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ABSTRACT

High performance computing systems are typically built with high-

throughput and infrastructural uniformity in mind, but generally

do not easily accommodate diverse data security requirements on a

single cluster. Rather than fracturing that infrastructure by building

many network isolated storage łislandsž to secure each dataset

covered by an individual data use agreement, we explore using

the Ceph distributed storage system with client-side encryption to

provision secure storage from a single, untrusted data lake.
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1 INTRODUCTION

As the volume and velocity of data generated in the course of

everyday life continues to accelerate, researchers across various

disciplines are increasingly turning to computational methods in

order to gain quantitative insights from new data sets. However,

this abundance of data poses a challenge for research computing

centers. Researchers frequently want to work with sensitive data

sets containing personally identifiable or other private information,

whose use is governed by specific security requirements. Since

these requirements are often mutually exclusive from one data use
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agreement to the next, it can be difficult to safeguard research sub-

ject data while also providing a uniform and performant computing

infrastructure where researchers can conduct analysis at scale.

We present a novel method for deploying Ceph [19] object gate-

ways [6] on dedicated compute nodes, in order to perform encryp-

tion client-side, treating the Ceph storage cluster as an untrusted

shared resource. Our approach limits the exposure of plaintext data

to dedicated, single tenant compute nodes. By reducing the footprint

of the trusted computing base and relying on encryption, rather

than network isolation, to partition storage security boundaries,

users may benefit from a performant, distributed, and elastic shared

storage system for their secure computing, instead of making do

with individual RAID-based storage, provisioned on a per-project

basis, which lacks the horizontal scalability and performance of

modern distributed storage systems.

2 BACKGROUND

Traditionally, high performance computing clusters are treated as

uniform security environments. Isolated from public networks, it

is assumed that users who can connect and authenticate are autho-

rized to access the system. Infrastructure operators are trusted by

default. Individual users are isolated from one another by ordinary

POSIX permissions and unprivileged user accounts. When robust

security is required, the standard solution is to build several physi-

cally isolated clusters and assign each one a different security level.

This approach works well in classified environments, where the

levels of security are clearly defined and where an entire łsecurež

cluster is used by a single tenant at a time.

However, for multi-tenant high performance computing plat-

forms, such as those found at research universities and in the finan-

cial technology sector, where users run jobs concurrently and secu-

rity requirements are both less uniform and typically fall short of

requiring physical isolation, operating a dedicated łsecurež cluster

that can only be used by one tenant at a time is impractical. Instead,

a typical approach is to create various isolated environments via

network partitions. However, partitioning computing resources into

isolated environments necessarily reduces the throughput available

to any one user, since a hypothetical user in a łsecurež environment

cannot use idle resources in the general łnon-securež environment,

and vice versa. Partitioning storage is similarly cumbersome. Users
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are stuck with static allocations of network isolated łsecurež stor-

age systems that do not scale elastically, while administrators must

contend with managing a fractured infrastructure of such storage

łislands,ž which lack the uniformity, elasticity, and performance of

modern distributed storage systems.

Distributed storage systems have been integral to high perfor-

mance computing since the decline of monolithic supercomputer

systems and the emergence of distributed computation on commod-

ity hardware with high-speed interconnects. Compared to more

familiar open source distributed storage systems, such as Lustre,

Ceph is a relative newcomer. While Lustre was designed as a dis-

tributed file system with high performance computing applications

in mind, Ceph was conceived as a general-purpose distributed

object store, capable of presenting block, file, and object storage

abstractions from the same cluster, making it suitable as a storage

backend for cloud computing infrastructure, a distributed file sys-

tem for high performance computing, or as an object store similar

to Amazon S3. Despite being a relative newcomer, Ceph has gained

increasing interest and adoption among research computing cen-

ters for its versatility, robustness, and horizontal scalability. CERN

makes extensive use of Ceph for research computing, operating

a production cluster exceeding sixty-four petabytes [2]. Harvard

FAS Research Computing has built production OpenNebula cloud

infrastructure on top of Ceph [16] and is currently deploying NESE

[14], a large multi-institutional Ceph cluster at the MGHPCC data-

center, in partnership with Boston University, MIT, Northeastern

University, and the University of Massachusetts.

Since the POSIX file system is the lingua franca of HPC stor-

age, and since Lustre, Ceph, and other distributed storage systems

all present a POSIX interface, the most straightforward means to

enable client-side encryption would appear to be simply layering

existing disk encryption solutions on top of whichever distributed

file system is already employed on-site. Tools such as dm-crypt

and eCryptfs are widely used and are already included in the Linux

kernel.

Unfortunately, problems with this approach arise immediately.

Since dm-crypt is designed to encrypt block storage, which cannot

be mounted to more than one machine at a time, it is unsuitable

for encrypting a distributed file system that may be mounted to

many machines at once, in an HPC environment. As a file-based

disk encryption system, eCryptfs initially appears more promising,

but unfortunately suffers from long-standing bugs when used on

top of a network file system [7]. FUSE-based encrypted file systems,

such as EncFS and gocryptfs [10] do work well over network file

systems, but both allow users to inadvertently write unencrypted

data directly to the network file system, effectively bypassing the

protections offered by encrypting their storage in the first place.

EncFS also suffers from several publicly known and unaddressed

security vulnerabilities [9]. There does not appear to be a suitable,

open source encrypted file system that offers encryption by default

and which performs well on shared storage over network file sys-

tems. Fortunately, due to the versatility of Ceph, it is possible to

encrypt object storage client-side, before the data is transmitted to

the storage cluster.

3 DESIGN

At a high level, a Ceph cluster is composed of monitor daemons

(monitors) and object storage daemons (OSDs). Monitors maintain

a master copy of the cluster map. They are typically deployed in odd

numbers, with one monitor daemon each on a dedicated physical

machine, and maintain state consensus for high availability via the

PAXOS algorithm [12]. A typical cluster has three monitors. Object

storage daemons are deployed for every physical drive in the cluster

and act as intermediaries between the physical disk resource they

govern and the distributed object store abstraction they present

over the network.

Ceph exposes four interfaces for clients to access storage re-

sources:

• CephFS, a POSIX compliant distributed file system,

• RBD, a distributed block device,

• librados, a library allowing applications to access the object

store directly,

• and the Ceph Object Gateway (or RADOS [21] Gateway), a

bucket-based REST API gateway compatible with Amazon

S3.

The Ceph Object Gateway is deployed as an HTTP server inter-

face to Ceph, with multiple clients making API calls to the gateway

or gateways, which themselves act as librados clients to the cluster,

writing directly to the OSDs. Much like Amazon S3, the Ceph Object

Gateway supports server-side encryption of objects, with customer

provided keys. Typically these requests are made over TLS, with

clients sending their encryption key to the gateway along with

each request to read or write an object. Since encryption typically

occurs server-side, clients have no control over whether encryption

takes place at all and necessarily expose their keys to a centralized

service. Therefore, with server-side encryption, the user’s data is

encrypted at the gateway, before it is written to the Ceph cluster

as ciphertext.

Server-side encryption at the Ceph Object Gateway has two

principal drawbacks. First, the client must trust the server to per-

form encryption and handle their encryption keys for them. This

is obviously suboptimal from a security point of view. Second, the

object gateway poses a network bottleneck for clients writing to

the Ceph cluster. One of the principal advantages of Ceph is that

clients can write directly to OSDs by calculating where to store and

retrieve data deterministically, via the CRUSH algorithm [20] and

the cluster map, without being burdened by the network bottle-

neck of first connecting to a metadata server. By interposing itself

between clients and OSDs, the Ceph Object Gateway re-introduces

a network bottleneck, inhibiting performance.

However, both of these concerns can be resolved by moving

the Ceph Object Gateways to the clients themselves. Since the

object gateway is just an HTTP server exposing the S3 API, client

applications can interact with that API over localhost just as well

as over a network connection. By moving the gateways to the

clients, łserver-sidež encryption becomes a client-side operation, so

that clients can control their encryption keys directly. Distributing

the object gateways on the clients also enables clients to interact

directly with OSDs, eliminating the bottleneck posed by many

clients accessing Ceph via an intermediary HTTP gateway server.





PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Smith and Riley, et al.

systems, everything they write is encrypted on the client and the

storage cluster is never trusted with the content of their data.

Table 1: CephFS Performance

Operation Max IOPS Min IOPS Mean IOPS

Directory creation: 3363.190 3363.168 3363.180

Directory stat: 8817800.917 5190063.153 6409776.669

Directory removal: 5671.911 5671.295 5671.632

File creation: 6370.684 6370.576 6370.623

File stat: 43128212.571 4469472.802 17613571.855

File read: 36037558.707 4201603.747 25084764.971

File removal: 5777.656 5777.511 5777.573

Tree creation: 703.679 569.761 638.321

Tree removal: 14.873 8.222 11.864

5 PERFORMANCE

In order to establish a baseline for performance, we first compared

our client-side encrypted S3FS implementation to CephFS. CephFS

is the standard POSIX mode for Ceph, so it serves as a good initial

point of comparison. We expected CephFS to outperform our S3FS

implementation, both because of the overhead imposed by encryp-

tion, as well as the additional overhead of translating POSIX to S3

and S3 to librados, on every client. Nevertheless, this test was a

good basis for us to assess whether our configuration is a usable

filesystem under saturating loads and to compare it to a known

system that is already used by some, in production.

For benchmarking, we used MDTest, [13] a message passing

interface-based application for evaluating file system metadata per-

formance. MDTest measures performance by creating, stat-ing, and

deleting a tree of directories and files across a cluster of machines.

MDTest relies on a message passing interface (MPI) to orchestrate

parallel tasks. MDTest and OpenMPI [8] enabled us to distribute

the file operations across 106 client machines and use all 1,696 cores

to simulate parallel file system load. We were unsurprised to find

that CephFS (see: Table 1) is significantly more performant than our

S3FS implementation (see: Table 2), given the additional overhead

our system entails, but we were encouraged to see that the system

remained usable despite distributed file operations performed by

1,696 threads in parallel.

Table 2: S3FS Performance

Operation Max IOPS Min IOPS Mean IOPS

Directory creation: 645.778 645.776 645.777

Directory stat: 61025.342 60987.303 61002.794

Directory removal: 721.686 721.685 721.685

File creation: 565.436 565.433 565.434

File stat: 18744.482 18742.516 18743.708

File read: 116.670 116.670 116.670

File removal: 3870.483 3870.462 3870.472

Tree creation: 6.174 5.259 5.769

Tree removal: 8.946 8.512 8.714

6 DYNAMIC ALLOCATION OF SECURE

STORAGE & COMPUTE

In our discussion of secure storage thus far, we have largely as-

sumed a static allocation of single-tenant compute nodes accessing

an elastic, untrusted storage cluster. This isolation of single-tenant

machines is important in a multi-tenant environment, since even

though the untrusted storage cluster doesn’t have access to users’

plaintext, their data remains vulnerable at runtime. Nevertheless,

static allocations of single-tenant compute remain undesirable, for

two reasons. First, idle cycles on a given user’s łsecurež compute

cannot be used by other researchers on the same cluster. This under-

mines the fairshare model employed by many research computing

centers, where users get exclusive priority to run jobs on compute

they own, but other researchers can make use of their compute as

well, provided it is idle. Dedicated single-tenancy, while a security

improvement, necessarily undermines this principle. Second, static

allocations of compute restrict a researcher’s computing power to

what they can afford to buy outright. With the fairshare model,

users can łborrowž vast computing capacity for a short time, far

beyond what they may have purchased. This isn’t possible if re-

searchers are required to run all of their jobs on a few machines,

for security purposes.

Since we are naturally interested in enabling users to run secure

jobs at scale, we built a proof of concept using Singularity contain-

ers, [11] in order to take advantage of a new feature of the Slurm

Workload Manager, called Multi-Category Security (MCS). [18] In

the initial test environment that we used for benchmarking, we

employed Docker to deploy Ceph Object Gateways and S3FS. This

worked well for a block of isolated compute with no other users

present. However, in a shared computing environment, exposing

sensitive data across the cluster is obviously unacceptable, since any

user who is able to escalate their privileges to root would be able

to read and exfiltrate data from the encrypted S3FS mount points,

since these mounts expose the plaintext to the client machines,

where the data is only protected by POSIX permissions.

In order to prevent this sort of security breach, it is clearly impor-

tant to be able to stand up and tear down the containers that expose

the secure storage on demand, wherever the user runs their secure

jobs. Ideally the user could do this themselves. This naturally leads

to the notion that the Ceph Object Gateway and S3FS containers

should be scheduled as ordinary jobs on the cluster, by the user.

The first question that arises is how to ensure single-tenancy on

any node where a secure mount is presented. If users may sched-

ule their own secure jobs, then they must be the only user on a

given compute node when their storage is mounted, to prevent po-

tentially exposing their plaintext to malicious co-tenants. Slurm’s

MCS plugin offers exactly this functionality. With MCS, Slurm can

reserve nodes for the exclusive use of a given user or group of

users, in order to ensure single-tenancy at runtime, so that users’

secure storage is only mounted to machines over which they have

exclusive use. This ephemeral provisioning of secure storage and

compute would enable researchers to perform large-scale compu-

tation using untrusted storage on single-tenant compute, without

having to exclusively purchase dedicated hardware. However, in

order to schedule secure storage mounts as jobs, an HPC-native

container runtime is needed.
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Singularity is a container runtime specifically developed to run

in HPC environments. Unlike Docker, Singularity containers do

not utilize a daemon process to manage running containers. This

means that batch schedulers such as Slurm can manage Singularity

containers as ordinary jobs, which run with the same user identifier

(UID) and group identifier (GID) as the user who initiated the job.

Additionally, Singularity makes it fairly straightforward to limit

a user’s ability to escalate privileges within a container. For our

purposes, this is useful for keeping encryption and access keys away

from the user, so that they cannot accidentally violate their data use

agreement and write plaintext directly to Ceph, or elect to do so

because they find that the performance is better. However, it would

also be feasible to give a user access to Ceph but not administer

their encryption keys at all, ensuring that only they retain access to

their data, enabling them to leverage an untrusted elastic storage

service without the burden of directly administering the storage

themselves.

7 RELATED WORK

Neither client-side encrypted file systems nor the notion of deploy-

ing Ceph Object Gateways on clients are completely new ideas.

Matt Blaze introduced CFS in 1993, [1] which used a client-side

encryption engine alongside NFS mounts to clients’ localhost in-

terface in order to present a POSIX network file system where

the remote storage media remained untrusted, during his time at

Bell Labs. More recently, the Rutherford Appleton Laboratory in

the UK has built łEchož [5] a Ceph cluster exceeding 30 petabytes

that primarily processes data for the Large Hadron Collider. Their

initial architecture consisted of several external Ceph Object Gate-

ways, which applications running on compute would connect to,

in order to access storage. However, in a presentation at Cephalo-

con 2018,[3] they reported that this configuration quickly proved

infeasible. Instead, they deployed the gateways in containers on

all of compute. The applications running on these worker nodes

then accessed storage via localhost calls to the gateway running on

the same machine. RAL reported that this configuration was much

more performant and expressed confidence in their distributed gate-

way model. However, neither of these systems combines modern

distributed storage technology with client-side encryption to offer

untrusted storage as a service for scientific computing.

8 CONCLUSION

Accommodating security requirements for sensitive data sets by

fracturing cluster infrastructure into single-tenant, network par-

titioned łislandsž of storage and compute is a loss for both HPC

administrators and users. Such a Balkanized infrastructure is more

difficult for administrators to maintain than a more uniform en-

vironment. Users, too, would be better served by elastic and hori-

zontally scalable compute and storage resources that can be used

to process sensitive data, instead of being limited to statically allo-

cated resources in their łsecurež environment. Such partitions also

erode the overall throughput of a computing resource, since users

in isolated environments cannot take advantage of idle resources

elsewhere on the same cluster, as they ordinarily would be able to

do on a uniform system.

We may say that for security requirements short of physical

isolation in a multi-tenant environment, an ideal high performance

computing cluster would isolate users’ processes and data from

other users, as well as from the infrastructure operators, without

sacrificing overall throughput, all the while enabling users to run

ordinary jobs on non-sensitive data without these security features,

on the same infrastructure. Such a system could consist of trusted

execution environments for running isolated processes, which could

mount and decrypt untrusted distributed storage. Recent genera-

tions of Intel CPUs include hardware and software security features

for deploying such trusted execution environments, called SGX łen-

claves,ž [4] on untrusted hardware. Since Intel SGX incorporates

public key infrastructure enabling remote attestation, and since

these enclaves aim to protect processes from an untrusted kernel

and system BIOS, this would meet the requirements for our ideal

untrusted multi-tenant HPC cluster. However, before such a sys-

tem can be built, the more basic problem of client-side storage

encryption must be addressed.

Solving these issues while ensuring that sensitive data is safely

isolated is difficult. While secure computing łenclavesž such as

Intel SGX, combined with in-enclave encryption of distributed stor-

age, could dramatically reduce the scope of the trusted computing

base for HPC and enable comparatively elastic and reasonably se-

cure multi-tenant computing, the state of client-side encryption

for distributed storage systems must advance first. Our method for

deploying Ceph Object Gateways on clients makes use of existing

server-side encryption implementations to instead offer client-side

encryption, enabling users to treat a shared, distributed storage

system as an untrusted, elastic resource.
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