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Abstract

Large-scale applications typically spend a significant fraction of
their execution time performing I/O to a parallel storage system.
However, with rapid progress in compute and storage system stack
of large-scale systems, it is critical to investigate and update our
understanding of the I/O behavior of large-scale applications. To-
ward that end, in this work, we monitor, collect and analyze a year
worth of storage system data from the NERSC parallel storage sys-
tem which serves NERSC’s two largest supercomputers, Cori and
Edison. We perform temporal, spatial and correlative analysis of
the system as a whole, and of individual I/O and metadata servers,
and uncover surprising patterns which defy existing assumptions
about HPC I/O and have important implications for future systems.

1 Introduction

Large-scale applications typically spend a significant fraction of
their execution time performing I/O (e.g., checkpointing and analy-
sis output). While the compute characteristics of large-scale HPC
applications are very well-studied, the I/O behavior of large-scale
applications do not receive the same level of attention. In the past,
some HPC facilities have attempted to address this problem by shar-
ing best operational practices [10, 11, 19, 39], analyzing I/O work-
load characteristics [30, 33ś35, 52, 59], and performing controlled
experiments on a large-scale parallel storage system [36, 55, 56, 58].
However, a knowledge gap still exists in terms of understanding
the most recent trends in I/O characteristics at the back end of
the storage system and its implication for system design and oper-
ations. Bridging this gap is challenging because large-scale HPC
storage systems are becoming increasingly complex and difficult
to manage, and hence, it is increasingly hard to monitor, collect,
and accurately analyze I/O data to understand the characteristics
of the system and applications - to identify and remove the sources
of inefficiency [3, 8, 41].

To address this challenge and revisit thewidely-held beliefs about
I/O behavior of large-scale applications, this study performs mea-
surement and systematic analysis of a year’s worth of I/O activity
data from National Energy Research Scientific Computing Center’s
(NERSC) HPC facility. This I/O activity data is collected during the
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year 2018 for all the Object Storage Servers (OSS), Object Storage
Targets (OST), Meta Data Server (MDS), and Meta Data Target
(MDT) for the Lustre parallel storage system at NERSC shared by
Edison and Cori supercomputers. This rich data enables us to inves-
tigate patterns in time and space dimensions: fromminute to month
granularity and from one storage component in the hierarchy to all
storage components concurrently. This helps us identify subtle re-
lationships between different I/O activities and system components
over time. Overall, we make the following contributions:

⋆ We develop an analysis pipeline to examine the I/O data collected
from the shared parallel storage system at the NERSC HPC
data center. Our pipeline includes a statistical characterization
methodology to identify and analyze hidden trends in the I/O
characteristics of a large-scale parallel storage system.

⋆ We investigate temporal, spatial, and correlative behavior of
HPC I/O by analyzing different components of the storage
system (e.g., OSTs, OSSes, and MDS). Our study uncovers
surprising patterns which defy existing assumptions about HPC
I/O and have important implications for future systems [3, 41].

⋆ Our analysis reveals that HPC storage systems may no longer
be dominated by write I/O - challenging the long- and widely-
held belief that HPC workloads are write-heavy. In fact, over the
past few years, read I/O at NERSC has grown to surpassed write
I/O by a margin, even after accounting for burst-buffer writes!

⋆ We confirm the conventional wisdom that HPC I/O is usually
bursty, but we show that write I/O is more bursty than read
I/O. Moreover, while HPC I/O activity does not show diurnal
pattern, write I/O appears to show high variance during evening
hours and weekends ś identifying such periods helps prevent
scheduling of I/O-interference-sensitive jobs during these times.

⋆ Our study discovers that there is a huge load imbalance
across OSTs in terms of I/O activity even at long time-scales,
and hence, tools that perform intelligent file migration across
OSTs are highly desirable for large-scale parallel storage systems.

⋆ Our analysis uncovers that even large-scale HPC applications
do not tend to take advantage of I/O parallelism, often using
less than 10 OSTs concurrently even during high intensity
I/O phases. This points toward the key reason for why HPC
applications often observe very small fraction of the peak I/O
bandwidth offered by large scale HPC storage systems.
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⋆ We discover that the OSSes, which are typically as powerful
as the compute nodes, are often idle and have very low CPU
utilization. Carefully designed and implemented analytic
tools can opportunistically steal these idle cycles to perform
in-situ data analysis and file system verification tasks without
interrupting I/O activities.

⋆ Our extensive temporal and spatial correlation analysis identifies
correlated storage components and I/O activities (e.g., statisti-
cal characteristics of I/O activity periods, correlation between
read and write I/O at the OST and the system level, etc.). These
findings can be leveraged for designing intelligent I/O schedul-
ing techniques that can predict and mitigate I/O contention in
HPC storage systems by coordinating the I/O intensive phases
of different applications at both, the system and the OST level.

2 Background

In this paper, we analyze the logs of a Lustre parallel file system
which is accessed by two supercomputing systems deployed at
NERSC, for the entire year of 2018. In this section, we briefly discuss
the configurations of these systems, the Lustre file system, and the
data monitoring and collection methodology.

2.1 System Architecture

The current flagship supercomputer at NERSC, named Cori, is a
Cray XC40 system with two computation partitions: the first con-
sists of energy efficient 9,688 68-core Intel Xeon Phi (Knights Land-
ing or KNL) processors and the second consists of 2,388 16-core
Intel Xeon (Haswell) processors. As shown in Fig. 1, an SSD-based
Cray DataWarp burst-buffer storage layer is available between the
compute nodes and the disk-based Lustre file system. The Lustre
file system is composed of ≈10,000 disks organized as 248 Lustre
Object Storage Targets (OST). Each OST has a corresponding Object
Storage Servers (OSS) which manages the I/O requests. The file
system also has a Meta Data Server (MDS) and Meta Data Target
(MDT) to perform I/O metadata operations. The total size of the
file system is ≈30 PB with an aggregate peak I/O bandwidth of 700
GB/s. This Lustre file system is also shared by another system, a
Cray XC30 system named Edison, which has 12-core processors on
each of its 5,586 nodes. Edison has a local Lustre file system as well,
but in this paper, we study the logs of the shared Lustre file system.

We note this study does not specifically focus on burst-buffer
I/O activities since the burst-buffer read and write activities are
still quite limited (5-15%) and the shared scratch space continues to
observe almost all the I/O traffic. However, for careful and complete
analysis, we include burst-buffer I/O activity at certain places where
our findings may have interactions with the burst-buffer activities.

2.2 Data Monitoring and Collection

The log data of Lustre is obtained by the Lustre Monitoring Tool
(LMT) [53], which is a distributed system to provide Lustre server-
side activity on various server nodes, similar to the Unix łtopž
command. LMT monitors the I/O activity of the OSSes, OSTs, MDS,
and MDT and retains these data for the preceding 24 hours in a
MySQL database. A separate service queries this MySQL database
and archives the data from the previous day into an HDF5 file before
it is expired from the MySQL database. Each HDF5 file consists of

Figure 1: Cori supercomputing system overview with an SSD-
based Cray DataWarp burst-buffer and a Lustre file system [5].

datasets which contain performance statistics such as CPU utiliza-
tion of OSSes, file operations of MDSes, and the read/write transfer
rates on the OSTs. Note that the LMT does not report the number
and size of read/write I/O requests served by the OSSes.

The logger generates one HDF5 file for every day of the year;
each file consists of 17280 entries as performance statistics are
captured every 5 seconds. Note that each entry is not expected to
accurately represent the state of the system during the previous 5-
second interval. In cases of network congestion, the User Datagram
Protocol (UDP) packets used to communicate information about
the individual LMT devices to the LMT łwatcherž often get accumu-
lated in the entry when they reach the LMT watcher. This can cause
several consecutive entries to report a value of zero, followed by
an entry with large value. In order to filter out the noise generated
by this phenomenon, we use a 1-minute interval which consists of
12 entries of 5-second intervals. We found that using a 1-minute in-
terval substantially equalizes entries which are unexpectedly large
(greater than the system’s peak limit). Using a 1-minute interval
is suitable our analysis as we focus on larger trends which are
independent of performance statistics at per-second granularity.

These monitoring data can contain corrupted or anomalous data
points. Such undesirable data points are identified via performing
simple sanity checks that verify that physical system constraints are
not violated at each sample (e.g., theoretical data transfer bandwidth
at each OST level, at the system-level, CPU utilization, etc.) We
have ensured that our analysis is not affected by such data points.
We also ensure that data points corresponding to system shutdown
periods are appropriately handled and do not bias the analysis.

Finally, we note that server-side I/O logs, by design, do not con-
tain client-side information such as application name, job id, or
user information. Therefore, it limits our study to perform correla-
tion between server-side and corresponding user-level information.
Performing such a correlation while useful is quite challenging
as it would require instrumenting the application and then do-
ing accurate correlation between records with potentially different
time-stamps and without exact spatial information of I/O activities.

2.3 Statistical Methods

This study derives insights by observing trends and substantiates
these insights with statistical methods. In particular, we use the
following statistical methods to support our findings: (1) Probability
(PDF) and Cumulative (CDF) Density Function, (2) Coefficient of
Variance (CoV), and (3) Coefficient of Correlation (CC).
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checkpoint-and-restart capability on OSSes. Second, explicit and de-
terministic resource isolation can ensure that OSSes do not become
unstable due to stealing of idle cycles. Execution of analytic tools
can be limited in scope by assigning them to specific cores, setting
the upper-limit on memory consumption, cache partitioning (e.g.,
Intel’s Cache Allocation Technology).

Our results also reveal that OSS CPU utilization autocorrelates
with itself for all OSSes for window length of 1 minute (Fig. 16).
This is interesting because we found that read I/O activity and write
I/O activity do not autocorrelate on many OSTs (Fig. 12(a) and (b)).
At NERSC, different factors can affect OSS CPU utilization: (1) the
number and type of I/O requests being served has a large impact on
CPU utilization as it is proportional to the number of bookkeeping
operations, (2) the number of łstatž calls on files being served has a
small but statistically significant signature on OSS CPU utilization
as every łstatž call triggers a read I/O, (3) the use of software RAID
increases CPU utilization on writes (but not reads), etc. Therefore,
in terms of I/O, OSS CPU utilization is impacted by the number
and type of I/O requests and not the amount of data transferred.
Therefore, the high autocorrelation of OSS CPU utilization shows
that an OSS is likely to observe similar quantity of I/O requests
for a few minutes on most OSSes. Autocorrelation analysis for
wider window lengths (not shown for brevity) demonstrates that
the correlation weakens across OSSes as the window gets wider,
thus showing that OSS CPU utilization remains similar for up to
4-5 minutes (lag 4-5 for 1-minute window).

Observation:MDS activities such as file open and close, as expected,

are auto-correlated. MDS activities are bursty in nature, performing

up to 327million opens/min and 235million closes/min during peak

periods. However, the CPU utilization on OSSes are relatively modest

even during high usage period (maximum CPU utilization is lower

than 75% for more than 60% of the OSSes). This finding can open-up

the opportunity to steal abundant idle cycles on OSSes to perform

other works such as in-situ data analysis, file system verification [9,

43, 47]. However, as discussed above it requires careful and efficient

implementation to avoid OSSes becoming unstable.

8 Discussion

In this section, we discuss the scope of our findings and analysis,
and identify the threats to the validity of our findings as other HPC
centers learn from our experience.

Effects of I/O Workloads and NERSC-specific environ-

ment: As expected, our findings are directly affected by the nature
of workloads being executing at NERSC and the NERSC environ-
ment. We emphasize that our findings can not be generalized with-
out appropriately factoring into NERSC environment.

Our finding that production HPC storage systems may no longer
be dominated by write-intensive workloads only, clearly indicates
the rise in the read-heavy workloads. We anticipate that increase in
machine learning and analytic workload may attribute toward this
observed trend. Machine learning workloads are often read-heavy,
reading in the input data iteratively to converge to an accurate,
stable and refined model. Wide increase of such workloads on
leading HPC centers is being observed in recent years [1, 12, 13]
and hence, this observation may become stronger over time and at
other HPC centers in future too.

In particular, NERSC has been observing increasing in data and
learning workloads in NERSC Exascale Science Applications Pro-
gram (NESAP) [15]. Data and learning applications such as PCA and
BD-CATS are quite I/O-intensive (more than 40% of time performing
I/O) [14]. At the same time, interestingly, the applications that gen-
erate the large read workloads observed in this study are the same
applications that do not necessarily fall into the machine learning
domain and have run at NERSC for many years (QCD and quan-
tum modeling of materials). Therefore, increase in read-intensive
workloads may not be limited to data and learning workloads only.

Correlating server-side logs with application I/O patterns is a
worthy goal and may provide further insights. However, it is very
difficult because Lustre implements a client-side page cache. This
transparently restructures very small but contiguous I/Os into large
sequential writes during write-back, and this process is transparent
to both application-level profiling and the back-end file system
monitoring (which only sees the write-back traffic). NERSC sup-
ports over 7,000 users and 700 applications, and there are typically
several hundred jobs executing concurrently at any given moment
on the Cori system. In aggregate, the I/O patterns can be complex
as a result of this broad workload mix, but large bursts of I/O are
still observed with moderately sized jobs issuing parallel I/O.

Effect of Burst-Buffer. Burst-buffer usage at NERSC is still
at infancy stage; only a handful of users take advantage of burst-
buffers and rest directly use the scratch space. As discussed earlier
in Sec. 3, current level of activity at the burst-buffer does not signif-
icantly influence the findings in this study. A future useful deeper
exploration would be to analyze the burst-buffer traffic in a mature
stage. It would require distinguishing the stage-in and stage-out
data. However, current monitoring facility does not support this
capability and reports only aggregate data read and written to
the burst-buffer. For example, currently, one cannot distinguish
whether the data is read by the compute nodes or staged-in the
burst-buffer. As the burst-buffer usage matures and its monitor-
ing capability develops, we plan to perform similar analysis of the
burst-buffer I/O and how it affects I/O to the scratch space.

Effect of Lustre File System: NERSC uses Cray-maintained
Lustre which is based on an old Lustre version (2.5) but has a
lot of back-ported features and patches. The Lustre clients and
servers are also different versions, and the clients get updated
every time we patch the system. Note that the patch version of
the Cray Lustre client is useful for Cray maintenance only and
does not correspond to Lustre’s public versions. The current
server version is 2.5.1 (jenkins-Changeling_Lustre-361-361-
gbb51c1c-CHANGED-2.6.32-431.17.1.x2.0.90.x86_64) and
the client version is 2.7.5.13. We have ensured that our findings are
not a side-effect of Lustre bugs.

We note that our findings can not be generalized or trivially
extended to other parallel file systems. For example, GPFS is a fun-
damentally different file system architecture that is block-based
rather than object-based, and the definition of a stripe is funda-
mentally different. We also note that NERSC’s default policy is
no-striping because it was observed to work better with Lustre file
system and useful for file-per-process I/O pattern. Typically, HPC
centers set the default striping factor between 1 and 4 which may
not significantly affect our observations about the low degree of
I/O parallelism at NERSC, but setting the striping to higher counts
can potentially decrease the load imbalance across OSTs.
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For OST file distribution, NERSC’s Lustre uses both round robin
and weighted allocator continuously based on the weighting factor.
The qos_prio_free paramter is tuned to 91% currently. The choice
of the allocator is a function of this weight and the level of OST
fullness of all OSTs at the moment every file is created.

9 Related Work

Tools for Monitoring I/O: Over the last two decades, there has
been a large interest in trying to examine, model, and predict the
I/O behavior of HPC applications. To this end, several software
implementations have been proposed to monitor I/O at job-level [10,
11, 24, 44, 54] and at storage-system-level [2, 25, 26, 49, 58]. More
recent attempts aim to develop an all-encompassing and cohesive
monitoring system which can monitor end-to-end I/O behavior of
jobs at each step along their I/O path [16, 31, 32, 40, 42, 58]. The
purpose of these works is to introduce the tools and demonstrate
how they can be used. Therefore, most of these works only provide
a few examples as case studies and do not provide an in-depth
analysis of either job-level or storage-system-level I/O behaviors.

An exception to this is a recent work by Yang et al. [58], which
studies a few job-level characteristics such as write I/O’s propor-
tion of the job’s total I/O, and system level characteristics such as
MDS utilization by login and I/O nodes. However, these are limited
to surface-level characteristics shown to demonstrate the tracing
ability of their tool, Beacon. Similarly, Lockwood et al.’s work [31]
provides some analysis based on profiling a few applications (using
TOKIO monitoring tool), but does not discover temporal and spatial
correlations at the system-level.

I/O Characterization and Analysis:Works which provide an
analysis of I/O can be broadly classified into two categories: (1)
ones which study the I/O behaviors of individual applications, and
(2) ones which study the I/O behavior of the storage system as a
whole. The former type of works study and model I/O behaviors
such as data transfer rate, I/O periodicity and repetition, and I/O
variability of individual jobs [30, 33ś35, 52, 55, 56, 59]. These works
do not necessarily only rely on job-level monitoring tools. For
instance, works by Liu et al. [28, 29] look at server-side logs to
identify patterns in I/O of individual jobs, and Madireddy et al. [36]
attempt to correlate the monitoring data of job-level logs with
storage-system-level logs. These works are orthogonal to our work,
and the findings from these works can be used in conjunction with
ours to develop a holistic job-level and storage-system-level view
and make the HPC I/O more efficient.

On the other hand, there are also works which analyze the stor-
age system [19, 23, 39, 49, 51]. For example, Oral et al. [39] use
benchmark suites to analyze different types and configurations
of file and storage systems, and provide recommendations. This
work does not analyze traces of existing activity on existing storage
systems. These works do not provide an in-depth analysis at MDS,
OSS and OST level. They only provide the high-level characteristics
at entire storage-system level, but miss on discovering interesting
insights found in this work due to lack of detailed temporal and
spatial analysis at different levels in space and time because these
studies do not focus on analyzing such a unique data set and statis-
tical methodology. We have discussed the findings of these studies
in this paper for comparison and contrast. We show how some of
the trends have changed and new trends emerged over time.

10 Conclusion

In this paper, we have drawn new insights about the temporal,
spacial, and correlative behavior of HPC I/O by analyzing server-
side I/O logs. We have shown that read I/O activity dominates the
system’s I/O utilization in terms of the amount of data transferred.
In spite of this, write I/O is generally more bursty than read I/O
and it displays a higher degree of parallelism. We have also shown
that larger amount of read and write activity generally signals large
amount of read and write in the near future. We also found that
the OSTs are not load-balanced in terms of the amount of data
transferred, and that the OSSes go largely underutilized in terms
of their CPU cycles. We discussed how these findings can help
improve the state of practice by enhancing the scheduling and
load-balancing decisions for the parallel storage system.
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