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specialized circuitry that enables vocal imitation, this same system
requires specific input (e.g., species-specific song), is not engaged
for other vocalizations (e.g., alarm calls), and in some species,
shows plasticity throughout life as individuals create new songs
each season. In addition, many researchers have recognized and
detailed other DG processes that go beyond what Burkart et al.
discuss. For example, there is considerable comparative work
exploring the concept of “sameness,” analogical reasoning, and
algebraic computations (Martinho & Kacelnik 2016; Smirnova
et al. 2015; ten Cate 2016). These are not part of the executive
system, have not typically been linked to general intelligence,
and yet they cut across domains and appear evolutionarily ancient.

Putting these strands together suggests that any approach to
exploring the evolution of intelligence must consider the interac-
tion between DSM and DG, understand the specificity of the
content of DSM, examine a diversity of DG systems (i.e.,
beyond executive functions), and document how maturational
changes in DG can impact the ontogeny of DSM. The content
of a domain is particularly relevant as tasks within the general
intelligence battery are often assumed to be part of a given
domain without rigorous testing. Take, for example, work on
tool use. Many researchers have considered tool technology a
domain, one based in part on the functional design features of
its objects. Thus, when animals such as chimpanzees and New
Caledonia crows—natural tool users—show sensitivity to an
object’s design features, using those objects that are most likely
to lead to successful outcomes, we consider this to be evidence
of domain-specificity. And yet, cotton-top tamarins—a species
that never uses tools in the wild and shows virtually no interest
in object manipulation in captivity — show the same kind of sensi-
tivity to an object’s design features as chimpanzees and crows; fur-
thermore, this sensitivity appears early in ontogeny in the absence
of experience (Hauser et al. 2002a). This suggests that we should
be more cautious with our claims of DSM capacities, and thus,
how we classify the tasks within a general intelligence battery.

In conclusion, although Burkart et al. introduce a tension
between DSM and DG that doesn’t exist, incorrectly consider
DSM perspectives as innate and inflexible, and falsely accuse
other scholars of classifying nonhuman animals as rigidly DSM,
they are correct in emphasizing the importance of looking more
deeply at general intelligence in animals. Progress will depend
on a clear articulation of the different skills tapped in the
general intelligence battery, and standard methods that can be
implemented across a diversity of species.
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Abstract: We strongly agree that general intelligence occurs in many
animals but find the cultural intelligence hypothesis of limited
usefulness. Any viable hypothesis explaining the evolution of general
intelligence should be able to account for it in all species where it is
known to occur, and should also predict the conditions under which we
can develop machines with general intelligence as well.

In their rich and thought-provoking review, Burkart et al. use
impeccable scholarship to produce a heroic synthesis of multiple

complex literatures. Their two main goals are to critically evaluate
the question of whether general intelligence exists in nonhuman
animals, and to evaluate the implications of general intelligence
for current theories about the evolution of cognition. In our
view, they accomplish the first goal extremely effectively,
making a compelling argument that general intelligence is
indeed widespread among animals. Regarding their second goal,
they argue that existing data from vertebrates support the cultural
intelligence hypothesis, which stresses the critical importance of
social inputs during the ontogenetic construction of survival-rele-
vant skills. However, the general intelligence explained by the cul-
tural intelligence hypothesis is actually quite limited, so we must
seek a more robust explanation for its evolution.

We believe that the cognitive buffer hypothesis (Allman et al.
1993; Deaner et al. 2003; Sol 2009a; 2009b; Lefebvre et al.
2013) offers a better alternative because it can account for phe-
nomena the cultural intelligence hypothesis leaves unexplained.
The cognitive buffer hypothesis posits that general intelligence
is favored directly by natural selection to help animals cope with
novel or unpredictable environments, where it enables individuals
to exhibit flexible behavior, and thus find innovative solutions to
problems threatening their survival and reproduction. In our
view, Burkart et al. dismiss the cognitive buffer hypothesis prema-
turely. They argue that fundamental preconditions for the evolu-
tion of large brains include a slow life history and high
survivorship, possible only in species not subject to unavoidable
extrinsic mortality such as high predation pressure (van Schaik
etal. 2012). However, much can be learned by considering appar-
ent exceptions to “rules” like these, so we offer the octopus as one
such exception.

Most octopuses are strictly solitary except when copulating,
have very short lives, have countless predators, and produce thou-
sands of offspring, most of which die. Nevertheless, they have
some of the largest brains known among invertebrates (Hochner
et al. 2006; Zullo & Hochner 2011); they exhibit a great deal of
curiosity about their environments (Montgomery 2015); they rec-
ognize individual humans (Anderson et al. 2010); they exhibit pro-
nounced individual differences (Sinn et al. 2001; Mather et al.
2012); they use tools; and they play (Mather 1994; Mather &
Anderson 1999). Octopuses thus appear to exhibit a considerable
amount of general intelligence without any opportunity whatso-
ever for social learning. Clearly, the cultural intelligence hypoth-
esis cannot account for the general intelligence apparent in
creatures like these.

Similarly, the cultural intelligence hypothesis offers little
promise with respect to evolving general intelligence in machines.
Computer scientists and robotic engineers have understood for
decades that the embodiment of intelligent machines affects
their ability to adapt and learn via feedback obtained during
their interactions with the environment, mediated by sensors
and activators (Brooks 1990; 1991; Sharkey & Ziemke 1998;
Goldman & de Vignemont 2009). Most hypotheses forwarded
to explain the evolution of intelligence in animals, including the
cultural intelligence hypothesis, fail to address the question of
how morphological traits outside of the nervous system might
have shaped intelligence. In creatures such as octopuses and pri-
mates, mutations affecting nervous system structure or function,
which might generate less-stereotyped and more-flexible behav-
ior, are visible to selective forces in the environment because
they can be embodied in the limbs. Thus, greater intelligence is
likely to evolve in these animals than in those whose interactions
with their environments are more highly constrained.

Roboticists have also realized that logic alone cannot generate
much intelligent behavior in their machines, and that to achieve
better performance, their robots must also want things. The
skills discovered by evolutionary algorithms are diverse, and
many such skills may occur within a single population of digital
organisms, but individual agents are rarely motivated to acquire
a large array of skills. As a result, most current evolutionary algo-
rithms produce domain-specific intelligence in machines that
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rarely possess more than a small set of skills, and they are thus
suited to performing only tasks that demand that particular skill
set. Although an intrinsic motivation to explore the environment
has been imitated in artificial agents via machine learning
(Schmidhuber 1991; Oudeyer et al. 2007), the production of gen-
eralist learners within an evolutionary context remains highly
problematic (Stanton & Clune 2016).

Any selection pressure that promotes behavioral diversity or
flexibility within the organism’s lifetime, including the ability to
learn from experience, should theoretically result in enhanced
general intelligence. Novel or changing environments should
select for individuals who can learn as much as possible in their
lifetimes, as suggested by the cognitive buffer hypothesis.
Indeed, Stanton and Clune (2016) recently developed an evolu-
tionary algorithm that produces agents who explore their environ-
ments and acquire as many skills as possible within their lifetimes
while also retaining their existing skills. This algorithm encourages
evolution to select for curious agents motivated to interact with
things in the environment that they do not yet understand, and
engage in behaviors they have not yet mastered. This algorithm
has two main components: a fitness function that rewards individ-
uals for expressing as many unique behaviors as possible, and an
intra-life novelty score that quantifies the types of behaviors
rewarded by the algorithm. Agents are also provided with an
intra-life novelty compass that indicates which behaviors are con-
sidered novel within the environment. The intra-life novelty
compass may simply identify and direct agents toward areas of
high expected learning because new knowledge often promotes
the ability to perform new skills. Aligned with these results, we
suggest that the primary value of the cultural intelligence hypoth-
esis is to offer social learning as an intra-life novelty compass, but
that this hypothesis provides neither the requisite fitness function
nor anything analogous to an intra-life novelty score.

A viable hypothesis explaining the evolution of large brains and
general intelligence should be able to account for general intelli-
gence in any species where it is known to occur, and it should be
able to predict the conditions under which we can develop
machines with general intelligence as well. The cultural intelli-
gence hypothesis simply cannot do these things.

Where is the evidence for general intelligence
in nonhuman animals?
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Abstract: This commentary contrasts evolutionary plausibility with
empirical evidence and cognitive continuity with radiation and
convergent evolution. So far, neither within-species nor between-species
comparisons on the basis of rigorous experimental and species-
appropriate tests substantiate the claims made in the target article.
Caution is advisable on meta-analytical comparisons that primarily rely
on publication frequencies and overgeneralizations (from murids and
primates to other nonhuman animals).

In this thought-provoking, highly inspiring article, Burkart et al.
explore the possibility of the existence of general intelligence in
nonhuman animals. Given the evidence for g in humans, it is a rea-
sonable and worthwhile endeavor to look for its existence in other
taxa. However, to pursue a psychometric approach to nonhuman
intelligence, it is necessary to obtain relevant and reliable data. As
the authors themselves admit, evolutionary plausibility does not
amount to empirical evidence.

Within-species comparisons. For more than a century, psycho-
metricians have devised IQ tests to measure human intelligence.
However, the breadth of test items is quite narrow. The tasks
are, for the most part, administered in the same manner, with
no or only modest variation of test-taking situation, motivation,
or sensory domain (Locurto et al. 2006). For instance, the
WAIS-IV (Wechsler et al. 2008) comprises four index scores,
focusing on verbal comprehension, perceptual reasoning,
working memory, and processing speed. This paper-and-pencil
task may be enough to represent major components of human
intelligence, but it does not tap the most interesting cognitive abil-
ities in nonhuman animals, especially in the technical and social
domains.

A crucial question in the search for the influence of an under-
lying general mental ability is the rationale behind which tests
are included in the test batteries and the reliability of those
tests for uncovering cognitive abilities. Tests measure perfor-
mance, not cognitive abilities per se. A huge number of possible
noncognitive factors may influence performance, from anatomical
to perceptual and motivational. Therefore, it is important to know
which cognitive tasks and which controls are included in the test
battery. Human IQ tests are often constructed in the manner of
a best-case scenario, in that tasks are included in the final
battery only if they correlate positively with other tasks and
loaded positively on the first component. That is, the presence
of g is assumed and tasks chosen that verify its presence
(Locurto et al. 2006). Furthermore, human IQ tests are standard-
ized with several hundreds to thousands of people of all age
classes. This is not feasible with (most) nonhuman animals.

Between-species comparisons. Large data sets for valid com-
parisons are only possible if we collect data from different labs.
But can we rely on data sampled in different labs, using (slightly)
different methods (different stimuli, apparatuses, procedures,
etc.) and groups of subjects differing in important features like
housing and rearing conditions, individual experiences, age, and
sex composition? This is both a practical and a theoretical
problem. It would demand an enormous amount of labor,
money, space, and other resources to test a large sample of
species in one lab. Even if one has access to a zoo or game
park, testing the abilities that tap reasoning in nonhuman cogni-
tion is a difficult and time-consuming business. Furthermore, if
the tasks were designed to tap different response systems,
sensory modalities, and motivations, it would be a huge
undertaking.

Therefore, the evidence for general intelligence on the inter-
specific level so far rests on meta-analyses. This strategy is based
on the assumption that the frequency of reported observations
of complex traits associated with behavioral flexibility is a reflec-
tion of that species” intellectual capability. For instance, Reader
and Laland (2002) used indices of innovation, tool use, and
social learning for their correlations. But is innovation really a
direct outcome of a cognitive trait of a species? The relation is
vague and the behavioral definitions are rather slippery. Further-
more, most of these meta-analyses rely on observation frequency,
which may deviate widely from the experimentally proven exis-
tence of a cognitive trait in a species. For instance, reports of
true imitation in callithrichids are very rare, but rigorous labora-
tory tests have proven its existence (Voelkl & Huber 2000;
Voelkl & Huber 2007). The same is true with invisible displace-
ment in Callithrix jacchus (Mendes & Huber 2004). Tool use
may be the best example of the problem with drawing conclusions
about species differences in general intelligence based on publica-
tion counting. It is an important ability in chimpanzees, New Cal-
edonian crows, and Galdpagos woodpecker finches. However,
these species have no clear, experimentally proven cognitive supe-
riority over their non-tool-using relatives, bonobos, carrion crows,
or tree finches, respectively (Gruber et al. 2010; Herrmann et al.
2010a; Teschke et al. 2011; 2013). This led to the conclusion that
habitual tool use is not a clear predictor of general intelligence,
not even physical intelligence (Emery & Clayton 2009). Although
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