
Trial 13 (NB) 8 33.03% 10.5 1.083 B 16 hours 0.77

TABLE IV
ARCHITECTURE OF EACH TRIAL ON PASCAL VOC

Trial Architecture Description

TY-NB Same architecture at TY, but with no batch normalization.
Trial 1 First 3 layers same as TY. Layer 4 has 512 1 3x3 filters. Layer 5 has 1024 3x3 layers. Layer 6 & 7 same as the last 2 layers of TY
Trial 2 Same Architecture as TYV, but input image size shrunk to 208x208
Trial 2 (NB) Same architecture as trial 2, but no batch normalization
Trial 3 First 4 layers same as TYV. Layer 5 has 128 3x3 filters. Layer 6 has 128 3x3 filters. Layer 7 has 256 3x3 filters. Layer 8 has 125

1x1 filters.
Trial 3 (NB) Same architecture as Trial 3, but no batch normalization
Trial 4 Layer 1 5 3x3 filters. Layer 2 5 3x3 filters. Layers 3 16 3x3 filters. Layer 4 64 2x2 filters. Layer 5 256 2x2 filters. Layer 6 128 2x2

filters. Layer 7 512 1x1 filters. Layer 8 125 1x1 filters.
Trial 5 L1 8 3x3 filters. L2 16 3x3 filters. L3 32 1x1 filters. L4 64 1x1 filters. L5 64 1x1 filters. L6 125 1x1 filters.
Trial 6 Trial 7 is the same as trial 3, but the activation functions were changed to ReLU instead of Leaky ReLU
Trial 7 L1 32 3x3 filters. L2 34 3x3 filters. L3 64 1x1. L4 128 3x3 filters. L5 256 3x3 filters. L6 1024 1x1 filters. L7 125 1x1 filters.
Trial 8 Trial 8 is the same as trial 3, but one more Layer before L7 with 256 3x3 filters.
Trial 9 Trial 9 is the same as trial 3 (NB), but with the input raised to 300x300.
Trial 10 Trial 10 is the same as trial 3 (NB), but with the input raised to 416x416.
Trial 11 Trial 11 is the same as trial 3 (NB), but wit the input lowered to 112x112.
Trial 12
Trial 12 (NB) Same architecture as trial 12, but no batch normalization
Trial 13 Trial 13 has the same architecture as TY but has one last layer. It does not have layer 8 of TY.
Trial 13 (NB) Same architecture as trial 13, but no batch normalization

D. Image Size

It was determined when comparing Trial 2 to Tiny-YOLOv2
that reducing the input image size by a half can more than
double the speed of the network (6.94 FPS vs 2.4 FPS) but will
also effect the mAP (30.24% vs 40.48%). Reducing the input
image size means that less of the image is passed through the
network. This allows the network to be leaner, but also means
that some data was lost. We determined that, for our purposes,
it was better to take the speed up over the mAP.

E. Batch Normalization

Batch normalization [20] offers many different improve-
ments namely speeding up the training time. Trials have shown
batch normalization improves accuracy over the same network
without it. YOLOv2 and v3 have also seen improvements in
training and mAP by implementing batch normalization [14],
[21]. While there is much empirical evidence showing the
benefits of using batch normalization, it has been found to not
be necessary while developing YOLO-LITE. To understand
why that is the case, it is necessary to understand what batch
normalization is.

Batch normalization entails taking the output of one layer

Fig. 3. Example images with image segmentation from the COCO
dataset [19].

and transforming it to have a mean zero variance and a
standard deviation of one before inputting to the next layer.
The idea behind batch normalization is that during training
using mini-batches it is hard for the network to learn the true
ground-truth distribution of the data as each mini-batch may
have a different mean and variance. This issue is described
as a covariate shift. The covariate shift makes it difficult to
properly train the model as certain features may be dispro-
portionately saturated by activation functions. This is what is
referred to as the vanishing gradient problem. By keeping the
inputs in the same scale, batch normalization stabilizes the
network which in turn allows the network to train quicker.
During test time, estimated values from training are used to
batch normalize the test image.

As YOLO-LITE is a small network, it does not suffer
greatly from covariate shift and in turn vanishing gradient
problem. Therefore, the assumptions made by Ioffe et al. that
batch normalization is necessary does not apply. In addition,
it seems that the batch normalization calculation that needs
to take place in between each layer holds up the network
and slows down the whole feedforward process. During the
feedfoward each input value has to be updated. For example,
the initial input layer of 224 × 224 × 3 has over 150k
calculations that needs to be made. This calculation happening
at every layer builds the time necessary for the forward pass.
This has led us to do away with batch normalization.

F. Pruning

Pruning is the idea of cutting certain weights based on their
importance. It has been shown that a simple pruning method
of removing anything less than a certain threshold can reduce
the amount of parameters in Alexnet by 9× and VGGnet by
13× with little effect on accuracy [22].

It has also been suggested [22] that pruning along with
quantization of the weights and Huffman coding can greatly
shrink the network size and also speed up the network by 3
or 4 times (Alexnet, VGGnet) .

Pruning YOLO-LITE showed to have no improvement
in accuracy or speed. This is not surprising as the results
mentioned in the paper [22] are on networks that have many
fully-connected layers. YOLO-LITE consists mainly of con-
volutional layers. This explains the lack of results. A method
such as the one suggested by Li et al. for pruning convolutional
neural networks may be more promising [23]. They suggest
pruning whole filters instead of select weights.

IV. RESULTS

There were 18 different trials that were attempted during
the experimentation phase. Figure 4 shows the mAP and the
FPS for each of these trials and Tiny-YOLOv2.

While all the development for YOLO-LITE was done on
PASCAL VOC, the best trial was also run on COCO. Table
V shows the top results achieved on both datasets.

TABLE V
RESULTS FROM TRIAL 3 NO BATCH NORMALIZATION (NB)

Dataset mAP FPS

PASCAL VOC 33.77% 21
COCO 12.26% 21

A. Architecture

Table VI and Table VII show the architectures for Tiny-
YOLOv2 and the best performing trial of YOLO-LITE, Trial
3-no batch. Tiny-YOLOv2 is composed of 9 convolutional
layers, a total of 3,181 filters, and 6.97 billion FLOPS.

In contrast, Trial 3-no batch of YOLO-LITE only consists
of 7 layers with a total of 749 filters and 482 FLOPS . When
comparing the FLOPS of the two models, Tiny-YOLOv2 has
14× more FLOPS than YOLO-LITE Trial 3-no batch. A
lighter model containing reduced number of layers enables
the faster performance of YOLO-LITE.

V. COMPARISON WITH OTHER FAST OBJECT DETECTION
NETWORKS

When it comes to real-time object detection algorithms for
non-GPU devices, the competition for YOLO-LITE is pretty
slim. YOLO’s tiny architecture, which was the starting point
for YOLO-LITE has some of the quickest object detection
algorithms. While they are much quicker than the bigger
YOLO architecture, they are hardly real-time on non-GPU
computers (∼ 2.4 FPS).

Google has an object detection API that has a model
zoo with several lightweight architectures [24]. The most
impressive was SSD Mobilenet V1. This architecture clocks
in at 5.8 FPS on a non-GPU laptop with an mAP of 21%.

MobileNet [25] uses depthwise separable convolutions, as
opposed to YOLO’s method, to lighten a model for real-time
object detection. The idea of depthwise separable convolutions

Fig. 4. Comparison of trials attempted while developing YOLO-LITE

combines depthwise convolution and pointwise convolution.
Depthwise convolution applies one filter on each channel then
pointwise convolution applies a 1x1 convolution [25]. This
technique aims to lighten a model while maintaining the same
amount of information learned in each convolution. The ideas
of depthwise convolution in MobileNet potentially explain the
higher mAP results from SSD MobileNet COCO.

TABLE VIII
COMPARISON OF STATE OF THE ART ON COCO DATASET

Model mAP FPS

Tiny-YOLOV2 23.7% 2.4
SSD Mobilenet V1 21% 5.8
YOLO-LITE 12.26% 21

Table VIII shows how YOLO-LITE compares. YOLO-LITE
is 3.6× faster than SSD and 8.8× faster than Tiny-YOLOV2.

A. Web Implementation

After successfully training models for both VOC and
COCO, the architectures along with their respective weights
files were converted and implemented as a web-based model1

also accessible from a cellphone. Although YOLO-LITE runs
at about 21 FPS locally on a Dell XPS 13 laptop, once pushed
onto the website, the model runs at around 10 FPS. The FPS
may differ depending on the device.

VI. CONCLUSION

YOLO-LITE achieved its goal of bringing object detection
to non-GPU computers. In addition, YOLO-LITE offers sev-

1https://reu2018dl.github.io/

eral contributions to the field of object detection. First, YOLO-
LITE shows that shallow networks have immense potential
for lightweight real-time object detection networks. Running
at 21 FPS on a non-GPU computer is very promising for
such a small system. Second, YOLO-LITE shows that the
use of batch normalization should be questioned when it
comes to smaller shallow networks. Movement in this area
of lightweight real-time object detection is the last frontier in
making object detection usable in everyday instances.

VII. FUTURE WORK

Lightweight architectures in general have a significant drop
off in accuracy from the original YOLO architecture. YOLOv2
has an mAP of 48.1% with a decrease to 23.7% in YOLOv2-
Tiny. The YOLO-LITE architecture has a mAP decrease down
to 12.16%. There is a constant tradeoff for speed in lightweight
models and accuracy in a larger models. Although YOLO-
LITE achieves the fastest mAP compared to state of the
art, the accuracy prevents the model from succeeding in real
applications such as an autonomous vehicle. Future work may
include techniques to increase the mAP for both COCO and
VOC models.

While the FPS for YOLO-LITE is at the necessary level
for real-time use with non-GPU computers, the accuracy needs
improvement in order for it to be a viable model. As mentioned
in [26], [21], pre-training the network to classify on Imagenet
has had some good results when transferring the network back
to object detection.

Redmon et al. [10] use R-CNN in combination with YOLO
to increase mAP. As previously mentioned, R-CNN finds
bounding boxes and classifies each bounding box separately.
Once classification is complete, post-processing is used to

https://reu2018dl.github.io/

TABLE VI
TINY-YOLOV2-VOC ARCHITECTURE

Layer Filters Size Stride

Conv1 (C1) 16 3× 3 1
Max Pool (MP) 2× 2 2
C2 32 3× 3 1
MP 2× 2 2
C3 64 3× 3 1
MP 2× 2 2
C4 128 3× 3 1
MP 2× 2 2
C5 256 3× 3 1
MP 2× 2 2
C6 512 3× 3 1
MP 2× 2 2
C7 1024 3× 3 1
C8 1024 3× 3 1
C9 125 1× 1 1
Region

TABLE VII
YOLO-LITE: TRIAL 3 ARCHITECTURE

Layer Filters Size Stride

C1 16 3× 3 1
MP 2× 2 2
C2 32 3× 3 1
MP 2× 2 2
C3 64 3× 3 1
MP 2× 2 2
C4 128 3× 3 1
MP 2× 2 2
C5 128 3× 3 1
MP 2× 2 2
C6 256 3× 3 1
C7 125 1× 1 1
Region

clean localization errors [10]. Although less efficient, an
improved version of R-CNN (Fast R-CNN) yields a higher
accuracy of 66.9% while YOLO achieves 63.4%. When com-
bining R-CNN and YOLO, the model achieves 75% mAP
trained on PASCAL VOC.

Another possible improvement can be to attempt using the
feature in YOLOv3 where there are multiple locations for
making a prediction. This has helped improve the mAP in
YOLOv3 [21] and could potentially help improve mAP in
YOLO-LITE.

Filter pruning set out by Li et al. [23] can be another
possible improvement. While standard pruning did not help
YOLO-LITE, pruning out filters can potentially make the
network more lean and allow for a more guided training
process to learn better weights. While it is not clear if this
will greatly improve the mAP, it can potentially speed up the
network. It will also make the overall size of the network in
memory smaller.

A final improvement can come from ShuffleNet. ShuffleNet
uses group convolution and channel shuffling in order to

decrease computation while maintaining the same amount of
information during training [15]. Implementing group convo-
lution in YOLO-LITE may improve mAP.

VIII. RELEVANT LINKS

More information on the web implementation of YOLO-
LITE can be found at https://reu2018dl.github.io/. For the cfg
and weights files from training PASCAL VOC and COCO
visit https://github.com/reu2018dl/yolo-lite.

IX. ACKNOWLEDGEMENTS

This research was done through the National Science Foun-
dation under DMS Grant Number 1659288. A special thanks
to Kha Gia Quach, Chi Nhan Duong, Khoa Luu, Yishi Wang,
and Summerlin Thompson for their support.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015. 1

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587. 1

[3] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” in Advances in neural information processing systems, 2013,
pp. 2553–2561. 1

[4] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik,
J. Terwilliger, J. Kindelsberger, L. Ding, S. Seaman et al., “Mit au-
tonomous vehicle technology study: Large-scale deep learning based
analysis of driver behavior and interaction with automation,” arXiv
preprint arXiv:1711.06976, 2017. 1

[5] O. Akgul, H. I. Penekli, and Y. Genc, “Applying deep learning in
augmented reality tracking,” in Signal-Image Technology & Internet-
Based Systems (SITIS), 2016 12th International Conference on. IEEE,
2016, pp. 47–54. 1

[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826. 1

[7] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12. 1

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778. 1

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
1

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788. 1, 2, 6, 7

[11] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” CoRR, vol. abs/1311.2524, 2013. [Online]. Available:
http://arxiv.org/abs/1311.2524 1, 2

[12] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.
[Online]. Available: http://arxiv.org/abs/1504.08083 2

[13] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” CoRR, vol.
abs/1506.01497, 2015. [Online]. Available: http://arxiv.org/abs/1506.
01497 2

[14] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv
preprint, 2017. 3, 4

[15] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely ef-
ficient convolutional neural network for mobile devices,” arXiv preprint
arXiv:1707.01083, 2017. 3, 7

https://reu2018dl.github.io/
https://github.com/reu2018dl/yolo-lite
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016. 3

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017. 3

[18] PASCAL, “The pascal visual object classes homepage,” http://host.
robots.ox.ac.uk/pascal/VOC/index.html, Last accessed on 2018-07-18. 3

[19] “COCO Dataset,” http://cocodataset.org/#home, accessed: 2018-07-23.
3, 5

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015. 4

[21] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018. 4, 6, 7

[22] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015. 5

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.
5, 7

[24] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” in IEEE CVPR, vol. 4, 2017. 5

[25] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861 5, 6

[26] J. Redmon, “Yolo: Real-time object detection,” https://pjreddie.com/
darknet/yolo/, Last accessed on 2018-06-24. 6

http://host.robots.ox.ac.uk/pascal/VOC/index.html
http://host.robots.ox.ac.uk/pascal/VOC/index.html
http://cocodataset.org/#home
http://arxiv.org/abs/1704.04861
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

