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ABSTRACT

High performance computing systems are typically built with high-
throughput and infrastructural uniformity in mind, but generally
do not easily accommodate diverse data security requirements on a
single cluster. Rather than fracturing that infrastructure by building
many network isolated storage “islands” to secure each dataset
covered by an individual data use agreement, we explore using
the Ceph distributed storage system with client-side encryption to
provision secure storage from a single, untrusted data lake.
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1 INTRODUCTION

As the volume and velocity of data generated in the course of
everyday life continues to accelerate, researchers across various
disciplines are increasingly turning to computational methods in
order to gain quantitative insights from new data sets. However,
this abundance of data poses a challenge for research computing
centers. Researchers frequently want to work with sensitive data
sets containing personally identifiable or other private information,
whose use is governed by specific security requirements. Since
these requirements are often mutually exclusive from one data use
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agreement to the next, it can be difficult to safeguard research sub-
ject data while also providing a uniform and performant computing
infrastructure where researchers can conduct analysis at scale.

We present a novel method for deploying Ceph [19] object gate-
ways [6] on dedicated compute nodes, in order to perform encryp-
tion client-side, treating the Ceph storage cluster as an untrusted
shared resource. Our approach limits the exposure of plaintext data
to dedicated, single tenant compute nodes. By reducing the footprint
of the trusted computing base and relying on encryption, rather
than network isolation, to partition storage security boundaries,
users may benefit from a performant, distributed, and elastic shared
storage system for their secure computing, instead of making do
with individual RAID-based storage, provisioned on a per-project
basis, which lacks the horizontal scalability and performance of
modern distributed storage systems.

2 BACKGROUND

Traditionally, high performance computing clusters are treated as
uniform security environments. Isolated from public networks, it
is assumed that users who can connect and authenticate are autho-
rized to access the system. Infrastructure operators are trusted by
default. Individual users are isolated from one another by ordinary
POSIX permissions and unprivileged user accounts. When robust
security is required, the standard solution is to build several physi-
cally isolated clusters and assign each one a different security level.
This approach works well in classified environments, where the
levels of security are clearly defined and where an entire “secure”
cluster is used by a single tenant at a time.

However, for multi-tenant high performance computing plat-
forms, such as those found at research universities and in the finan-
cial technology sector, where users run jobs concurrently and secu-
rity requirements are both less uniform and typically fall short of
requiring physical isolation, operating a dedicated “secure” cluster
that can only be used by one tenant at a time is impractical. Instead,
a typical approach is to create various isolated environments via
network partitions. However, partitioning computing resources into
isolated environments necessarily reduces the throughput available
to any one user, since a hypothetical user in a “secure” environment
cannot use idle resources in the general “non-secure” environment,
and vice versa. Partitioning storage is similarly cumbersome. Users
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are stuck with static allocations of network isolated “secure” stor-
age systems that do not scale elastically, while administrators must
contend with managing a fractured infrastructure of such storage
“islands,” which lack the uniformity, elasticity, and performance of
modern distributed storage systems.

Distributed storage systems have been integral to high perfor-
mance computing since the decline of monolithic supercomputer
systems and the emergence of distributed computation on commod-
ity hardware with high-speed interconnects. Compared to more
familiar open source distributed storage systems, such as Lustre,
Ceph is a relative newcomer. While Lustre was designed as a dis-
tributed file system with high performance computing applications
in mind, Ceph was conceived as a general-purpose distributed
object store, capable of presenting block, file, and object storage
abstractions from the same cluster, making it suitable as a storage
backend for cloud computing infrastructure, a distributed file sys-
tem for high performance computing, or as an object store similar
to Amazon S3. Despite being a relative newcomer, Ceph has gained
increasing interest and adoption among research computing cen-
ters for its versatility, robustness, and horizontal scalability. CERN
makes extensive use of Ceph for research computing, operating
a production cluster exceeding sixty-four petabytes [2]. Harvard
FAS Research Computing has built production OpenNebula cloud
infrastructure on top of Ceph [16] and is currently deploying NESE
[14], a large multi-institutional Ceph cluster at the MGHPCC data-
center, in partnership with Boston University, MIT, Northeastern
University, and the University of Massachusetts.

Since the POSIX file system is the lingua franca of HPC stor-
age, and since Lustre, Ceph, and other distributed storage systems
all present a POSIX interface, the most straightforward means to
enable client-side encryption would appear to be simply layering
existing disk encryption solutions on top of whichever distributed
file system is already employed on-site. Tools such as dm-crypt
and eCryptfs are widely used and are already included in the Linux
kernel.

Unfortunately, problems with this approach arise immediately.
Since dm-crypt is designed to encrypt block storage, which cannot
be mounted to more than one machine at a time, it is unsuitable
for encrypting a distributed file system that may be mounted to
many machines at once, in an HPC environment. As a file-based
disk encryption system, eCryptfs initially appears more promising,
but unfortunately suffers from long-standing bugs when used on
top of a network file system [7]. FUSE-based encrypted file systems,
such as EncFS and gocryptfs [10] do work well over network file
systems, but both allow users to inadvertently write unencrypted
data directly to the network file system, effectively bypassing the
protections offered by encrypting their storage in the first place.
EncFS also suffers from several publicly known and unaddressed
security vulnerabilities [9]. There does not appear to be a suitable,
open source encrypted file system that offers encryption by default
and which performs well on shared storage over network file sys-
tems. Fortunately, due to the versatility of Ceph, it is possible to
encrypt object storage client-side, before the data is transmitted to
the storage cluster.
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3 DESIGN

At a high level, a Ceph cluster is composed of monitor daemons
(monitors) and object storage daemons (OSDs). Monitors maintain
amaster copy of the cluster map. They are typically deployed in odd
numbers, with one monitor daemon each on a dedicated physical
machine, and maintain state consensus for high availability via the
PAXOS algorithm [12]. A typical cluster has three monitors. Object
storage daemons are deployed for every physical drive in the cluster
and act as intermediaries between the physical disk resource they
govern and the distributed object store abstraction they present
over the network.

Ceph exposes four interfaces for clients to access storage re-
sources:

e CephFS, a POSIX compliant distributed file system,

e RBD, a distributed block device,

e librados, a library allowing applications to access the object
store directly,

o and the Ceph Object Gateway (or RADOS [21] Gateway), a
bucket-based REST API gateway compatible with Amazon
S3.

The Ceph Object Gateway is deployed as an HTTP server inter-
face to Ceph, with multiple clients making API calls to the gateway
or gateways, which themselves act as librados clients to the cluster,
writing directly to the OSDs. Much like Amazon S3, the Ceph Object
Gateway supports server-side encryption of objects, with customer
provided keys. Typically these requests are made over TLS, with
clients sending their encryption key to the gateway along with
each request to read or write an object. Since encryption typically
occurs server-side, clients have no control over whether encryption
takes place at all and necessarily expose their keys to a centralized
service. Therefore, with server-side encryption, the user’s data is
encrypted at the gateway, before it is written to the Ceph cluster
as ciphertext.

Server-side encryption at the Ceph Object Gateway has two
principal drawbacks. First, the client must trust the server to per-
form encryption and handle their encryption keys for them. This
is obviously suboptimal from a security point of view. Second, the
object gateway poses a network bottleneck for clients writing to
the Ceph cluster. One of the principal advantages of Ceph is that
clients can write directly to OSDs by calculating where to store and
retrieve data deterministically, via the CRUSH algorithm [20] and
the cluster map, without being burdened by the network bottle-
neck of first connecting to a metadata server. By interposing itself
between clients and OSDs, the Ceph Object Gateway re-introduces
a network bottleneck, inhibiting performance.

However, both of these concerns can be resolved by moving
the Ceph Object Gateways to the clients themselves. Since the
object gateway is just an HTTP server exposing the S3 API, client
applications can interact with that API over localhost just as well
as over a network connection. By moving the gateways to the
clients, “server-side” encryption becomes a client-side operation, so
that clients can control their encryption keys directly. Distributing
the object gateways on the clients also enables clients to interact
directly with OSDs, eliminating the bottleneck posed by many
clients accessing Ceph via an intermediary HTTP gateway server.
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Figure 1: Clients connecting through a Ceph Object Gateway

From an application perspective, a useability problem remains:
to use the S3 API, applications must be modified to employ object
storage. In an enterprise environment, modifying a single applica-
tion to integrate with S3 might be an acceptable burden, but for
research computing centers, where users expect access to a library
of hundreds, if not thousands of scientific applications, modify-
ing applications to use the S3 API is non-viable. Fortunately, tools
now exist to present S3 buckets as FUSE mounts, which incorpo-
rate a large subset of the POSIX standard that most HPC applica-
tions expect. As an integrated system, this configuration enables
client machines to write ciphertext objects directly to an untrusted
distributed storage system, while presenting a near-POSIX local
filesystem to the application, which has no knowledge that data
written to this filesystem is encrypted before leaving the client node.
This ensures that the trusted computing base is entirely client-side,
where data is processed on dedicated, single-tenant compute nodes,
without burdening the user with key management or enabling them
to accidentally violate the security boundary by writing plaintext
data directly to the untrusted, shared Ceph cluster. Thus, the user’s
plaintext data is only exposed to their client-side compute nodes,
when their data is processed by the application.

Client
S3FS |

Client Client
S3FS | S3FS |

Figure 2: Ceph Object Gateways on Clients connecting di-
rectly to OSDs

4 IMPLEMENTATION

To test our client-side encryption concept under simulated produc-
tion loads, we made use of the NESE Ceph cluster at the MGHPCC
data center, as well as 1,696 cores of compute, distributed across
106 client nodes. The NESE cluster consists of three monitors and
702 object storage daemons (one daemon per disk), spread across 57
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OSD nodes. For these tests, our storage pool was configured with (4,
2) erasure coding. [15] Our test compute consisted of dual socket,
16 core machines, running Intel Xeon E5520 processors with a base
clock speed of 2.27 GHz.

We deployed a Ceph Object Gateway in a Linux container on
each compute client and chose S3FS [17] to present a POSIX inter-
face to the local client-side application. S3FS ordinarily translates
a near-POSIX local filesystem interface to S3 API calls over the
network. In a typical configuration with Ceph, S3FS would be in-
stalled on the client and would make calls to one of a few Ceph
Object Gateways in order to interact with the storage cluster. This
is convenient when client-side encryption is not a requirement and
when clients are not located directly on the Ceph cluster network,
since clients can rely on the Ceph Object Gateway to perform en-
cryption server-side and use the S3 API to interact with the storage
cluster over wide area networks. This is the same workflow that
applications use to interact with Amazon S3; clients access the stor-
age via gateways that expose the S3 API. However, in HPC clusters
where compute and storage typically enjoy physical proximity and
network adjacency, it is preferable to write directly to the OSDs,
rather than funneling requests through a few gateways. In our con-
figuration, both the Ceph Object Gateway and S3FS are deployed in
containers on the client nodes and communicate with one another
over localhost, both in order to perform encryption client-side and
to eliminate the network bottleneck posed by a small number of
gateways interposing themselves between the hundreds of clients
and OSDs that may need to communicate in parallel in a distributed
computing system.

With both a Ceph Object Gateway and 3SFS deployed on all
clients in Linux containers, each client has access to the Ceph clus-
ter, via a shared S3 bucket, which is presented as a filesystem locally
by S3FS. Although the S3FS mount on each client could be exposed
either inside the S3FS container or outside of the container, on
the host file system, we chose the latter route. By mounting S3FS
to a bind mount shared with the host, inside a Linux container
volume mapped to the underlying host’s filesystem, the “locally”
mounted network storage appears as an ordinary directory to ap-
plications and users on the host operating system, outside of the
S3FS container.

We see several benefits to exposing the storage as an ordinary
bind mount on the compute node’s host operating system. First, it
completely abstracts away the file-to-object translation performed
by S3FS, as well as the client-side encryption performed by the
Ceph Object Gateway running on a separate container on the same
machine. Since users and their applications typically do not have
privileged root access in HPC computing environments, mapping
the S3FS mount point to a directory on the host system prevents
users from accidentally writing unencrypted data to the untrusted
Ceph cluster, since the encryption keys and S3 credentials needed to
access the storage reside inside the S3FS container. Second, expos-
ing the mount to the host ensures compatibility with existing HPC
tooling. Unmodified scientific applications may be loaded through a
traditional module system and managed via the existing scheduler.
Rather than re-building these applications as containers, this ap-
proach presents secure storage in a format the application already
expects and with which users are already familiar: an ordinary
directory on the host system. However, unlike other network file
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systems, everything they write is encrypted on the client and the
storage cluster is never trusted with the content of their data.

Table 1: CephFS Performance

Operation Max IOPS Min IOPS Mean IOPS
Directory creation: 3363.190 3363.168 3363.180
Directory stat: 8817800.917 5190063.153  6409776.669
Directory removal: 5671.911 5671.295 5671.632
File creation: 6370.684 6370.576 6370.623
File stat: 43128212.571 4469472.802 17613571.855
File read: 36037558.707 4201603.747 25084764.971
File removal: 5777.656 5777.511 5777.573
Tree creation: 703.679 569.761 638.321
Tree removal: 14.873 8.222 11.864

5 PERFORMANCE

In order to establish a baseline for performance, we first compared
our client-side encrypted S3FS implementation to CephFS. CephFS
is the standard POSIX mode for Ceph, so it serves as a good initial
point of comparison. We expected CephFS to outperform our S3FS
implementation, both because of the overhead imposed by encryp-
tion, as well as the additional overhead of translating POSIX to S3
and S3 to librados, on every client. Nevertheless, this test was a
good basis for us to assess whether our configuration is a usable
filesystem under saturating loads and to compare it to a known
system that is already used by some, in production.

For benchmarking, we used MDTest, [13] a message passing
interface-based application for evaluating file system metadata per-
formance. MDTest measures performance by creating, stat-ing, and
deleting a tree of directories and files across a cluster of machines.
MDTest relies on a message passing interface (MPI) to orchestrate
parallel tasks. MDTest and OpenMPI [8] enabled us to distribute
the file operations across 106 client machines and use all 1,696 cores
to simulate parallel file system load. We were unsurprised to find
that CephFS (see: Table 1) is significantly more performant than our
S3FS implementation (see: Table 2), given the additional overhead
our system entails, but we were encouraged to see that the system
remained usable despite distributed file operations performed by
1,696 threads in parallel.

Table 2: S3FS Performance

Operation Max IOPS Min IOPS Mean IOPS
Directory creation: ~ 645.778 645.776 645.777
Directory stat: 61025.342  60987.303 61002.794
Directory removal: ~ 721.686 721.685 721.685
File creation: 565.436 565.433 565.434
File stat: 18744.482 18742.516 18743.708
File read: 116.670 116.670 116.670
File removal: 3870.483 3870.462 3870.472
Tree creation: 6.174 5.259 5.769
Tree removal: 8.946 8.512 8.714
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6 DYNAMIC ALLOCATION OF SECURE
STORAGE & COMPUTE

In our discussion of secure storage thus far, we have largely as-
sumed a static allocation of single-tenant compute nodes accessing
an elastic, untrusted storage cluster. This isolation of single-tenant
machines is important in a multi-tenant environment, since even
though the untrusted storage cluster doesn’t have access to users’
plaintext, their data remains vulnerable at runtime. Nevertheless,
static allocations of single-tenant compute remain undesirable, for
two reasons. First, idle cycles on a given user’s “secure” compute
cannot be used by other researchers on the same cluster. This under-
mines the fairshare model employed by many research computing
centers, where users get exclusive priority to run jobs on compute
they own, but other researchers can make use of their compute as
well, provided it is idle. Dedicated single-tenancy, while a security
improvement, necessarily undermines this principle. Second, static
allocations of compute restrict a researcher’s computing power to
what they can afford to buy outright. With the fairshare model,
users can “borrow” vast computing capacity for a short time, far
beyond what they may have purchased. This isn’t possible if re-
searchers are required to run all of their jobs on a few machines,
for security purposes.

Since we are naturally interested in enabling users to run secure
jobs at scale, we built a proof of concept using Singularity contain-
ers, [11] in order to take advantage of a new feature of the Slurm
Workload Manager, called Multi-Category Security (MCS). [18] In
the initial test environment that we used for benchmarking, we
employed Docker to deploy Ceph Object Gateways and S3FS. This
worked well for a block of isolated compute with no other users
present. However, in a shared computing environment, exposing
sensitive data across the cluster is obviously unacceptable, since any
user who is able to escalate their privileges to root would be able
to read and exfiltrate data from the encrypted S3FS mount points,
since these mounts expose the plaintext to the client machines,
where the data is only protected by POSIX permissions.

In order to prevent this sort of security breach, it is clearly impor-
tant to be able to stand up and tear down the containers that expose
the secure storage on demand, wherever the user runs their secure
jobs. Ideally the user could do this themselves. This naturally leads
to the notion that the Ceph Object Gateway and S3FS containers
should be scheduled as ordinary jobs on the cluster, by the user.
The first question that arises is how to ensure single-tenancy on
any node where a secure mount is presented. If users may sched-
ule their own secure jobs, then they must be the only user on a
given compute node when their storage is mounted, to prevent po-
tentially exposing their plaintext to malicious co-tenants. Slurm’s
MCS plugin offers exactly this functionality. With MCS, Slurm can
reserve nodes for the exclusive use of a given user or group of
users, in order to ensure single-tenancy at runtime, so that users’
secure storage is only mounted to machines over which they have
exclusive use. This ephemeral provisioning of secure storage and
compute would enable researchers to perform large-scale compu-
tation using untrusted storage on single-tenant compute, without
having to exclusively purchase dedicated hardware. However, in
order to schedule secure storage mounts as jobs, an HPC-native
container runtime is needed.
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Singularity is a container runtime specifically developed to run
in HPC environments. Unlike Docker, Singularity containers do
not utilize a daemon process to manage running containers. This
means that batch schedulers such as Slurm can manage Singularity
containers as ordinary jobs, which run with the same user identifier
(UID) and group identifier (GID) as the user who initiated the job.
Additionally, Singularity makes it fairly straightforward to limit
a user’s ability to escalate privileges within a container. For our
purposes, this is useful for keeping encryption and access keys away
from the user, so that they cannot accidentally violate their data use
agreement and write plaintext directly to Ceph, or elect to do so
because they find that the performance is better. However, it would
also be feasible to give a user access to Ceph but not administer
their encryption keys at all, ensuring that only they retain access to
their data, enabling them to leverage an untrusted elastic storage
service without the burden of directly administering the storage
themselves.

7 RELATED WORK

Neither client-side encrypted file systems nor the notion of deploy-
ing Ceph Object Gateways on clients are completely new ideas.
Matt Blaze introduced CFS in 1993, [1] which used a client-side
encryption engine alongside NFS mounts to clients’ localhost in-
terface in order to present a POSIX network file system where
the remote storage media remained untrusted, during his time at
Bell Labs. More recently, the Rutherford Appleton Laboratory in
the UK has built “Echo” [5] a Ceph cluster exceeding 30 petabytes
that primarily processes data for the Large Hadron Collider. Their
initial architecture consisted of several external Ceph Object Gate-
ways, which applications running on compute would connect to,
in order to access storage. However, in a presentation at Cephalo-
con 2018,[3] they reported that this configuration quickly proved
infeasible. Instead, they deployed the gateways in containers on
all of compute. The applications running on these worker nodes
then accessed storage via localhost calls to the gateway running on
the same machine. RAL reported that this configuration was much
more performant and expressed confidence in their distributed gate-
way model. However, neither of these systems combines modern
distributed storage technology with client-side encryption to offer
untrusted storage as a service for scientific computing.

8 CONCLUSION

Accommodating security requirements for sensitive data sets by
fracturing cluster infrastructure into single-tenant, network par-
titioned “islands” of storage and compute is a loss for both HPC
administrators and users. Such a Balkanized infrastructure is more
difficult for administrators to maintain than a more uniform en-
vironment. Users, too, would be better served by elastic and hori-
zontally scalable compute and storage resources that can be used
to process sensitive data, instead of being limited to statically allo-
cated resources in their “secure” environment. Such partitions also
erode the overall throughput of a computing resource, since users
in isolated environments cannot take advantage of idle resources
elsewhere on the same cluster, as they ordinarily would be able to
do on a uniform system.
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We may say that for security requirements short of physical
isolation in a multi-tenant environment, an ideal high performance
computing cluster would isolate users’ processes and data from
other users, as well as from the infrastructure operators, without
sacrificing overall throughput, all the while enabling users to run
ordinary jobs on non-sensitive data without these security features,
on the same infrastructure. Such a system could consist of trusted
execution environments for running isolated processes, which could
mount and decrypt untrusted distributed storage. Recent genera-
tions of Intel CPUs include hardware and software security features
for deploying such trusted execution environments, called SGX “en-
claves,” [4] on untrusted hardware. Since Intel SGX incorporates
public key infrastructure enabling remote attestation, and since
these enclaves aim to protect processes from an untrusted kernel
and system BIOS, this would meet the requirements for our ideal
untrusted multi-tenant HPC cluster. However, before such a sys-
tem can be built, the more basic problem of client-side storage
encryption must be addressed.

Solving these issues while ensuring that sensitive data is safely
isolated is difficult. While secure computing “enclaves” such as
Intel SGX, combined with in-enclave encryption of distributed stor-
age, could dramatically reduce the scope of the trusted computing
base for HPC and enable comparatively elastic and reasonably se-
cure multi-tenant computing, the state of client-side encryption
for distributed storage systems must advance first. Our method for
deploying Ceph Object Gateways on clients makes use of existing
server-side encryption implementations to instead offer client-side
encryption, enabling users to treat a shared, distributed storage
system as an untrusted, elastic resource.
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