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Abstract. Sparsity is a fundamental characteristic of numerous biological, social, and technological
networks. Network connectivity frequently demonstrates sparsity on multiple spatial scales and network
inputs may also possess sparse representations in appropriate domains. In this work, we address the
role of sparsity for solving inverse problems in networks with nonlinear and time-evolving dynamics.
In the context of pulse-coupled integrate-and-fire networks, we demonstrate that nonlinear network
dynamics imparts a compressive coding of both network connectivity and inputs provided they possess a
sparse structure. This work thereby formulates an efficient sparsity-based framework for solving several
classes of inverse problems in nonlinear network dynamics. Driving the network with a small ensemble of
random inputs, we derive a mean-field set of underdetermined linear systems relating the network inputs
to the corresponding activity of the nodes via the feed-forward connectivity matrix. In reconstructing
the network connections, we utilize compressive sensing theory, which facilitates the recovery of sparse
solutions to such underdetermined linear systems. Using the reconstructed connectivity matrix, we
are capable of accurately recovering detailed network inputs, which may vary in time, distinct from
the random input ensemble. This framework underlines the central role of sparsity in information
transmission through network dynamics, providing new insight into the structure-function relationship
for high-dimensional networks with nonlinear dynamics. Considering the reconstruction of structural
connectivity in large networks is a significant and challenging problem in the study of complex networks,
we hypothesize that analogous reconstruction methods taking advantage of sparsity may facilitate key
advances in the field.

Keywords. Sparsity; neuronal networks; nonlinear dynamics; compressive sensing; network re-
construction; inverse problems.
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1. Introduction
A pervading problem in the study of complex systems is the recovery of network

connectivity and network inputs from limited measurements of network dynamics or
node interactions. While it is theoretically possible to directly measure the existence
of all possible network connections to obtain a full network wiring diagram, often this
is quite difficult in practice due to limitations in the spatial resolution of measurement
devices or intervention damage when measurements are performed [18,32,39,40,74,75].
Nevertheless, in order to fully characterize the relationship between network structure
and function, it is crucial to obtain complete network wiring diagrams.

For small neuronal networks, several techniques have been developed to resolve
network wiring diagrams, e.g., neuronal staining and electron microscopy, but for larger
networks in which more distant connections are included, alternative methodologies are
typically necessary [71, 81]. More recently, diffusion tensor imaging (DTI) has been
employed to help resolve this issue and tracer injections have also been used to reveal
long-range connectivity in the brain, such as inter-areal connections in the macaque
cerebral cortex. However, these methods still lack finely resolved spatial resolution
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[13, 50, 56]. For these reasons, the complete neuronal wiring diagram [73] is known
for simple organisms with less than one thousand neurons, such as Caenorhabditis
elegans [78, 81], but for more complex organisms with many more neurons, resolving
such a complete wiring diagram is particularly challenging.

A more indirect yet economical alternative is to instead measure the dynamics of
various nodes to infer network connectivity. Such an approach is widely utilized to reveal
network structure across diverse systems, including food web [31], ecological [21], regu-
latory gene interaction [28], and disease-spread networks [47]. Several approaches, both
experimental and model-based, have been formulated to infer the functional connectiv-
ity or structural connectivity, with varying degrees of success, based on the measurement
of individual node dynamics. Such methodologies include the use of cross-correlations
in node activity [43], spike-train partial spectral coherence [26], dynamic Bayesian net-
works [33], and linear Granger causality analysis of a time series of observations [85,86].
However, for many networks, there are ubiquitous difficulties in accurately inferring
network structure from dynamics, such as isolating the impact of multiple time-scale
activity, detecting interactions across spatial scales, and addressing indirect node in-
teractions, thereby yielding in general a difficult class of inverse problems. Similarly,
while in some cases it is possible to recover network inputs from observations of network
dynamics [34,41,51,53], when the number of nodes is much smaller than the number of
input components, the reconstruction process becomes highly underdetermined.

For large networks with nonlinear and time-evolving dynamics, it is particularly
crucial to take into account specific network characteristics in formulating an accurate
and efficient reconstruction framework. Thus, here we address how it is possible to
take advantage of a common structure, namely sparsity, generally embedded in both
network connectivity and inputs, in optimizing their respective reconstructions. Sparsity
is observed on multiple scales in the connectivity of diverse biological, technological,
and social networks [1, 4, 44, 58, 80]. For example, both local cortical circuits [58, 59] as
well as the retina [37, 38] demonstrate sparse connections between neurons. Similarly,
sparse connectivity between cortical and subcortical regions is also well-documented
[1, 44]. In this work, we examine how the underlying sparsity of network models with
nonlinear state space dynamics facilitates the efficient reconstruction of feed-forward
network connectivity as well as detailed network inputs based on the observed network
dynamics in response to a relatively small ensemble of inputs.

In formulating our reconstruction framework, we employ a kinetic-theoretic ap-
proach as well as compressive sensing (CS) theory. Providing a means of efficiently
recovering signals which have a sparse representation in a selected domain, CS theory
has proven to be a significant advancement in the field of signal processing [24, 25, 29].
Compressive sensing has fostered numerous applications in physics, biology, and image
processing [16, 17, 27, 42, 45, 54], enabling the recovery of diverse signals using far fewer
measurements than suggested by the Shannon-Nyquist theorem conventionally applied
in determining sampling protocols [67].

While applications of CS theory have largely been limited to reconstructing sig-
nals from static and linear measurements, we formulate a sparsity-based framework for
recovering both the feed-forward connectivity and detailed inputs for a pulse-coupled
integrate-and-fire (I&F) network model with nonlinear node dynamics. Forcing the
network with a small ensemble of random inputs, we derive a mean-field set of underde-
termined linear systems relating the network inputs to the corresponding activity of the
nodes via the feed-forward connectivity matrix. Upon reconstructing the sparse feed-
forward connectivity utilizing CS theory, we then use our derived network input-output
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relationship to recover realistic network inputs, such as images, videos, or sound waves,
which also typically display sparse structure [35].

The results of this work suggest that sparsity plays a key role in facilitating the
efficient coding of both network inputs and connectivity through nonlinear network
dynamics, providing a new and important link between network structure and func-
tion. Considering the observed network response to a relatively small number of inputs
facilitates the reconstruction of relatively high dimensional network data, our frame-
work provides efficient solutions to several classes of underdetermined, nonlinear inverse
problems.

An outline of the presented results is as follows. First, we describe our feed-forward
I&F network model in Section 2.1, and then summarize relevant CS theory in Section 2.2.
Next, in Section 2.3, we derive the linear input-output mapping underlying the network
dynamics, and then use this mapping as well as CS theory to reconstruct the feed-
forward connectivity in Section 3.1. Using the reconstructed connectivity matrix, we also
recover network inputs with detailed features and time-evolving dynamics in Section 3.2.
In Section 3.3, we analyze the robustness of our methodology by considering the impact
of node measurement time, noise, and recurrent connectivity on the reconstruction of
feed-forward network connectivity. We conclude by examining future applications and
possible ramifications of this work in Section 4.

2. Methods

2.1. Network dynamics and connectivity structure. The prototypical
system we consider is feed-forward and takes the form of a pulse-coupled integrate-and-
fire (I&F) network [8, 20, 22, 61, 65, 70, 84]. This network model is comprised of two
layers, with I&F dynamics in the output layer, reflecting, for example, the neuronal
membrane potential, in response to forcing from the input layer. The dynamics of the
ith node in the output layer is governed by

τ
dvi
dt

=−(vi−VR)+
n∑
j=1

Fijpj +
S

NR

m∑
k=1
k 6=i

Rik
∑
l

δ(t−τkl), (2.1)

evolving from the reset state VR (resting voltage) until reaching threshold state VT
(firing threshold voltage). At this moment, the node undergoes a spike (firing event),
and its state is immediately reset to VR. We choose parameters VR= 0, VT = 1, and
τ = 20 ms. In addition, we assume n and m are the number of input components and
output nodes, respectively, with vector p= (p1,. ..,pn) determining the forcing into the
output layer. While we choose n�m, such that only a small number of output nodes
is necessary to measure relative to the total number of inputs considered, our analysis
also holds in the case when n≈m.

With regard to network architecture, F = (Fij) is the feed-forward connectivity (ad-
jacency) matrix between the two network layers. We therefore say that the ith node in
the output layer is post-connected (post-synaptic) to the jth input component if Fij 6= 0.
For tractability and generality, we assume that every input component randomly feeds
into each output node with equal probability and equal strength, f . We assume the
probability of connection is very low, thereby yielding sparse feed-forward connectivity.
To quantify the sparsity of connections, we use the notation, s(F ), denoting the pro-
portion of components in F with 0 value. Similarly, the density of connections in F , the
proportion of non-zero components in F , is simply 1−s(F ). Unless noted otherwise, we
choose s(F ) = 0.999, as discussed further in Section 3.1. We simulate the time evolu-
tion of this model with an event-driven algorithm, utilizing analytical computations of
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node spike times, for a typical time-course of tf = 200 ms comparable to average human
reaction time to stimuli [2, 3]. Later, in Section 3.3, we consider how our framework
generalizes to shorter simulation (measurement) durations as well.

Similarly, R= (Rij) is the output layer recurrent connectivity matrix and S deter-
mines the magnitude of the recurrent connections. At the time of the lth spike of the kth

node, τkl, we inject the instantaneous inputs (S/NR)δ(t−τkl) into all of its neighboring
nodes, where δ(·) is the Dirac delta function and NR is the number of recurrent con-
nections. In the case of a fully feed-forward network, Rij = 0 for all i,j. It is important
to emphasize that the nonlinearity present in this network model is two-fold. First, for
each node in the output layer, the instantaneous reset of the node state from threshold
state VT to reset state VR at each spike is nonlinear. Second, upon each of these spikes,
the Dirac delta function inputs received by neighboring nodes are also nonlinear.

To reconstruct the feed-forward network connectivity, we inject an ensemble of r
random inputs into the network, corresponding to a set of r distinct input vectors,
p(1),. ..,p(r). In response to each input vector, we measure the average number of spikes
observed per unit time, known as the firing rate, for each node. Specifically, we measure
a vector of firing rate responses of the m output nodes corresponding to each injected in-

put vector, µ(1),. ..,µ(r), where each µ(i) is a vector given by µ(i) = (µ
(i)
1 ,µ

(i)
2 ,. ..,µ

(i)
m ) for

1≤ i≤ r, and seek to reconstruct the feed-forward connectivity matrix, F . We demon-
strate that even when the total number of output measurements, mr, utilized is much
less than the number of unknowns in the feed-forward connectivity matrix, mn (i.e.,
r<n), the feed-forward network connectivity can still be successfully determined. More-
over, using the reconstructed matrix, we then recover realistic network inputs, differing
from those random inputs injected to infer F . A schematic model for this reconstruction
process is depicted in Figure 2.1.

2.2. Compressive sensing theory. To take advantage of both the assumed
sparsity of the feed-forward network connectivity and the possible sparsity of the net-
work inputs, we utilize the theory of compressive sensing. For band-limited signals that
are sparse in a certain domain, CS theory asserts that, in the sparse domain, the num-
ber of non-zero components, rather than the full bandwidth [67], should determine the
signal sampling rate for a successful reconstruction [25, 29]. Intuitively, this suggests
that for a k-sparse signal, with k non-zero components in the sparse domain, only O(k)
measurements should be necessary to obtain the full set of information defining the
signal.

In the framework of linear systems analysis, this recovery problem can be expressed
in the form

Ax= b, (2.2)

where x is the n-component signal to be recovered and b is the m-component measured
signal. The sampling scheme is modeled by the m×n measurement matrix, A. Note
that each row of A corresponds to several weighted measurements of signal x.

Assuming very few samples are used and therefore m�n, Equation (2.2) generally
is a highly underdetermined linear system with an infinite number of solutions. Since the
sparsest solution to Equation (2.2) best reconciles a small number of signal samples, one
intuitive way to choose x is to directly seek the sparsest solution. However, this approach
is computationally expensive and generally not possible to implement in polynomial
time, and therefore a more feasible surrogate method is desirable [19]. For sufficiently
sparse x and a broad class of measurement matrices, CS theory shows that such a
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Fig. 2.1. Schematic procedure for network connectivity reconstruction. An ensemble of r network
inputs, p(1), .. .,p(r), evokes a set of output node responses, µ(1), .. .,µ(r). In the case of the ith input
vector, p(i) is an n-vector and µ(i) is an m-vector such that n�m and n� r. Using the measured
responses over the input ensemble, the feed-forward network connectivity matrix, F , is reconstructed
(indicated by blue arrows). Finally, a new network input with detailed structure, p, can be recovered
(indicated by a red arrow) using the corresponding output node response, µ, and the reconstructed
feed-forward connectivity (indicated by green arrows).

viable surrogate is in fact minimizing |x|`1 =
n∑
i=1

|xi| subject to Equation (2.2) [24]. This

`1 optimization problem can be efficiently solved in polynomial time using numerous
algorithms, such as the orthogonal matching pursuit (OMP), the least angle regression
(LARS), and the least absolute shrinkage and selection operator (LASSO) methods
[30, 77].

An important requirement of CS theory is that the sampling methodology demon-
strates suitable non-uniformity and incoherence. In particular, if measurement matrix
A exhibits little correlation among its columns and approximately preserves the mag-
nitude of the input signal x, CS theory demonstrates that with overwhelmingly high
probability the solution to Equation (2.2) with the minimal `1 norm will indeed yield
a high fidelity reconstruction of the measured signal [5, 25]. This contrasts significantly
from sampling requirements corresponding to uniformly-spaced sampling schemes con-
ventional in signal processing theory [67], facilitating the measurement of dominant
signal components by using a particularly small total number of samples. In addition,
measurement matrices viable for CS are relatively simple to formulate, with a broad
class of matrices with independent identically distributed random elements proven to
satisfy the CS requirements [24].

2.3. Network input-output mapping. In determining the feed-forward net-
work connectivity matrix, F , we force the network with an ensemble of r random
input vectors. Each input vector is comprised of independent, identically uniformly-
distributed integers between 0 (black) and 255 (white), analogous to random gray-scale
vectorized images. Thus, the structure of the ith n-component input vector, p(i), deter-
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mines the response of the output nodes, producing a corresponding m-vector of firing
rates µ(i), where 1≤ i≤ r.

Using only the knowledge of the r input vectors, p(1),. ..,p(r), and the respective
measured firing rates, µ(1),. ..,µ(r), we demonstrate that CS theory can be used in
reconstructing sparse feed-forward connectivity. However, in order for CS theory to
be applicable, it is first necessary to determine an underlying static linear relationship
between the network inputs and response analogous to Equation (2.2). Since the network
dynamics are both nonlinear and time-dependent, we use the methodology outlined in
Refs. [9, 12] to coarse-grain the network dynamics, revealing an input-output mapping
for our network model.

In coarse-graining the network model determined by Equation (2.1), for each net-
work input vector, we consider an ensemble of networks differing only in the randomly-
determined initial state of the nodes. Corresponding to each such network, there exists
a distinct set of output node spiking dynamics and consequently different respective
firing rate vectors. Using methods akin to kinetic theory in nonequilibrium statistical
mechanics [15, 23, 76], we derive a linear input-output mapping between input vectors
and the output node firing rates, which holds for each individual output node and is
valid when the firing rates are large, µj�1, for j= 1,2,. ..,m, and the state jump in-
duced by each spike is small in magnitude, such that S/NR�1. Details in deriving this
input-output mapping are provided in the Appendix. Linearizing this mapping in the
high firing rate regime, we obtain the linear input-output relationship

Fp=
(
τµ+

em
2

)
(VT −VR)− S

NR
Rµ, (2.3)

with m-vector of ones, em, which holds for each vector of inputs, p(1),. ..,p(r), and
corresponding evoked firing rates, µ(1),. ..,µ(r). Therefore, we may consider the lin-
ear mapping for the complete set of r input vectors, represented as n×r matrix,
P =

(
p(1) .. .p(r)

)
, where the ith column, p(i), corresponds to the ith n-vector of inputs

into the output layer. We remark that in the absence of recurrent connectivity, this
mapping reduces to

Fp=
(
τµ+

em
2

)
(VT −VR), (2.4)

in the high firing-rate dynamical regime.

3. Results

3.1. Reconstruction of feed-forward connectivity. In reconstructing the
connectivity for the two-layer network with dynamics prescribed by Equation (2.1),
we reconstruct each row of F individually using the derived linear mapping across the
matrix of input vectors, P . To recover the strength of all connections received by
the ith output node, we seek to reconstruct the ith row of F , namely Fi∗. We thus
consider Equation (2.3) corresponding to the ith output node using the full matrix of
input vectors, P , corresponding full matrix of responses, U , and r-vector of evoked firing

rates for the ith output node, Ui=
(
µ
(1)
i ,. ..,µ

(r)
i

)
. In particular, for the ith output node,

we analyze the linear system

Fi∗P =
(
τUi+

er
2

)
(VT −VR)− S

NR
(RU)i, (3.1)

for which CS theory is viable in recovering Fi∗. Since the feed-forward connectivity
matrix, F , is assumed sparse, as observed for many real-world networks, CS theory is
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of utility in efficiently determining the underlying structural connectivity. Moreover,
considering that an ensemble of statistically independent random inputs is injected, the
matrix of r inputs, P , is akin to the measurement matrices feasible for successful CS
signal recovery. Applying CS theory to Fi∗ for i= 1,. ..,m, we obtain a reconstruction
of the full feed-forward connectivity matrix, F recon, using r�n random input vectors
and the measurement of the corresponding response of the m output nodes. Hence, we
reconstruct nm random connections using only rm�nm measurements. In addition
to the computational savings offered by the small number of measurements required for
a successful reconstruction, Equation (3.1) is a family of linear systems with multiple
right-hand sides, and thus parallel computing could potentially be used to further reduce
the computational cost associated with the inverse problem of reconstructing F .

Note that in reconstructing the network feed-forward connectivity, CS theory mo-
tivates the choice of input ensemble structure, implying that utilizing sufficiently un-
correlated input vectors yields an amenable matrix of inputs, P , which takes the role
of the measurement matrix in reconstructing F via compressive sensing. In this case,
the sparsity of F and the random structure of P are crucial. As we will discuss in
the subsequent section, in recovering a detailed network input, p, from a single vector
of measured output node firing rates, µ, a sparse representation of p and sufficiently
random feed-forward network connectivity, as prescribed by F , are instead significant.

50 100

50

100  

 

50 100

50

100

(a) (b)

Fig. 3.1. Sample reconstruction of feed-forward network connectivity. (a) Feed-forward connectiv-
ity matrix with the first 100×100 subset depicted for a network of m= 1000 output nodes and n= 10000
input components. We plot this subset rather than the full network to make more visible the individual
connections marked in black. (b) Reconstructed feed-forward connectivity matrix for the same subset
using CS with Equation (3.1) and r= 1000 random input vectors. The relative reconstruction error
corresponding to the entire 1000×10000 connectivity matrix is 0.1263. Using the same methodology
with thresholded values for the connection strengths prescribed by function Ω in Equation (3.2) with
α= 0.5, the relative reconstruction error is further reduced to 0.0453.

We initially focus our analysis on a purely feed-forward network and later consider
the impact of recurrent connectivity in Section 3.3. Note that in the absence of recurrent
connectivity, we simply assume R= 0. In Figure 3.1, we consider the recovery of the feed-
forward connectivity for a network of m= 1000 output nodes receiving an input vector
of n= 10000 input components using r= 1000 random input vectors. In Figure 3.1 (a),
we depict the network connectivity for the first 100×100 subset of the 1000×10000
feed-forward network connectivity matrix, so as to make each individual connection
visible. We recover the feed-forward connectivity matrix for the entire network using
CS theory on the linear system given by Equation (3.1) for i= 1,. ..,m, depicting the
reconstruction corresponding to the 100×100 subset in Figure 3.1 (b). For this subset
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of F , we note that every connection, or lack thereof, is captured exactly.
To quantify the accuracy of the entire feed-forward connectivity matrix reconstruc-

tion, we measure the relative reconstruction error, ‖F −F recon‖/‖F‖, using the Frobe-

nius norm, ‖F‖=
√∑

i

∑
jF

2
ij , where F recon is the reconstructed feed-forward connec-

tivity matrix. In this particular case, the relative reconstruction error is only 0.1263,
yielding close agreement with the original connectivity matrix. If we know a priori the
feed-forward connection strength, f , from assumptions based on experiment [6,57], then
we can further improve the reconstruction quality by thresholding the magnitudes of
the entries in the recovered feed-forward connectivity matrix. One viable thesholding
procedure is using a thresholding function, Ω, such that for each entry of m×n matrix,
F recon,

Ωij(F
recon) =

{
0, if |F recon

ij |<αf
f, if F recon

ij ≥αf
, (3.2)

thereby setting each entry of Frecon with magnitude less than αf to 0 and all other
entries to f . Using Ω with thresholding parameter α= 0.5, the relative reconstruction
error for the network considered in Figure 3.1 is reduced to a value of 0.0453. Moreover,
for alternative choices of α, we observe that similar improvements in reconstruction
quality may be garnered.
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Fig. 3.2. Relative reconstruction error dependence on the number of input vectors. (a) Relative
reconstruction error for a two-layer network of size m= 1000 and n= 10000 as a function of the
number of input vectors utilized (red lines). The sparsity of the feed-forward connectivity matrix is
fixed at s(F ) =0.999. (b) Relative reconstruction error dependence for a smaller two-layer network of
size m= 100 and n= 100. The sparsity of the feed-forward connectivity matrix is fixed at s(F ) =0.99
(solid lines). If additional connections are added to the network in (b), yielding a sparsity s(F ) =0.9,
the reconstruction error increases (dashed lines). (c) The number of inputs necessary to achieve an
accurate reconstruction of feed-forward connectivity matrix F , with relative error less than 0.15, as a
function of the connection density of F . The error considered for each choice of connection density is
the mean relative reconstruction error over 10 realizations of F , exhibiting a small average variance
of order 0.0001. For (a)-(c), the relative reconstruction error corresponding to thresholded connection
strengths, as prescribed by function Ω in Equation (3.2) with α= 0.5, is plotted for comparison (blue
lines).

In addressing the impact of the input ensemble on the reconstruction framework,
we consider in Figure 3.2 (a), the dependence of the relative reconstruction error on
the number of random input vectors, r, used in recovering F for the same two-layer
network of size m= 1000 and n= 10000. We observe a rapid decrease in reconstruction
error as the number of input vectors increases to approximately 250, with relatively
minor improvements in reconstruction quality as the number of input vectors utilized
is further increased. In this case, the sparsity of the feed-forward connectivity matrix
is fixed at s(F ) = 0.999. We note that this particular choice of sparsity corresponds
to each input component feeding into approximately one output node, such that little
over- or under-sampling of the input vector is utilized.
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Likewise, in Figure 3.2 (b), we plot the reconstruction error dependence for a smaller
two-layer network of size m= 100 and n= 100 with sparsity s(F ) = 0.99. We observe
a similar structure as depicted in Figure 3.2 (a), with a slightly larger proportion of
inputs relative to the network size necessary for comparable reconstruction quality. This
increase in error is to be expected since the smaller network is less sparse, and therefore
successful CS signal recovery should require additional samples. If the sparsity is further
decreased to s(F ) = 0.9 given the same network size, we observe further increases in
reconstruction error as also shown in Figure 3.2 (b).

To more generally demonstrate the interplay between connection density and re-
construction accuracy, we plot in Figure 3.2 (c) the number of input vectors necessary
for an accurate reconstruction of F for networks of different connection densities, but
with the same size m= 100 and n= 100. In each case, a reconstruction is considered
sufficiently accurate if it yields a mean error of less than 0.15 over an ensemble of 10
realizations of F for a given connection density. From Figure 3.2 (c), it is clear that
as the density of connections in F increases (and sparsity of F decreases), the number
of random input vectors required for successful reconstruction of F increases. More-
over, the rate of increase becomes larger as F becomes more dense, suggesting that
once connections in F are too dense, CS theory is no longer viable in reconstructing
the network connectivity. Nevertheless, such high connection density is not typical in
many applications, and thus the density of common structural connectivity matrices
should be well within the regime of utility for CS recovery. We also note in Figures 3.2
(a)-(c) that for each choice of connectivity matrix sparsity, thresholding the recovered
connection strengths via function Ω in Equation (3.2) with α= 0.5 results in consistently
improved reconstruction quality. Thus, assuming the expected connection strength may
be estimated experimentally, such thresholding is quite useful in rendering improved es-
timation of F for little additional computational cost. Even without thresholding, the
accuracy of each reconstructed F across realistic connection densities is especially high
considering such a small number of measurements is typically utilized.

3.2. Network input recovery. Upon reconstruction of the feed-forward con-
nectivity matrix, we demonstrate that it is possible to subsequently recover detailed
network inputs using CS theory with the input-output mapping (2.4) and the recon-
structed feed-forward connectivity matrix. We show that even for natural scene inputs,
differing significantly in structure from the random input vectors used to reconstruct F ,
high fidelity recovery of inputs signals is achievable even when the input vectors have
significantly more components than the number of output nodes.

If the input vector is not sparse in its initial representation, it is first necessary
to determine an appropriate sparsifying transform before utilization of CS theory. To
reconstruct a novel two-dimensional input image with vectorization p= (p1,. ..,pn), we
use the two-dimensional discrete cosine transform (2D-DCT) to sparsify the signal. We
remark that for one-dimensional inputs, analogous to sound waves, we need only consider
the one-dimensional discrete cosine transform (1D-DCT) using the same methodology
described in this section.

The
√
n×
√
n 1D-DCT, D, is defined to have entries Dij = (D−1)Tij =

ω(i)cos
(

(i−1)(2j−1)π
2
√
n

)
, ω(1) = (1/n)1/4, and ω(i 6= 1) = (4/n)1/4. The 2D-DCT of an im-

age with vectorization p is (D⊗D)p, where ⊗ denotes the n×n Kronecker product
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defined such that

D⊗D=

 D11D ·· · D1
√
nD

...
. . .

...
D√n1D ·· · D√n√nD

 .
Given a vectorized input image, to recover the vectorization of its 2D-DCT, p̂, we rewrite
Equation (2.3) with respect to the 2D-DCT and reconstructed feed-forward connectivity
matrix, F recon, as

n∑
j=1

F recon
ij (D⊗D)−1ij p̂j =

(
τµi+

em
2

)
(VT −VR)− S

NR
(RU)i. (3.3)

Considering p̂ is sparse, upon measuring the output node firing rates, µ= (µ1,. ..,µm),
we then invoke CS theory in selecting the solution to Equation (3.3) that minimizes
the `1 norm,

∑n
j=1 |p̂j | [25,29]. Finally, we invert the 2D-DCT and the vectorization to

yield a recovery of the original input image.

(a) (d) (g) (j)

(c)

(b) (e) (h) (k)

(f) (i) (l)

Fig. 3.3. Input image recoveries using CS theory and the reconstructed feed-forward connectivity
from evoked nonlinear network dynamics. (a)-(c): Input images of size 100×100 pixels. (d)-(f): CS
recoveries using network dynamics and the exact feed-forward connectivity matrix, F . (g)-(i): CS
recoveries using network dynamics and reconstructed connectivity matrix, F recon, without thresholding
connection strengths. (j)-(l): CS recoveries using network dynamics and reconstructed connectivity
matrix, Ω(F recon), utilizing thresholding function Ω in Equation (3.2) with α= 0.5. The relative
recovery errors for (d)-(f) are 0.0895,0.2634, and 0.2345, respectively. The relative recovery errors
for (g)-(i) are 0.1171,0.2844, and 0.2708, respectively. The relative recovery errors for (j)-(l) are
0.0816,0.2569, and 0.2341, respectively. Each connectivity matrix was reconstructed using an ensemble
of r= 1000 random input vectors. For each image, the corresponding two-layer network size is m= 1000
and n= 10000, with a sparsity of feed-forward connections s(F ) =0.999.

In Figure (3.3), we analyze three input images of varying complexity, depicted in
Figure (3.3) (a)-(c), and various CS reconstructions for a two-layer network of size
m= 1000 and n= 10000. We display in Figure (3.3) (g)-(i) the corresponding recov-
ered images using network dynamics and the reconstructed feed-forward connectivity
matrix, F recon, obtained previously using r= 1000 random input vectors. Likewise, in
Figure (3.3) (j)-(l), we alternatively recover these images using thresholded connectivity
matrix, Ω(F recon). For the simpler stripe and teacup images, we observe comparably
accurate image recovery with both reconstructed connectivity matrices. For the more
complex cameraman image, the thresholded connectivity matrix yields a more visually
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noticeable improvement in recovery accuracy, with both yielding recognizable recover-
ies. For comparison, we also display analogous recoveries using the true feed-forward
connectivity matrix, F , in Figure (3.3) (d)-(f). For each image, the recovery quality
using F is nearly identical to the quality obtained via the reconstructed connectivity
matrix using thresholding. Thus, the reconstructed thresholded connectivity matrix,
Ω(F recon), appears useful as a viable surrogate for the actual connectivity matrix given
by F without noticeably degrading the input image recovery.

It is important to note that improved network input recovery is possible for input
signals containing more components, such as higher resolution images that possess a
larger number of pixels [10]. While additional higher-frequency components are intro-
duced when the resolution of an image is improved, the amplitude distribution of the
dominant frequency components is often nearly indistinguishable from the lower reso-
lution image counterpart. As the input vector size is increased, maintaining a constant
ratio of output nodes to input components effectively requires increasing the number
of output nodes while only minorly altering the dominant frequency components of the
input, and these additional node response measurements will generally increase the ac-
curacy of input recovery as the dominant frequency-components become better resolved.

We emphasize that each of these recovered images was not in the ensemble of random
input vectors used to reconstruct F . Nevertheless, as a result of two-fold sparsity in
the network connectivity and inputs, it is possible to successfully determine both the
feed-forward network connectivity and also detailed input vectors driving the network
dynamics using only limited measurements of the nonlinear activity of the output nodes,
thereby providing a framework for solving several classes of underdetermined inverse
problems for networks with nonlinear dynamics.
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True Connectivity Matrix
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Fig. 3.4. Recovery of an ensemble of input images. Relative recovery errors corresponding to com-
pressive sensing of network dynamics for an ensemble of 10 randomly selected natural images from
the University of Southern California Signal and Image Processing Institute miscellaneous volume
of images (http://sipi.usc.edu/database/database.php?volume=misc) are depicted. The plotted errors
correspond to input recovery via the true feed-forward connectivity matrix, F (blue), the reconstructed
feed-forward connectivity matrix, F recon (green), and the thresholded reconstructed connectivity ma-
trix Ω(F recon) using thresholding function Ω in Equation (3.2) with α= 0.5 (red). For each image, the
corresponding two-layer network size is m= 1000 and n= 10000, with a sparsity of feed-forward con-
nectivity s(F ) =0.999. The mean relative recovery errors using F , F recon, and Ω(F recon) are 0.3146,
0.3026, and 0.3083, respectively.

To examine the robustness of these results, we recover an ensemble of 10 additional
natural image inputs using the same two-layer network of size m= 1000 and n= 10000.
For each image, we compare recoveries using the true feed-forward connectivity matrix,
F , the reconstructed feed-forward connectivity matrix, F recon, and the thresholded re-
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(b)

(c)

(d)

(a)

Fig. 3.5. Recovery of video input. (a) Image frames of size 100×100 pixels, composing a 10 frame
video. (b) CS recoveries using network dynamics and the exact feed-forward connectivity matrix, F . (c)
CS recoveries using network dynamics and reconstructed connectivity matrix, F recon, without thresh-
olding connection strengths. (d) CS recoveries using network dynamics and reconstructed connectivity
matrix, Ω(F recon), utilizing thresholding function Ω in Equation (3.2) with α= 0.5. Image frames are
injected into the network for a duration of 200 ms each. The same two-layer network and F recon as
in Figure 3.3 (a) are utilized. The average relative recovery errors are 0.1260,0.1766, and 0.1239, for
videos (b)-(d), respectively.

constructed connectivity matrix Ω(F recon) in Figure 3.4. In each case, we observe similar
image recovery results across the entire ensemble of images, suggesting close agreement
in transmitted input information using both the true and reconstructed network con-
nections. Considering that each feed-forward connectivity utilized yields acceptable
recoveries across a diverse set of inputs, we also conclude that input information is
generally well-preserved through the nonlinear network dynamics.

We similarly observe that time-varying inputs may also be successfully recovered
using an analogous framework following the reconstruction of the feed-forward connec-
tivity. We consider inputs in the form of videos composed of a sequence of image frames
which change every 200 ms. For the duration of each image frame injection, we measure
the corresponding set of output node firing rates. For each set of firing rates, we then
solve the corresponding CS problem in Equation (3.3) to recover the respective image
frames. After considering the complete set of image frame CS recovery problems, we
obtain the recovered full video.

In Figure 3.5, we consider the CS recovery of a 10 image frame video of a car
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navigating through a sunlit road using the same two-layer network and reconstructed
connectivity as in Figure 3.3 (a). We depict in Figure 3.5 (b)-(d) the CS recoveries using
F , F recon, and Ω(F recon), respectively. For each video, we observe a very recognizable
recovery, with especially high accuracy in the cases of F and Ω(F recon). While the
observation time for each frame is comparable to human reaction time [2, 3], we note
that we may further decrease the injection time and still yield fairly accurate recoveries,
as we will further discuss in Section 3.3.

3.3. Robustness and recurrent connectivity. While thus far we have an-
alyzed the reconstruction of network connections for a feed-forward network model
through measurement of output node firing rates over a fixed period of time, we now
similarly consider how our analysis generalizes to several alternative scenarios. First,
we consider the dependence of reconstruction error on the amount of time over which
firing rates are measured, and then we take into account the presence of noise in the
measurement of output node dynamics. Finally, we examine how the reconstruction
of the feed-forward connectivity is impacted by the presence of additional recurrent
connectivity among output nodes.
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(a) (b)

Fig. 3.6. Robustness of the feed-forward network connectivity reconstruction. (a) Dependence
of the relative reconstruction error for the reconstructed feed-forward connectivity matrix, F recon,
on the length of time over which firing rates are measured (red line). (b) Relative reconstruction
error for F recon given noisy firing rate measurements (red line), which are perturbed by independent,
identically distributed zero-mean Gaussian random variables with standard deviation σ. The same
two-layer network as in Figure 3.3 (a) is utilized. For both (a) and (b), the relative reconstruction
error corresponding to the thresholded reconstructed connectivity matrix, Ω(F recon), as prescribed by
thresholding function Ω in Equation (3.2) with α= 0.5, is plotted in blue for comparison.

For the same m= 1000 and n= 10000 two-layer network considered previously in
Section 2.3, we plot in Figure 3.6 (a) the feed-forward connectivity matrix relative
reconstruction error as we vary the length of time over which output node activity
is measured. We observe a rapid initial decrease in error as the measurement time
is increased with only minor decreases in error upon further increasing measurement
time. In addition, using thresholded connection strengths improves the reconstruction
accuracy across all measurement times and also results in a more rapid initial decrease in
error. By recording firing rates over a period of time as short as 50 ms, nearly optimal
reconstructions are achieved in the case of the thresholded feed-forward connectivity
matrix.

In experimental settings, the measurement of node activity may vary depending
on the recording technique utilized and may also be subject to a small amount of
noise [55, 64, 83]. Therefore, we examine the impact of imperfect firing rate recordings
on the feed-forward connectivity reconstruction. To each recorded firing rate, we add
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noise in the form of an independent, identically distributed Gaussian random variable
with zero mean and standard deviation σ. We choose zero mean random variables under
the assumption that the distortion due to noise has no general upward or downward bias
in firing rate recording. In Figure 3.6 (b), we plot the relative reconstruction error for F
as a function of σ. For sufficiently large σ, we observe an approximately linear increase
in error. For low σ, we instead note relatively little increase in error with σ, which
holds for a particularly large range of standard deviations in the case of thresholded
connection strengths. In the case of Ω(F recon), it is not until σ≈0.25 that there is
any notable impact of noise on the reconstruction, which is a particularly high noise
strength since the total input into each output node is O(1). Thus, we conclude that
the connectivity reconstruction framework is indeed quite robust to moderately noisy
measurements which may arise from experiment.

Finally, we determine if accurate reconstruction of the feed-forward connectivity is
achievable in the presence of stronger recurrent interactions. Initially, we assume full
knowledge of the recurrent connectivity matrix, R, but we later consider how the results
may change when R is unknown. We plot the relative reconstruction error dependence
on the number of input vectors used in Figure 3.7 (a) for a two-layer network of size m=
1000 and n= 10000 given recurrent connectivity with sparsity s(R) = 0.95 and recurrent
connection strength S= 1. We observe only a minor degradation in reconstruction
quality as compared to the network with purely feed-forward connectivity, implying
that, as long as the recurrent connections are not too strong, feed-forward connectivity
can still be well reconstructed through measurement of the output node dynamics.
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Fig. 3.7. Impact of recurrent connectivity on feed-forward connectivity reconstruction. (a) Feed-
forward connectivity relative reconstruction error dependence on the number of input vectors utilized
for a network with both feed-forward connectivity and recurrent connectivity between the output nodes
(red lines), as prescribed by model (2.1). The sparsity of the recurrent connectivity is s(R) =0.95
and the recurrent connection strength is S= 1. The corresponding two-layer network size is m= 1000
and n= 10000, with a sparsity of feed-forward connectivity s(F ) =0.999. Plotted in solid lines is the
relative reconstruction error assuming the recurrent connectivity matrix is known. Plotted in dashed
lines is the relative reconstruction error assuming there is no recurrent connectivity while recurrent
connectivity is in fact present. (b) Relative reconstruction error dependence on recurrent connectivity
strength, S/NR, using the same two-layer network parameters as in Figure 3.2 (b) and r= 33 inputs.
For both (a) and (b), the relative reconstruction error corresponding to the thresholded reconstructed
connectivity matrix, Ω(F recon), as prescribed by thresholding function Ω in Equation (3.2) with α= 0.5,
is plotted for comparison (blue lines).

For the same network structure, we alternatively can assume no knowledge of the
present recurrent connectivity, therefore not considering R in reconstructing F . In this
case, we use Equation (3.1) with R= 0 to reconstruct the feed-forward connectivity even
though the model still evolves with recurrent interactions according to the dynamics of
Equation (2.1). With this methodology, which assumes non-complete knowledge of the
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true network structure, we observe nearly identical reconstruction quality for the feed-
forward connectivity matrix. Similar trends also hold for networks with moderately
strong recurrent connectivity. In Figure 3.7 (b), we plot the relative reconstruction
error for F as a function of the strength of recurrent interactions, S/NR. For moderate
strengths, we observe only small increases in reconstruction error, with more pronounced
escalation in error for sufficiently large S. Using the thresholded reconstructed feed-
forward connectivity matrix, the strengths must be increased up to S/NR≈0.2 before
there are any noticeable degradations in the reconstruction, with slow linear growth in
error for yet larger recurrent connection strengths. Hence, even when measurement of
the recurrent connectivity is not possible, high-fidelity reconstruction of feed-forward
connectivity is still achievable. We also verified that the detailed input recoveries are
nearly identical to the corresponding recoveries in the case of the completely feed-
forward network, and thus we conclude that input information is also well-preserved
through the nonlinear network dynamics even with no a priori knowledge of both the
feed-forward and recurrent connectivity.

4. Discussion

In this work, we underlined the central role of sparsity in reconstructing network
data based on limited measurements of network dynamics. We demonstrated that sparse
feed-forward connectivity can be reconstructed from the measurement of the nonlinear
dynamics of output nodes in response to a relatively small ensemble of random input
vectors, and showed further that the reconstructed connectivity matrix can then be used
to recover detailed network inputs based on the evoked output node dynamics. Although
previous studies have used learning to make similar recoveries of network inputs possible
for static or linear dynamical systems [36, 49], our analysis demonstrates that even for
networks with nonlinear state space dynamics, the recovery of both network connections
and inputs is achievable by considering only a set of underlying linear systems linking
the network input to the measured output response. Additionally, a distinguishing
feature of our theory is that the subsequently recovered inputs are not members of the
input ensemble and may be realistic natural scenes which change with time. We thereby
formulate an efficient solution methodology for a large class of underdetermined inverse
problems based only on restricted measurements of nonlinear network dynamics and
sparse network connectivity structure.

Our theoretical analysis suggests an important parallel with the development of
human vision following infancy, when the observation of a sufficient number of natural
scenes results in fully accurate visual acuity with minimal further improvements over
time [52, 69]. Similarly, our framework initially suggests a rapid increase in image
recovery fidelity as new images are processed, with improvements leveling off once a
sufficient number of inputs is injected. Since both the connectivity and inputs into the
model network may be inferred within biologically plausible time-scales, we hypothesize
that neuronal networks in the brain may use similar techniques in fine-tuning sensory
processing and enabling perception in general.

While we have derived a framework for reconstructing sparse feed-forward network
connectivity in the context of an integrate-and-fire network model, similar techniques
may be ubiquitous in alternative applications. Experimentally, it may be feasible to sim-
ilarly study feed-forward neuronal connectivity through random stimulation of upstream
neurons, and measuring the response of the downstream network of interest. Once an
underlying input-output relationship is determined, such as through nonlinear systems
analysis as in Refs. [68,79,82], it should then be possible to determine the feed-forward
connectivity using a small set of random inputs. In other model-based applications,
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coarse-graining may yield analogous input-output mappings for additional types of net-
works with sparse connectivity, allowing for efficient inference of the underlying network
connectivity or inputs.

Similar feed-forward network architectures are quite common in engineering and
learning applications [46, 66, 72], and it is likely that the outlined framework may be
useful in determining neural network feed-forward connectivity following sufficient train-
ing. In addition, for feed-forward networks with additional layers, similar techniques
potentially apply in efficiently reconstructing the connectivity among the full set of lay-
ers. It would be especially useful to determine if compressive sensing techniques may
also facilitate the reconstruction of sparse recurrent connectivity, but this would re-
quire revealing a novel alternative network structure or dynamical regime necessary for
successful reconstruction.

While we make the assumption of sparse and random feed-forward connectivity
in our model, realistic networks may have alternative connectivity structures, display-
ing, for example, localization [62,63], inhibitory interactions [7], and small-world struc-
ture [14, 48, 60]. Considering previous work has demonstrated that localized random
connectivity can be used to successfully recover sparse inputs via compressive sensing
of network dynamics [9–11], we expect that alternative types of sparse connectivity are
amenable to our framework. Efficiently reconstructing both the connectivity and re-
alistic inputs for networks with nonlinear dynamics, we expect this work to be useful
in determining the structure-function relationship for a broad class of networks with
sparse connectivity or sparse inputs.

Appendix. In deriving the linear input-output mapping given by Equation (2.3),
we consider a statistical ensemble of networks differing only in the initial state of nodes,
vj(t= 0), and their resultant time evolution for j= 1,...,m. As a result, for each network
realization in the ensemble, the jth node is forced by a new independent spike train of
pulses transmitted by neighboring nodes in addition to a constant external input, (Fp)j .
We assume the network possesses the same connectivity structure, prescribed by F and
R, in each realization.

Over the set of all realizations considered, we analyze the configuration probability,
Pj(v,dv,t), of the jth node having state variable inside the infinitesimally small interval
(v,v+dv) at a specific time, t. To study this probability, we introduce an associated
probability density function, ρj(v,t), such that the configuration probability we investi-
gate is ρj(v,t)dv. In determining the dynamics of Pj(v,dv,t), we consider its evolution
over the small time interval (t,t+dt).

There are two types of modifications that the configuration probability can undergo,
specifically (a) smooth and (b) instantaneous changes. When the jth node receives no
spikes and is therefore continuously evolving, its configuration probability will adjust
according to Equation (2.1) via forcing from feed-forward input (Fp)j . At the instant
the jth node receives a spike from one of its neighbors, its state will immediately change,
thereby instantaneously altering its associated configuration probability. We group the
smooth parts of Equation (2.1) into function φ(vj) and express the dynamics of the jth

node in form

dvj
dt

=φ(vj)+
S

τNR

m∑
k=1
k 6=j

Rjk
∑
l

δ(t−τkl),

where φ(vj) =
−(vj−VR)

τ +
(Fp)j
τ . Hence, for the jth node, (a) the smooth change will be

[φ(v)ρj(v,t)−φ(v+dv)ρj(v+dv,t)]dt
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and (b) the instantaneous change will be∑
i6=j

µi

[
ρj

(
v− SRji

τNR
,t

)
−ρj(v,t)

]
dvdt.

In total, the associated configuration probability evolves according to

[ρj(v,t+dt)−ρj(v,t)]dv

=[φ(v)ρj(v,t)−φ(v+dv)ρj(v+dv,t)]dt+
∑
i6=j

µi

[
ρj

(
v− SRji

τNR
,t

)
−ρj(v,t)

]
dvdt.

Taylor expanding to O(dv) and dividing by the product of differentials dvdt in the limit
as dv→0 and dt→0, we derive the Boltzmann equation for ρj(v,t)

∂ρj
∂t

=− ∂

∂v
(φρj)+

∑
i6=j

µi

[
ρj

(
v− SRji

τNR
,t

)
−ρj(v,t)

]
,

valid for VR<v<VT . Assuming the changes in the state variable at spikes are small,

we Taylor expand in
SRji

τNR
to O

((
SRji

τNR

)2)
, obtaining the Fokker-Planck equation

∂ρj
∂t

=
∂

∂v

(
(v−VR)

τ
ρj−gjρj +

σ2
j

2

∂ρj
∂v

)
,

where

gj =
∑
i6=j

µi
SRji
τNR

+
(Fp)j
τ

is the mean forcing for the jth node and

σ2
j =
∑
i6=j

(
SRji
τNR

)2

µi

is the variance in the input fluctuations of the jth node.
The Fokker-Planck equation may be expressed in terms of the probability flux of

the state variable, −Jj , in the form of the conservation equation

∂ρj
∂t

+
∂Jj
∂x

= 0.

Since upon reaching VT , the state variable is instantaneously reset to VR, the state
variable flux at v=VT and v=VR must be equal. Considering that the jth node has
a firing rate of µj , the equality of flux across the boundary yields necessary boundary
conditions Jj(v=VT ) =Jj(v=VR) =µj .

For the Fokker-Planck equation to be analytically tractable, we consider network
dynamics in the mean-driven operating regime, such that the variance in input fluctua-
tions is negligible. Thus, σ2

j→0, and we obtain the reduced partial differential equation

∂ρj
∂t

=
∂

∂v

(
(v−VR)

τ
ρj−gjρj

)
.
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Assuming the firing rates and corresponding configuration probability density function
are stationary given the dynamics are mean-driven, namely

∂ρj
∂t = 0, the Fokker-Planck

equation is reduced to the ordinary differential equation

∂

∂v

(
(v−VR)

τ
ρj−gjρj

)
=−∂Jj

∂v
= 0,

which can be solved analytically for ρj , where

ρj =
τµj

τgj−(v−VR)
.

Since ρj is a probability density function over VR≤v≤VT , it is required to satisfy the

normalization condition

∫ VT

VR

ρj(v)dv= 1, and therefore we obtain the implicit algebraic

expression relating the input and firing rate response for the jth node

1 = (τµj)ln

(
τgj

τgj−(VT −VR)

)
.

The forcing from the feed-forward input, (Fp)j , can then be expressed explicitly as

(Fp)j =
(VT −VR)

1−exp
(
−1
τµj

)− S

NR
(Rµ)j .

Assuming the feed-forward input into each node is relatively large, as naturally required
in the mean-driven operating regime, the number of firing events for each node within
time scale τ is O(1). Under this assumption, we Taylor expand about small 1

τµj
to

O
(

1
τµj

)
and obtain

(Fp)j = τµj(VT −VR)+
(VT −VR)

2
− S

NR
(Rµ)j .

Enforcing the above for output nodes j= 1,. ..,m finally yields the linear input-output
mapping

Fp=
(
τµ+

em
2

)
(VT −VR)− S

NR
Rµ.
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[12] V.J. Barranca, G. Kovačič, D. Zhou, and D. Cai, Efficient image processing via compressive
sensing of integrate-and-fire neuronal network dynamics, Neurocomputing, 171:1313–1322,
2016. 2.3

[13] P.J. Basser, J. Mattiello, and D. LeBihan, MR diffusion tensor spectroscopy and imaging, Biophys.
J., 66(1):259–267, 1994. 1

[14] D.S. Bassett and E. Bullmore, Small-world brain networks, Neuroscientist, 12(6):512–523, 2006.
4

[15] R. Ben-Yishai, R. Bar-Or, and H. Sompolinsky, Theory of orientation tuning in the visual cortex,
Proc. Natl. Acad. Sci. USA, 92:3844–3848, 1995. 2.3

[16] C.R. Berger, Z. Wang, J. Huang, and S. Zhou, Application of compressive sensing to sparse
channel estimation, Comm. Mag., 48(11):164–174, 2010. 1

[17] J. Bobin, J. Starck, and R. Ottensamer, Compressed sensing in astronomy, J. Sel. Topics Signal
Process., 2(5):718–726, 2008. 1

[18] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks: Structure
and dynamics, Phys. Rep., 424:175–308, 2006. 1

[19] A.M. Bruckstein, D.L. Donoho, and M. Elad, From sparse solutions of systems of equations to
sparse modeling of signals and images, SIAM Rev., 51(1):34–81, 2009. 2.2

[20] A.N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input,
Biol. Cybern., 95(2):97–112, 2006. 2.1

[21] M. Cadenasso, S. Pickett, and J. Grove, Dimensions of ecosystem complexity: Heterogeneity,
connectivity, and history, Ecol. Complex., 3(1):1–12, 2006. 1

[22] D. Cai, A.V. Rangan, and D.W. McLaughlin, Architectural and synaptic mechanisms underlying
coherent spontaneous activity in V1, Proc. Natl. Acad. Sci. USA, 102:5868–5873, 2005. 2.1

[23] D. Cai, L. Tao, M. Shelley, and D.W. McLaughlin, An effective representation of fluctuation-
driven neuronal networks with application to simple and complex cells in visual cortex, Proc.
Natl. Acad. Sci. USA, 101:7757–7762, 2004. 2.3

[24] E.J. Candes and M.B. Wakin, An introduction to compressive sampling, Signal Process. Mag.,
IEEE, 25(2):21–30, 2008. 1, 2.2

[25] E.J. Candes, J.K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate
measurements, Commun. Pure Appl. Math., 59(8):1207–1223, 2006. 1, 2.2, 2.2, 3.2

[26] R. Dahlhaus, M. Eichler, and J. Sandkuhler, Identification of synaptic connections in neural
ensembles by graphical models, J. Neurosci. Meth., 77(1):93–107, 1997. 1

[27] W. Dai, M.A. Sheikh, O. Milenkovic, and R.G. Baraniuk, Compressive sensing DNA microarrays,
J. Bioinform. Syst. Biol., 162824, 2009. 1

[28] D. di Bernardo, M.J. Thompson, T.S. Gardner, S.E. Chobot, E.L. Eastwood, A.P. Wojtovich,
S.J. Elliott, S.E. Schaus, and J.J. Collins, Chemogenomic profiling on a genome-wide scale
using reverse-engineered gene networks, Nat. Biotechnol., 23(3):377–383, 2005. 1

[29] D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52:1289–1306, 2006. 1, 2.2, 3.2
[30] D.L. Donoho and Y. Tsaig, Fast solution of l1-norm minimization problems when the solution

may be sparse, IEEE Trans. Inform. Theory, 54(11):4789–4812, 2008. 2.2
[31] B. Drossel and A. Mckane, Modelling food webs, in S. Bornholdt and H.G. Schuster (eds.), Hand-

book of Graphs and Networks, Wiley-VCH, Berlin, 08, 2002. 1
[32] N. Eagle, A.S. Pentland, and D. Lazer, Inferring friendship network structure by using mobile

phone data, Proc. Natl. Acad. Sci. USA, 106(36):15274–15278, 2009. 1

https://doi.org/10.1152/japplphysiol.01115.2009
https://science.sciencemag.org/content/286/5439/509
https://science.sciencemag.org/content/286/5439/509
https://ieeexplore.ieee.org/document/4558479
https://doi.org/10.1016/j.tins.2007.09.005
https://link.springer.com/article/10.1007/s11571-018-9504-2
https://link.springer.com/article/10.1007%2Fs10827-013-0494-0
 https://doi.org/10.1371/journal.pcbi.1003793 
https://www.nature.com/articles/srep31976
https://doi.org/10.1016/j.jtbi.2018.06.011
https://doi.org/10.1016/j.neucom.2015.07.067
https://doi.org/10.1016/j.neucom.2015.07.067
https://www.cell.com/biophysj/pdf/S0006-3495(94)80775-1.pdf
https://doi.org/10.1177/1073858406293182
https://doi.org/10.1073/pnas.92.9.3844
https://ieeexplore.ieee.org/document/5621984
https://ieeexplore.ieee.org/document/4703508
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1137/060657704
https://link.springer.com/article/10.1007%2Fs00422-006-0082-8
https://doi.org/10.1016/j.ecocom.2005.07.002
https://doi.org/10.1073/pnas.0501913102
https://doi.org/10.1073/pnas.0401906101
https://ieeexplore.ieee.org/document/4472240
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1016/S0165-0270(97)00100-3
https://link.springer.com/article/10.1155/2009/162824
https://www_nature.gg363.site/articles/nbt1075
https://ieeexplore.ieee.org/document/1614066
https://ieeexplore.ieee.org/document/4655448
 https://doi.org/10.1002/3527602755.ch10
https://doi.org/10.1073/pnas.0900282106


1310 RECONSTRUCTING SPARSE NETWORKS WITH NONLINEAR DYNAMICS

[33] S. Eldawlatly, Y. Zhou, R. Jin, and K.G. Oweiss, On the use of dynamic Bayesian networks
in reconstructing functional neuronal networks from spike train ensembles, Neural Comput.,
22(1):158–189, 2010. 1

[34] D.D. Feng, K. Wong, C. Wu, and W. Siu, A technique for extracting physiological parameters
and the required input function simultaneously from pet image measurements: theory and
simulation study, IEEE Trans. Inf. Technol. Biomed., 1(4):243–254, 1997. 1

[35] D.J. Field, What is the goal of sensory coding? Neural Comput., 6(4):559–601, 1994. 1
[36] S. Ganguli and H. Sompolinsky, Compressed sensing, sparsity, and dimensionality in neuronal

information processing and data analysis, Annu. Rev. Neurosci., 35:485–508, 2012. 4
[37] E. Ganmor, R. Segev, and E. Schneidman, Sparse low-order interaction network underlies a highly

correlated and learnable neural population code, Proc. Natl. Acad. Sci. USA, 108(23):9679–
9684, 2011. 1

[38] E. Ganmor, R. Segev, and E. Schneidman, The architecture of functional interaction networks in
the retina, J. Neurosci., 31(8):3044–3054, 2011. 1

[39] T.S. Gardner, D. di Bernardo, D. Lorenz, and J.J. Collins, Inferring genetic networks and iden-
tifying compound mode of action via expression profiling, Science, 301(5629):102–105, 2003.
1

[40] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, Inferring networks of diffusion and influence,
T. Knowl. Discov. D., 5(4):21, 2012. 1

[41] J.M. Goncalves and S. Warnick, Necessary and sufficient conditions for dynamical structure
reconstruction of LTI networks, IEEE Trans. Automat. Contr., 53(7):1670–1674, 2008. 1

[42] D. Gross, Y.K. Liu, S.T. Flammia, S. Becker, and J. Eisert, Quantum state tomography via
compressed sensing, Phys. Rev. Lett., 105(15):150401, 2010. 1

[43] Y. Hata, T. Tsumoto, H. Sato, and H. Tamura, Horizontal interactions between visual cortical
neurones studied by cross-correlation analysis in the cat, J. Physiol., 441:593–614, 1991. 1

[44] Y. He, Z.J. Chen, and A.C. Evans, Small-world anatomical networks in the human brain revealed
by cortical thickness from MRI, Cereb. Cortex, 17(10):2407–2419, 2007. 1

[45] M.A. Herman and T. Strohmer, High-resolution radar via compressed sensing, Trans. Sig. Proc.,
57(6):2275–2284, 2009. 1

[46] L. Holley and M. Karplus, Protein secondary structure prediction with a neural network, Proc.
Natl. Acad. Sci. USA, 86(1):152–156, 1989. 4

[47] L. Hufnagel, D. Brockmann, and T. Geisel, Forecast and control of epidemics in a globalized
world, Proc. Natl. Acad. Sci. USA, 101(42):15124–15129, 2004. 1

[48] M.D. Humphries, K. Gurney, and T.J. Prescott, The brainstem reticular formation is a small-
world, not scale-free, network, Proc. Biol. Sci., 273(1585):503–511, 2006. 4

[49] G. Isley, C.J. Hillar, and F.T. Sommer, Deciphering subsampled data: adaptive compressive
sampling as a principle of brain communication, in J.D. Lafferty, C.K.I. Williams, J. Shawe-
Taylor, R.S. Zemel and A. Culotta (eds.), Advances in Neural Information Processing Sys-
tems, Curran Associates, Inc., 910–918, 2010. 4

[50] Y. Iturria-Medina, R.C. Sotero, E.J. Canales-Rodriguez, Y. Aleman-Gomez, and L. Melie-Garcia,
Studying the human brain anatomical network via diffusion-weighted MRI and graph theory,
Neuroimage, 40(3):1064–1076, 2008. 1

[51] R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82(1):35–
45, 1960. 1

[52] N.Z. Kirkham, J.A. Slemmer, and S.P. Johnson, Visual statistical learning in infancy: evidence
for a domain general learning mechanism, Cognition, 83(2):35–42, 2002. 4

[53] G. Laurent, Dynamical representation of odors by oscillating and evolving neural assemblies,
Trends Neurosci., 19(11):489–496, 1996. 1

[54] M. Lustig, D. Donoho, and J.M. Pauly, Sparse MRI: The application of compressed sensing for
rapid MR imaging, Magn. Reson. Med., 58(6):1182–1195, 2007. 1

[55] H. Lutcke, F. Gerhard, F. Zenke, W. Gerstner, and F. Helmchen, Inference of neuronal network
spike dynamics and topology from calcium imaging data, Front. Neural. Circuits, 7:201, 2013.
3.3

[56] N.T. Markov, M. Ercsey-Ravasz, D.C. Van Essen, K. Knoblauch, Z. Toroczkai, and H. Kennedy,
Cortical high-density counterstream architectures, Science, 342(6158):1238406, 2013. 1

[57] N.T. Markov, P. Misery, A. Falchier, C. Lamy, J. Vezoli, R. Quilodran, M.A. Gariel, P. Giroud,
M. Ercsey-Ravasz, L.J. Pilaz, C. Huissoud, P. Barone, C. Dehay, Z. Toroczkai, D.C. Van Es-
sen, H. Kennedy, and K. Knoblauch, Weight consistency specifies regularities of macaque
cortical networks, Cereb. Cortex, 21(6):1254–1272, 2011. 3.1

[58] H. Markram, J. Lubke, M. Frotscher, A. Roth, and B. Sakmann, Physiology and anatomy of
synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex,
J. Physiol., 500(2):409–440, 1997. 1

https://doi.org/10.1162/neco.2009.11-08-900
https://ieeexplore.ieee.org/document/681168
https://doi.org/10.1162/neco.1994.6.4.559
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1073/pnas.1019641108
https://doi.org/10.1073/pnas.1019641108
https://www.jneurosci.org/content/jneuro/31/8/3044.full.pdf
https://science.sciencemag.org/content/301/5629/102
https://dl.acm.org/citation.cfm?doid=2086737.2086741
https://ieeexplore.ieee.org/document/4623259
https://doi.org/10.1103/PhysRevLett.105.150401
 https://doi.org/10.1113/jphysiol.1991.sp018769
https://doi.org/10.1093/cercor/bhl149
https://ieeexplore.ieee.org/document/4770164
https://doi.org/10.1073/pnas.86.1.152
https://doi.org/10.1073/pnas.0308344101
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.572.5000
https://www.mysciencework.com/publication/show/deciphering-subsampled-data-adaptive-compressive-sampling-principle-brain-communication-88d8956d
https://doi.org/10.1016/j.neuroimage.2007.10.060
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/S0010-0277(02)00004-5
https://doi.org/10.1016/S0166-2236(96)10054-0
https://doi.org/10.1002/mrm.21391
https://doi.org/10.3389/fncir.2013.00201
https://science.sciencemag.org/content/342/6158/1238406
https://doi.org/10.1093/cercor/bhq201
https://doi.org/10.1113/jphysiol.1997.sp022031


V.J. BARRANCA, G. KOVAČIČ, AND D. ZHOU 1311
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