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The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar
radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during
aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous
influences on survival and physiological performance. However, the potential ecological importance of environmental het-
erogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework
for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting
organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 x 2 cm
from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor
and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures
over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms,
using thermal performance curves, creating ‘physiological landscapes’that display spatially and temporally explicit patterns of
‘microrefugia’ Our framework shows how non-linear interactions between these layers lead to predictions about organismal
performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature)
alone. We propose a new metric for quantifying the ‘thermal roughness’ of a site (RqT, the root mean square of spatial
deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance
at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal
vulnerability to environmental change using both spatially explicit and frequency-based approaches.
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Introduction

Ongoing climate change is having clear impacts on the
abundance, health and distribution of organisms and
subsequently on patterns of biodiversity and ecosystem
function (Doney et al., 2012; Bonebrake et al., 2018). In
an effort to forecast and potentially mitigate some of the
worst impacts of these changes, conservation biologists
are increasingly turning to forecasting approaches to
predict which populations and species are most vulner-
able to accelerating climate change (Dong et al, 2017;
Sara et al., 2018; Rilov etal, 2019), where environ-
mental change is occurring most rapidly (Sunday et al.,
20155 Brito-Morales et al., 2018) and what measures might
be enacted to protect threatened species and ecosystems by
either reducing the effects of non-climatic stressors such
as development and overharvesting (Przeslawski et al.,
2005; Sara et al., 2018) or by prioritizing the protection
of refugia (Morelli ez al., 2017). Laboratory- and field-based
physiological methods are playing an increasingly important
role in our understanding of how climate change is affecting
natural and managed systems and of the range of possible
conservation interventions that can be enacted (Seebacher
and Franklin, 2012; Chown and Gaston, 2016; Marn et al.,
2017; Teal et al., 2018; Rilov et al., 2019).

At the same time, our ability to quantify, model and fore-
cast the physical parameters, such as temperature, nutrients,
rainfall and ocean pH, that drive these observed and projected
changes continues to improve (Shukla, 1998; Maclean et al.,
2019). For example, the thermal limits of key species can
be measured under natural and controlled temperatures and
then compared against contemporary and projected patterns
of ‘environmental temperature’ to estimate ‘thermal safety
margins’, the difference between what an organism experi-
ences in the field relative to its tolerance (Kingsolver, 2009;
Polgar et al., 2015; Bruno et al., 2018). Yet there remain
frequent mismatches between what are often very careful and
detailed measurements of physiological vulnerability and the
scale at which environmental measurements and projections
are made in the field (e.g. see discussions in Sears et al.
2011; Boyd et al., 2016; Torossian et al., 2016; Garcia et al.,
2019). For example, projections of vulnerability based on
climatic (or even annual) means have little hope of fore-
casting the effects of much higher frequency variability in
environmental conditions such as heat waves and cold snaps
(Wethey ef al., 2011a; Roitberg and Mangel, 2016), which
are themselves becoming more frequent under anthropogenic
climate change. Comparably, remote sensing is frequently
unable to capture environmental conditions at the level of
microhabitats (Sears et al., 2011; Faye et al., 2016; Maclean
et al., 2019) that ultimately drive biotic responses (Scheffers
et al., 2014a; Storlie et al., 2014).

This study explores this fundamental disconnect (Denny
and Helmuth, 2009; Helmuth et al., 2010) and describes
how an understanding of the mechanisms by which plants
and animals interact with their physical environment (i.e.
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ecophysiology) can lend insight into how these scales can
be better aligned (Helmuth et al., 2005; Flynn et al., 2012;
Harley, 2013; Scheffers et al., 2014b; Jurgens and Gaylord,
2017). Specifically, we examine how biophysical approaches
(photogrammetry coupled with heat budget modelling and
physiological measurements) can be used to address questions
of scale (Sears et al., 2011), both in terms of how we measure
the physical environment (Potter et al., 2013; Maclean et al.,
2019) and of how we measure physiological, behavioural and
ecological responses to environmental conditions (Flynn ez al.,
2012; Woods et al., 2015; Rebaudo et al., 2016).

Questions about scale and especially about the importance of
environmental heterogeneity (EH) have a rich history in ecol-
ogy spanning many decades (Schneider, 2001). Relationships
between EH in space and time and biological parameters
such as distribution, abundance, biomass, biodiversity and
resilience in the face of perturbations have been explored
in habitats as diverse as coral reefs (Keith et al., 2013),
open ocean systems (Boyd et al., 2016), terrestrial forests
(van Rensburg et al.,, 2002; Morelli et al., 2018), deserts
(Migliore et al., 2013), deep sea benthos (Williams et al.,
2010), seamounts (Clark ez al., 2012) and rocky reefs (Matias
et al., 2011). Understanding the role of EH in these processes
has taken on new significance in this era of ongoing rapid
environmental change (Boyd ez al., 2016; Kelly, 2019), and
a number of studies have begun to explore the role that
microclimates may play in mediating larger-scale climatic
drivers (Sears et al. 2011, 2016; Potter et al., 2013; Hannah
et al., 2014; Maclean et al.,, 2015). For example, sites
with high levels of EH (and thus presumably species
richness) may represent priority areas for conservation
or similarly serve as ‘rescue sites’ following extreme
events (Hanski and Ovaskainen, 2000; Roberts et al.,
2017). EH driven by structuring species such as bivalves
and macroalgae has been shown to override large-scale
geographic trends in environmental conditions (Jurgens
and Gaylord, 2017), with implications for predictions of
range shifts and resilience to climate change. Increasing
surface complexity has also been explored as a mech-
anism to increase biodiversity on seawalls (Chapman
and Bulleri, 2003; Loke et al., 2017).

Methods for measuring structural complexity have also
expanded rapidly in recent years with the easy access of
small unmanned aerial systems (sUAS), i.e. ‘drones’. sUASs
are now frequently used to construct digital elevation models
(DEMs) and other types of 3D virtual models, providing new
tools for exploring different ecological descriptors of vari-
ous ecosystems. These include structural complexity in coral
reefs (Gonzalez-Rivero et al., 2017), habitat categorization in
rocky shores (Garza, 2016) and in freshwater fish habitats
(Kalacska et al., 2018), species distributions and biodiversity
surveys in forest ecosystems (Torossian et al., 2016) and
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thermal distribution in agricultural landscapes (Faye er al.,
2016).

An increasing number of physiological studies are similarly
beginning to consider the scales over which physiological
responses can vary in time and space (Dowd er al., 2013;
Malishev et al., 2017). Dong et al. (2017), for example, mea-
sured cardiac function in three species of intertidal snails
and showed that intraspecific variation (physiological poly-
morphism) in flat-line temperatures exceeded interspecific
differences. They also showed that, congruently, differences
in habitat temperatures within sites far exceeded differences
among sites along a 12° gradient in latitude on the coast
of China. Denny et al. (2011) reported differences in within-
site microhabitat temperatures that exceeded those reported
over 14° of latitude on the west coast of North America, and
Seabra et al. (2011) found similar differences on the Iberian
coast. These combinations of heterogeneity in environmental
conditions (microclimates) with inter-individual variability in
physiological sensitivity have significant implications for how
we envision selective regimes (Schmidt et al., 2000; Lawson
et al., 2014; Denny, 2018; Kelly, 2019), notably in ways that
cannot be predicted when physiological tolerance is consid-
ered as a species trait with no inter-individual variability (e.g.
Diamond et al., 2012) or when an environmental parameter
such as temperature is measured in one specific location and
then used to represent an entire site (e.g. Enquist ez al., 2017).

Despite the large number of studies exploring the role of
microhabitats and EH, comparatively few have quantitatively
measured how structural complexity actually mediates the
local microenvironments (microclimates) of plants and ani-
mals (but see e.g. Sears et al., 2011; Barton and Terblanche,
2014; Kearney et al., 2014; Hayford et al., 2015; Pincebourde
et al., 2016; Jurgens and Gaylord, 2017; Maclean et al.,
2019). A recent meta-analysis by Ortega et al. (2018) showed
that a majority of studies over the last two decades explor-
ing EH/structural complexity reported a positive relationship
between EH and species richness (S). However, their analysis
also showed that, somewhat surprisingly, very few experi-
ments have quantitatively explored the underlying mecha-
nisms driving the EH and S relationship, leading them to
the conclusion that this area of research was still in its
‘infancy’. Other reviews have come to similar conclusions,
again pointing to a dearth of studies focused on mechanism
(Kovalenko et al., 2012; Loke et al., 2015). This paucity of
research serves as a major impediment to our understanding
of how microenvironments affect community resilience to
climate change (Potter et al., 2013; Woods et al., 2015).

To a large extent, these gaps in our understanding exist for
the simple reason that modelling and measuring environmen-
tal conditions at scales that are both relevant to organismal
physiology (i.e. microclimates), but that can also be applied
over scales sufficient to detect biogeographic shifts in response
to environmental change, are usually impractical (Bates et al.,
2018). Fixed sensors can record time series at a single location
with high accuracy but may not be reflective of the actual spa-
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tial diversity in environmental conditions (Denny et al., 2011;
Miller and Dowd, 2017). Infrared cameras can survey large
areas (e.g. with drones) but typically can only record envi-
ronmental conditions at a single point in time, unless they are
mounted in place for extended periods (Scherrer and Koerner,
2010). Satellites can accomplish both feats to limited degrees
but with spatial (e.g. 1-100 km?) and temporal (e.g. 6 hr)
resolutions that may be irrelevant to the organism in question
(Potter et al., 2013; Simé et al., 2016; Geller et al., 2017).

Perhaps nowhere are the challenges inherent in measuring
microclimates as apparent as in rocky intertidal zones, areas
with enormous spatial and temporal variation in factors
such as wave force (Helmuth and Denny, 2003), oxygen
(Frieder et al., 2012), pH (Hofmann et al., 2011; Baumann
and Smith, 2018) and, especially, temperature during aerial
exposure at low tide (Denny et al., 2011). Body temperature
is one of the most universal determinants of a plant or
animal’s physiological performance and survival (Somero,
2002, 20105 Sinclair et al., 2016), and the rocky intertidal
zone has long served as a model ecosystem for exploring the
relationship between temperature and ecological responses
over local and geographic scales (Connell, 1972; Sorte
et al., 2019). A number of recent studies have documented
that many species of intertidal invertebrates—animals
whose ancestors evolved in a fully aquatic environment—
currently live very close to their thermal limits (Somero,
2002; Wethey and Woodin, 2008; Mislan ez al., 2014).
Large-scale mortality events in response to elevated low-
tide temperatures have been reported (e.g. Harley, 2008), in
some cases on a recurring basis (Williams and Morritt, 1995;
Firth and Williams, 2009).

Notably, it is the temperature of an organism’s body that
ultimately drives physiological responses and not the temper-
ature of its surrounding environment per se. Kearney (2006)
defines this as the ‘niche’ temperature, as differentiated from
aspects of the ‘environment’ such as local air temperature.
This distinction is not trivial, as the body temperature of
ectothermic plants and animals can be very different from
local air temperature, especially when exposed to direct sun-
light (Fitzhenry et al., 2004; Chapperon et al., 2016). In air
at low tide, body temperatures are driven by multiple envi-
ronmental factors including solar radiation, air temperature,
humidity, wind speed and cloud cover (Denny ez al., 2006)
and are affected by the characteristics of the organism such as
colour, shape, mass and material properties (Helmuth, 2002).
For organisms with large areas of their body adhered to the
substratum (limpets, barnacles, some snails and small mus-
sels) body temperature usually closely tracks the temperature
of the rock surface (Wethey, 2002), which on sunny days is
much hotter than the air above it. For larger animals (e.g. large
bivalves) or organisms with a wetted surface (e.g. seastars)
body temperatures can be substantially different from either
rock or air (Broitman et al., 2009; Miller and Dowd, 2017).
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In terrestrial and intertidal systems, by far the most
significant driver of ectotherm temperature is exposure to
direct solar radiation (Helmuth, 1998; Scheffers et al., 2017;
Maclean et al.,, 2019). While mortality events are often
associated with episodes of high air temperature (Mislan
et al., 2014, Sorte et al., 2019) these only occur when
both air temperature is elevated and solar radiation is at a
maximum; both conditions are typically required in order
for large-scale mortality to occur, and thus elevated air
temperature alone is an effective indicator of mortality events
only when it occurs on cloud free days with maximum
solar radiation (Gilman et al., 2006, Mislan et al., 2014).
Because of the importance of solar radiation (Marshall ez al.,
2010; Chapperon et al., 2016), the difference in temperature
between an animal on a poleward-facing (shaded) microsite
and one on a nearby equatorial-facing (sunny) microsite can
easily exceed 15°C (Helmuth and Hofmann, 2001; Sears ef
al., 2011). Such large differences in thermal environments
among shaded and unshaded surfaces have been shown to
lead to even larger differences in physiology (Jimenez et al.,
2015; Miller et al., 2015), survival (Harley, 2008), abundance
(Meager et al., 2011) and selection for different species and
genotypes (Schmidt ez al., 2000; Schneider and Helmuth,
2007; Seabra etal., 2011). This non-linear translation
between small changes in body temperature and large changes
in physiological performance is best conceptualized using
Jensen’s inequality (Martin and Huey, 2008; Denny, 2019),
which further highlights the dangers of using temporal
or spatial averages to predict biological responses. Over
geographic scales, the presence of shaded refugia has been
proposed as a mechanism that allows species to extend their
range boundaries beyond what they could survive if only
sunny habitats were available (Sunday et al., 2014, Lima et
al., 2016).

Aerial temperatures at low tide in intertidal zones can
often be difficult to measure. Thermocouple sensors (often
used in terrestrial studies) are easily broken by wave action,
and drones equipped with infrared cameras can take snapshot
measurements of intertidal rock and organism temperatures
but only for limited amounts of time (Lathlean et al., 2012,
Seuront et al., 2018). Biomimic sensors have provided signifi-
cant insights into the temperature that intertidal invertebrates
experience (reviewed in Judge, 2018), but measurements are
typically restricted by the number of sensors that can be
deployed at any given site (Helmuth et al., 2016) or by the
duration of deployment (Denny ez al., 2011). However, when
combined with heat budget models that use environmental
inputs from weather station data or gridded (reanalysed)
meteorological data (Mislan and Wethey, 2011; Dong et al.,
2017), intertidal animal temperatures can be estimated over
a range of scales. Several mathematical (heat budget) models
are now available to convert weather data into estimates
of intertidal organism temperature (Bell, 1995; Helmuth,
1998, 1999; Denny and Harley, 2006; Szathmary et al., 2009;
Helmuth et al., 2011; Iacarella and Helmuth, 2011; Sara et al.,
2011; Wethey et al., 2011b; Mislan and Wethey, 2015;
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Marshall et al., 2015; Kish ez al., 2016, Dong et al., 2017).
These models range in complexity from simple regression-
based approaches (Elvin and Gonor, 1979; Kish ez al., 2016)
to much more sophisticated land surface-based models
(Wethey et al., 2011b; Mislan and Wethey, 2015).

To date, however, most heat budget models (but see Sears
et al., 2011; Kearney et al., 2014; Dong et al., 2017; Kearney
and Porter, 2017; Maclean et al., 2019) have tended to
ignore the role of small-scale microclimates and especially
the role of incident solar radiation in driving within-site
variation in microhabitat temperatures. Here we present an
integrative framework that utilizes DEMs and heat budget
models to quantify microhabitat temperatures (Fig. 1), using
a~ 50 m x 100 m intertidal site on the Northeast coast of the
US (Fort Beach in Marblehead, MA; 42.508° N, 70.843° W
Fig. 2) as a case study. Using this approach we characterize
the full suite of microenvironments at this rocky intertidal
site as a function of structural complexity and discuss how
this approach can be used to explore the role of microclimate
in driving patterns of behaviour, physiological performance
and mortality. This framework includes (i) capturing fine-
scale topographic data using drone photography to produce
3D models and DEMs, (ii) transforming large-scale weather
data to account for surface orientation to solar radiation, (iii)
identifying microhabitat temperatures using a heat budget
model and (iv) comparing predictions of body temperature
against thermal performance models to make spatially and
temporally explicit predictions of relative physiological
performance.

Spatial model framework

In the past, fine-scale topographic data have been difficult
and expensive to obtain, and DEMs were produced using
methods such as real-time kinetic (RTK) Global Position-
ing System (GPS) mapping (Morton et al., 1999, Freeman
et al., 2004), Light Detection and Ranging (LiDAR) (Polat
and Uysal, 2015) and radar interferometry or photogramme-
try methods (Colomina et al., 2008; Eisenbeiss, 2009). The
advancement and accessibility of sUAS have allowed some
of these methods, especially photogrammetry and LiDAR, to
become more accessible to field biologists (Faye et al., 2016).
In this framework, fine-scale topographic data are mapped
using an sUAS flown at low elevations (e.g. 5 m) above
ground level, in a grid format and from various directions,
to capture numerous high-resolution images from a camera
angle of 45°. We used this approach to capture a total of
528 photos at Fort Beach. This high number of images is
needed to capture all the topographic characteristics and to
allow photogrammetric methods to estimate aspects, slopes
and height of these topographies at a resolution of 2 x 2 cm.
Agisoft Photoscan Pro photogrammetry software was used
to convert footage from the sUAS to 3D virtual models,
which were exported as DEMs (Fig. 3). A detailed workflow
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Figure 1: Systematic workflow of the integrative framework to
analyse thermal landscapes. Following the framework steps: (i) create
DEM through (ia) image acquisition with sUAS and (ib) image
processing through photogrammetry. (ii) Estimate surface
temperatures with heat budget model. Finally, (iii) estimate relative
performance with thermal performance curve.

of photogrammetric methods, such as matching image tie
points and generating dense point clouds, can be found in
James and Robson (2012) and Faye et al. (2016). To provide
reference points for the photogrammetry software, multiple
precise (sub-centimetre accuracy) GPS coordinates, including
elevation, of topographic features were recorded using a Trim-
ble RTK global navigation satellite system. Figure 3 shows a
DEM produced through photogrammetry of the Fort Beach
site.

To date, most heat budget models for ecological forecast-
ing have failed to incorporate complex topography on a
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Google Earth

Figure 2: Fort Beach in Marblehead, MA USA (42.508° N, 70.843° W).

spatially explicit basis (but see Sears et al., 2011, who used
complex simulated surfaces, and Maclean et al., 2019, who
calculated topographic complexity at scales of ~ 10 m). The
major advancement in the framework presented here is to use
DEMs from actual sites to estimate direct and reflected solar
radiation on each surface element at very fine spatial scales,
which can then be used as inputs to a heat budget model. This
approach is accomplished by downscaling total solar radia-
tion measurements recorded from a local weather station or
from (reanalysed) gridded meteorological data (Mislan and
Wethey, 2011; Dong et al., 2017; Maclean et al., 2019) to
estimate spatial and temporal distribution of solar radiation
at a local level. Downscaling is a multi-step process that
involves (i) generating solar geometry: plotting the locations
of the sun relative to each pixel throughout the day (via
latitude, azimuth and motion of the sun) and adjusting the
intensity of direct solar radiation through calculations of the
solar azimuth and solar zenith (Braun and Mitchell, 1983);
(ii) calculating albedo effects and the atmosphere diffusion
factor (Bindi et al., 1992) to describe the effect of direct
solar radiation entering through the atmosphere and hit-
ting the surface; and (iii) measuring and incorporating DEM
topographic variables [elevation, slope, aspect and sky view
factor (SVF)] that define the distribution of solar radiation
on complex topography (Tovar-Pescador et al., 2006). The
most complex of these parameters, the SVE, is widely used
to measure shading in urban environments, by hillsides, and
in forest canopies (Holmer ez al., 2001; Zaksek et al., 2011;
Polo Lopez et al., 2016; Hoylman et al., 2018), but it is rela-
tively under-utilized in heat budget modelling and ecological
forecasting. Calculated by using vectors and their distances
on a hemisphere per pixel, SVF represents the amount of sky
each pixel is exposed to, an index from 0 to 1, where 0 is
completely shaded and 1 is completely exposed to the sky
(Fig. 4). Hence, this metric helps create a shade/exposed solar
radiation relationship between each pixel and its neighbors
(Zhang et al., 2017). Incorporating SVF local shadowing

6102 1snBny 9z uo Jesn 47 Juswdojered ddd A9 0Z6815S/820209/1//10elsqe-ajone/sAyduoo/wod dno olwspese//:sdiy Woly peapeojumoq



Research article

Conservation Physiology - Volume 7 2019

Digital Elevation Model: Fort Beach

o
3 | Rq: 0.96m
<
>
o
©
© _|
L
& 4
= 3
g - o
> 2 e
<
- s
£ 1 =
rd )
> 8 s
S og
> =
o P A
_
P i -
3 | -2
~
> =
W
o
«®
w
~
o 0 10 20
C——— MEtETS
T T T T
253900 253950 254000 254050
X (m)

Figure 3: DEM of Fort Beach. Colours represent elevation across the model, with max elevation at 4.3 m above mean lower low water. Rq, the
surface roughness, is calculated to be 0.96 m at Fort Beach. Note that blank spaces represent coverage by water at low tide.

effects into downscaling can provide a more robust model
for solar radiation on complex topography (Matzarakis ez al.,
2007; Zaksek et al., 2011; Polo Lopez et al., 2016).

We downscaled solar radiation data obtained from the
Climate Forecast System Reanalysis (CFSR) meteorological
database (Mislan and Wethey, 2011). These downscaled data
were used as inputs with other weather data from CFSR (air
temperature, wind speed and water temperature) to a heat
budget model (described in Dong et al., 2017) to estimate
surface temperature distribution spatially (sub-centimetre)
and temporally (hourly) across all the microhabitats within
the site. Still tidal elevation predictions (XTide; http://www.
flaterco.com/xtide/) were used to estimate when microsites were
submerged and when they were aerially exposed. This modi-
fied heat flux model (Helmuth, 1998; Dong et al., 2017) was
used to estimate surface temperatures across the entire rocky
shore of Fort Beach (Fig. 5). We ran hourly simulations for an
entire year (2017, shown in Supplement A) but here focus on
the 2 days of the year with the highest surface temperature
estimations, 22 June and 23 June. While these predictions
were not fully validated—an exercise that would require high-
resolution sampling over time using sensors and/or repeated
images using infrared thermography—the results are consis-
tent with the range of temperatures reported in past studies
for other sites (Denny ef al., 2011; Seabra et al., 2011; Dong
et al., 2017). During the hottest surface day in 2017 at
Fort Beach (22 June), where the peak global solar radiation
reached 883 Wm™2, modeled surface temperatures ranged
from 25.7°C to 41.4°C, consistent with the temperature range
measured with in situ loggers from this site in sunny and
shaded microhabitats (unpublished data). Notably, maximum
air temperature on this day was only 27.8°C, pointing to

the importance of solar radiation. Conversely, the highest
air temperature of the year occurred on 12 June (34.7°C),
but surface temperature at Fort Beach remained low because
most of the beach was submerged during peak solar periods
(Helmuth et al., 2002).

It should be noted that we used the model to estimate
only rock surface temperature, which has been used as a
direct proxy for the body temperature of animals with a high
proportion of their body in contact with the rock, for example
limpets (Seabra ef al., 2011) and barnacles (Wethey, 2002).
For some animals, especially larger animals such as mussels
(Helmuth, 1998) and seastars (Szathmary ez al., 2009), rock
temperature is not equivalent to animal temperature, but the
same approach used here can be applied on an organism-
specific level by modifying model parameters (e.g. Szathmary
et al., 2009; Dong et al., 2017). For simplicity we also
assume that animals are sessile during low tide, a reasonable
assumption for many organisms that ‘hunker in place’ during
aerial exposure, but less realistic for other, more mobile
organisms (Williams and Morritt, 1995; Monaco et al., 2015).
Notably, the model presented here does not include the role
of water retention in tidepools or other small features of the
rock surface, which could provide additional refugia through
cooling from evaporation of saltwater, albeit at the potential
cost of physiological stress from high salinity.

The ultimate goal of the approach described here is to pro-
vide a method of mapping physiological performance and
survival over space and time using DEMs. The simplest
approach to doing so is to convert body temperature to some
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metric of relative performance using a thermal performance
curve (TPC), which in turn is based on indirect metrics of
fitness such as respiration, movement or heart rate (Huey
and Slatkin, 1976; Huey and Stevenson, 1979; Sinclair et
al., 2016). TPCs describe the non-linear relationship (Martin
and Huey, 2008; Denny, 2017) between temperature and
these physiological rates, most typically as a curve in which
performance rises slowly with temperature up to an opti-
mal level, Top, and then drops rapidly (Angilletta, 2006,

2009; Kish et al., 2016) (Fig. 6). The assumption that TPCs
remain constant over time (i.e. no capacity for acclimatiza-
tion) or that they can be based on a single performance metric
such as heart beat rate or behaviour is problematic and has
been discussed by several authors (Kingsolver and Woods,
2016; Sinclair et al., 2016; Stoffels et al., 2016; Monaco
etal.,2017). However, they provide an easy first-cut approach
in estimating performance based on body temperature. More
sophisticated approaches could, for example, alter the spatial
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Figure 6: A typical TPC for intertidal organisms. TPC is divided into different performance categories to identify the levels of thermal stress. This
TPC has its sub-optimal range from 0°C to 21.2°C; optimal range is from 21.2°C to 30.1°C with optimal temperature (Topt) at 28°C; sub-lethal

range from 30.1°C to 35°C and finally high lethal temperature is >35°C.

distribution of individual TPCs of animals based on their
thermal history (Kingsolver and Woods, 2016) or could use
physiological approaches such as Dynamic Energy Budget
models that explicitly account for thermal history (Augustine
and Kooijman, 2019).

TPCs for intertidal species can be estimated through
physiological experiments measuring movement speed (Tepler
etal.,2011), respiration rate (Marshall ez al., 2010) and heart
rate (Dong et al., 2017), and there is a growing body of data
for various intertidal species. Figure 7 is an example of a
spatially explicit relative performance model that combines a
generic TPC with a Tope of 28°C and a lethal temperature of
35°C (Fig. 6), with a DEM from the Fort Beach site over the
course of 6 h. Here, a performance is divided into categories
of suboptimal, optimal, sublethal and lethal (after Kish ez al.,
2016).

Applications of the approach

The model layers presented here—structural (microhabitat),
thermal (microclimate) and physiological—provide an exam-
ple of the non-linear way in which EH affects the performance
and survival of organisms (Martin and Huey, 2008; Denny,
2017) and argues that knowledge of one metric (e.g. structure)
does not necessarily provide a full understanding of the
mechanisms by which microhabitats drive thermal ecology.
As described by Stein and Kreft (2014) it has been commonly
assumed that habitat (structural) complexity can serve as
a direct proxy for EH and microclimate diversity (but see
Angilletta, 2009; Armstrong et al., 2013; Scheffers et al., 2017
for counter examples). Certainly, physical structures such as
forests, coral reefs, bivalve beds and algal canopies can drive
EH through their influence on processes such as shading

(Reed and Foster, 1984) and reductions in wind or water
flow (Guichard et al., 2001, Lenihan et al., 2008; Gaylord
et al., 2012), but these relationships can be far more complex
and non-linear than is generally appreciated (Layton et al.,
2019). All of this points to the issue that the many approaches
that have been adopted for quantifying habitat structural
complexity (Frost et al., 2005; Dibble and Thomaz, 2009),
while likely correlated to varying degrees with microclimate
diversity (Ehbrecht ez al., 2017), cannot be assumed to serve
as a direct proxy for environmental conditions at the level of
the organism (Meager and Schlacher, 2013; Stein and Kreft,
2014). In other words, the knowledge of structural com-
plexity alone does not automatically translate into an under-
standing of the heterogeneity of environmental conditions
that ultimately drive physiological performance, survival and
biodiversity nor does it account for the non-linear relationship
between body temperature and physiological performance,
i.e. Jensen’s inequality (Martin and Huey, 2008; Denny, 2017).
These issues are highlighted in Figs 8 and 9, which show
frequency distributions of surface temperature (Fig. 8) and
relative performance (Fig. 9) over the course of a 6-hour low-
tide exposure. Such frequency distributions provide consider-
ably more information than simply bracketing the range of
temperatures using the coolest (full shade) and hottest (full
sun) microsites, an approach that has been used in previous
studies (e.g. Marshall et al., 2015, Dong et al., 2017).

As a first attempt at rectifying the potential disconnect
between the different data layers (structural, thermal and
physiological) we calculated a common metric of surface
roughness, Rq, the root mean square (RMS) of deviations
in surface elevation above the mean plane (Thomas, 1999).
For the Fort Beach site, the estimate for Rq was calculated
as 0.96 (Fig. 3). Here we propose an analogous metric of
‘thermal roughness’ (RqT) that comparably calculates the
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of temperatures across the site.

RMS of deviations in temperature within a site (Fig. 8). These
will change over time, ranging from very low values (Fig. 8A)
when the sun is low, or immediately after emersion, to peak
values when thermal heterogeneity at the site is the highest
(Fig. 8). In the example shown in Fig. 8, RqT ranges from
0.59 to 7.26 over the course of 6 h. Similar approaches can be
used to estimate performance variability (RqP; Fig. 9). Both
of these approaches could be used to quantify, for example,
variability in selective regimes at a site over the course of a
day, season, year or over longer climatic scales.

Spatially explicit body temperature and physiological per-
formance modelling can further be used to quantify areas
of micro-refugia (Monaco et al., 2015) by applying a series
of threshold temperatures. For example, using a definition
of ‘refugia’ as any temperature under 28°C, the area cal-
culated from the Fort Beach site at 16:00 Eastern Day-
light Time (EDT) (20:00 Greenwich Mean Time (GMT)) is
255 m?, less than 7% of the total aerially exposed site area
(3931 m?; Fig. 10). Simulations of relative performance pro-
vide the opportunity for an even more in-depth examination
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micro-refugia area shown in black (in this scenario, micro-refugia are defined as sites where surface temperature < 28°C). This figure shows how
spatial models can reveal the scarcity of micro-refugia at the rocky shores during a heat event.

of the ecological consequences of temperature variability, by
identifying areas of lethal, sub-optimal temperature, optimal
temperature, sub-lethal temperature and lethal temperature
(Fig. 7).

While these calculations ignore the role that body size
can play in defining micro-refugia (Meager and Schlacher,
2013), this aspect could be included by considering only
sites larger than a minimum area related to body size

or, conversely, by spatially averaging surface temperatures
to account for large organisms that themselves shade the
substrate (such as seastars; Monaco et al., 2015). This
approach also offers the opportunity to explore the role of
behavioural thermoregulation (Williams et al., 2005; Sunday
et al., 2014), for example by identifying thermally protected
‘corridors’ and ‘barriers’ in the landscape (Fig.11). For
highly mobile species, movement to protected microhabitats
during extreme conditions at low tide can serve as an
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effective form of behavioural thermoregulation (Iacarella and
Helmuth, 2011; Darnell et al., 2015; Sears et al., 2016). For
other, more slow-moving species, the decision of whether
or not to shelter in a shaded microhabitat occurs during
the preceding high tide so that at low tide they may move
very little or not at all. For example, many snail species
pre-emptively move to crevices and other shaded areas
during high tide to avoid extreme temperatures during the
following low tide (Marshall et al., 2010; Cartwright and

Williams, 2012; Ng et al., 2017). Corridors for pre-emptive
movement based on thermoregulation have been studied in
the field using infrared cameras (Chapperon and Seuront,
2011), with radio-frequency identification tags (Hayford
et al., 2015, 2018) and survey classification (Monaco et al.,
2015).

The approach shown here also allows an opportunity to
explore the potential for competition for refugia sites among
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interacting organisms (as has been done much more exten-
sively for lizards and snakes, e.g. Goller et al., 2014; Sears
et al., 2016; Lopez-Alcaide et al., 2017). For example, Fig. 12
shows the location of refugia available to an organism—for
example a predator or dominant competitor—with a lower
thermal optimum (here, Tope =25°C) and lethal limit, vs. one
by an organism with a higher thermal limit (Top =28°C),
its prey. In this example, as in Fig. 12, the predator/domi-
nant competitor dominates in cooler microhabitats, and the
prey/subordinate competitor can only persist in microrefugia
that are unfavourable to the predator/competitive dominant
(Wethey, 1983, 1984). Using a spatially explicit model for
multiple species can be useful to predict patterns of vertical
zonation that results from the interaction between the phys-
ical environment experienced by an organism and its physi-
ological limits and biotic interactions (Lewis, 1964; Connell,
1972; Wethey, 1983, 1984; Somero, 2002; Garza and Robles,
2010). For example in the Pacific coast of North America, the
thermal limit of the seastar Pisaster may prevent its excursion
into the mid intertidal zone, where its prey (such as the
mussel Mytilus californianus) can then survive (Fly et al.,
2012, Monaco et al., 2015).

Conclusions

The development of fine-scale, spatially explicit models of
physical structure, temperature and ultimately physiological
performance can provide critical insights into the impacts
of climate change and the potential role of small-scale
refugia in driving much larger-scale, geographic patterns.
Specifically, the modelling framework we present shows why
the relationships between these different data layers can be
highly non-linear and therefore urges extreme caution when
extrapolating from structural complexity (EH) and microcli-
mate diversity. While the case study shown here has direct
relevance to rocky intertidal systems, it also has applicability
to other ecosystems, especially those where temperature is
largely driven by patterns of solar radiation (Pincebourde
et al., 2007; Sears et al., 2016). Moreover, conceptually these
same principles apply to other biophysical processes such
as water or air flow, which are comparably influenced by
physical structure (Lenihan ez al., 2008; Denny and Gaylord,
2010; Hurd, 2015). With an increasing emphasis on the
potential importance of within-site variability in selective
regimes and physiological sensitivity (Dong et al., 2017),
quantitative methods for evaluating small-scale microcli-
mates will continue to play a crucial role in forecasting
ecological impacts of climate change and in informing
conservation efforts to contend with these challenges
(Rilov er al., 2019).
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