TBME-01421-2018.R2

An Algorithm for Automated Separation of
Trabecular Bone from Variably Thick Cortices
in High-Resolution Computed Tomography
Data

Ida C. Ang, Maria Fox, John D. Polk, and Mariana E. Kersh*

Abstract—Objective: Structural measurements after separation
of cortical from trabecular bone are of interest to a wide variety
of communities but are difficult to obtain because of the lack of
accurate automated techniques. Methods: We d present a
structure-based algorithm for separating cortical from
trabecular bone in binarized images. Using the thickness of the
cortex as a seed value, bone connected to the cortex within a
spatially local threshold value is identified and separated from
the remaining bone. The algorithm was tested on seven biological
data sets from four species imaged using micro-computed
tomography (u-CT) and high-resolution peripheral quantitative
computed tomography (HR-pQCT). Area and local thickness
measurements were compared to images segmented manually.
Results: The algorithm was approximately 11 times faster than
manual measurements and the median error in cortical area was
-4.47 + 4.15%. The median error in cortical thickness was
approximately 0.5 voxels for u-CT data and less than 0.05 voxels
for HR-pQCT images resulting in an overall difference of -28.1 +
71.1 pum. Conclusion: A simple and readily implementable
methodology has been developed that is repeatable, efficient, and
requires few user inputs, providing an unbiased means of
separating cortical from trabecular bone. Significance:
Automating the segmentation of variably thick cortices will allow
for the evaluation of large data sets in a time-efficient manner
and allow for full-field analyses that have been previously limited
to small regions of interest. The MATLAB code can be
downloaded from https://github.com/TBL-UIUC/downloads.git.

Index Terms—Bone, Cortical, Feature extraction, High-
resolution imaging, Image analysis, Image processing, Image
segmentation, MATLAB, Morphological operations
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I. INTRODUCTION

Micro—computed tomography (u-CT) and high-resolution
peripheral quantitative computed tomography (HR-pQCT) are
primary sources of structure and composition information for
analyses of bone properties [1]. The increase in u-CT
availability and capacity, coupled with increased
computational resources in research and clinical settings, has
allowed for both cross-sectional and longitudinal studies to
evaluate spatially local changes in bone under a variety of
conditions. The (re)modeling response of bone to mechanical
loading has been a longstanding subject of interest and has
applications spanning from anthropology to medicine [1-8].

Whereas the analysis of diaphyseal cortical properties are
relatively straightforward, analyses of the epiphyses of bone
remain challenging because of the simultaneous hierarchical
and heterogeneous structure of bone. A rigorous assessment of
cortical and trabecular properties requires separating these
regions for independent analyses. However, quantifying
cortical bone parameters is difficult in regions where the
trabecular mesh is highly complex and closely connected to
the outer shell of bone. Obtaining accurate bone parameters is
especially problematic in the epiphyses of bone, where
subchondral bone, the thin layer of cortical bone underlying
the joint articular cartilage, is much thinner than bone at the
diaphysis [9], [10].

To avoid misidentifying subchondral bone as trabecular
bone, volumes of interest (VOI) at the center of the joint
geometry have been used [11-14]. However, bone functional
signals may be lost within this central region, and the clearest
signal is likely to be present close to the joint surface [6], [15].
Accounting for the spatial variation in micro-structure
throughout the entire bone, in contrast to single isolated VOI-
based analyses, may be a critical determinant for
understanding how bone adapts to changes in mechanical
loading.

The use of different segmentation schemes based on global,
local, or adaptive threshold values has been widely discussed
in the literature and the reader is referred to Li et al. [16] and
Wong and Manske [17] for a review of algorithms used to



TBME-01421-2018.R2

binarize images. While there have been significant advances in
cortical bone binarization algorithms for u-CT and HR-pQCT,
the methods needed to analyze the resulting image stacks
require further development. The separation of bone for
cortical-only analyses requires the capacity to clearly
distinguish the two structures. Several algorithms of varying
complexity have been proposed to separate the cortex from the
trabecular structure with many relying on a combination of
threshold-based techniques combined with morphological
opening/closing or erosion/dilation operations. The amount of
bone to open/close or erode/dilate is determined by a kernel or
structuring element size, which may be determined iteratively
or via average trabecular thickness in the region of interest
[18]. Work by Buie et al. (refined later by Burghardt et al.)
showed that a small set of dual-threshold values could be used
to reliably segment cortical bone in a variety of samples at
different p-CT resolutions [19], [20]. For HR-pQCT,
Valentinitsch et al. developed a threshold-independent
segmentation tool (TIST) which utilized machine learning
schemes to segment cortical bone [21].

Other methods for identifying cortical boundaries include
profiling of the Hounsfield unit (HU) values along a line
passing through the cortex [22]. Others have proposed using
the normal vectors from an outer contour, again based on a
threshold unit, in combination with morphological operations
using kernel sizes derived from the trabecular structure to
minimize artificial changes in structure [18, 23, 24]. However,
variation due to scanner drift, image noise, and partial volume
effects complicate the identification of a mean HU value or
thresholds for segmentation and the value would have to be
periodically tuned for optimal results.

Here we present an automated two-dimensional (2D)
approach that takes advantage of structural information within
a binarized image to identify the cortical-trabecular border
rather than a threshold or HU based approach. Furthermore,
the implementation of the algorithm can be accomplished with
commonly available research tools, ImageJ (BoneJ plug-in)
[25] and MATLAB (Version R2019a MathWorks, Natick,
MA, USA). Preliminary cortical thickness results utilizing the
algorithm have been reported [26].

II. METHODS

A. Image Input Requirements

Two input datasets are required: 1. a binary image (Fig. 1A)
and 2. a thickness map of the structures within the image (Fig.
1C). The ImagelJ plug-in, BonelJ, calculates a thickness map by
defining the thickness as the greatest sphere that can fit within
the input image structure [25]. Using Bonel, thickness maps
can be calculated from binarized image sets and imported into
the MATLAB algorithm as matrices. If there is no thickness
value within a pixel, the algorithm assigns these pixels zero.

B. Image Border Detection
Similar to Buie et. al. [19], we initially assume that the

cortical shell of bone exists as a continuous surface in order to
create an external boundary for evaluating cortical thickness.
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Fig. 1. General work-flow of the algorithm based on two user inputs,
binarized data and thickness matrix obtained from ImageJ] plugin, Bonel.
Example images from the human femoral head.

Note that this boundary may also include "zero" values based
on the thickness map; however, it is common to have regions
of cortical bone that are as thin as the surrounding trabecular
bone or are undetectable in the initial segmentation due to
image noise or partial volume effects. Similarly, gaps in
cortical bone may exist in pathological specimens (e.g.,
osteoporotic bone) or specimens from museum collections.
These image artifacts may result in errors in the detection of a
continuous border.

Therefore, we implemented an initial border check to ensure
that a continuous border exists within the image by estimating
a maximum border length and comparing it to the border
within the image. The maximum border length was calculated
using the extrema points of the binarized image to calculate
the maximum distance from top to bottom, X.g, and from
right to left, Yoq, (Fig. 2). The extrema points are connected to
form triangles enclosing rough quadrants of the object border.
This evaluation of the border is based on the assumption that
the external contour of bone is convex or concave, not
undulating; therefore, the summation of the opposite and
adjacent sides of the triangle will always be larger than the
border. These maximum distances were used to calculate a
maximum perimeter, B, using (1).

B, = 2(Xest + Yest) (D

The maximum rectangular perimeter value, B,, were
compared to the initial calculation of the external border using
MATLAB (function bwboundaries). If the border length is
larger than the rectangular estimate, a warning is issued that
the border should be corrected to fill gaps or holes that
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Fig. 2. Rectangular estimation of the border, B,, calculated from extrema
points for the lateral condyle of a chimpanzee. The maximum distances in
each direction is denoted by Xeq and Y.

typically cause an overestimation of the border. These can be
corrected using morphological erosion and dilation operations
or other corrective options available within image processing
software packages.

C. Thickness-Based Separation

The thickness matrix, determined with Bonel, was used to
extract regions connected to the outer border that are of
similar local thickness values. The thickness for any given
pixel, p, along the boundary, th,, of bone was identified from
the thickness matrix (Fig. 1C). The bone border was then
sectioned into quadrants (Fig. 1D), and the average of all non-
zero thickness values at each quadrant was calculated, thg.
The average quadrant thickness, thg, containing the pixel of
interest was then used to determine the range of thickness
values to include in the segmentation (2).

Next, a subset of pixels, pg, to evaluate was identified by
centering a window equal to 10% of the image width and
length around the pixel of interest. Within this window, half of
the global minimum thickness (thy,;,) value of each quadrants
average thickness value was used as an upper and lower
threshold to identify pixels of similar local thickness to the
pixel of interest according to (2).

thy
2

thmin
Pss = (thy — =21 x thy) < pg < (th, +

in x thy) (2)
where pg is the total subset of pixels, pg, within the range
associated with the pixel on the border, thy, and pp,;, is the

global minimum thickness value.

This process was then repeated for every th,, continuing

p)
clockwise to the next location, i+1, along the entire boundary
(Fig. 3). For each pixel evaluated, the connectivity of the

L

Fig. 3. Using the thickness matrix visualized in (A), the first pixel on the
border (red asterisk in B) was identified and a subset of pixels within the set
range (teal region) is shown on the thickness image. (C) Consecutive border
pixel with corresponding areas. (D) The pixels identified were added to the
previous cortical bone image to create a (E) final segmented image.

Fig. 4. Biological images for evaluation of algorithm accuracy. The first five
data sets are u-CT and the last two data sets are HR-pQCT. (A) Human
femoral head and (B) neck, (C) rat tibia, (D) chimpanzee lateral condyle, (E)
gorilla lateral condyle, (F) human radius, and (G) human tibia

TABLE I
In vivo and ex vivo data sets evaluated: human femoral head and neck, rat
tibia, chimpanzee and gorilla lateral condyles (LC), and human radius and
tibia. Listed from higher resolution to lower resolution.

. . - Resolution Sample
Imaging Technique  Data Set (mm?) Size
ex vivo H. Femur Head 0.05 isotropic 51
ex vivo H. Femur Neck 0.05 isotropic 51
uCT in vivo Rat Tibia 0.05 isotropic 31
ex vivo Chimpanzee LC ~ 0.05x0.05x 1 41
ex vivo Gorilla LC 0.05%0.05x 1 41
ex vivo H. Radius 0.082 isotropic 51
HR-pQCT in vivo H. Tibia 0.061 isotropic 51

results was verified to ensure that the pixel of interest was
included in each subsequent calculation. If th, = 0, then no
subset of pixels would be identified for segmentation. The
resulting subsets were then merged into the final segmented
image (Fig. 3D) which was then smoothed by eroding and
dilating the image using a disc structural element in
combination with a Sovitzky-Golay filter (Fig. 3E).

D. Evaluation: Biological Images

We evaluated the accuracy of the algorithm on two different
imaging modalities: micro-computed tomography (u-CT) and
high-resolution peripheral quantitative computed tomography
(HR-pQCT). The image sets include four species and three
different bones (femur, radius, and tibia)} in order to evaluate
the utility of the algorithm across specimens with broad
variation in cortical and trabecular thickness (Table I) [27].
Both the rat and human tibia data sets were from in vivo scans
and all other data were ex vivo scans. Data from the human
proximal femur was aligned to the femoral neck axis after
which the femoral head and neck (Fig. 4A, B) were analyzed
separately.

As an example of a worst-case scenario, we also evaluated
our algorithm on a data set without a closed border, such as
the slices found at a mid-slice through the bone. To do so, we
ran the algorithm on the mid-section of a lateral condyle from
a gorilla u-CT data set (Fig. 4E).

To evaluate speed, the algorithm was tested using a
computer with an Intel i3-8109U processor with two cores and
four threads available. Users noted their segmentation time for
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Fig. 5. Resulting cortical and trabecular bone segmentation for (A) human femoral head, (B) femoral neck, (C) rat tibia, (D) chimpanzee lateral condyle, (E)
gorilla lateral condyle images, (F) human radius, and (G) human tibia before filtering the u-CT data sets. The human femoral head data set demonstrates how
quadrants for all data sets are partitioned and labeled.

comparison to the processing time for the algorithm.

The accuracy of the segmentation was quantified by
comparing the results from our algorithm to a "gold standard"
segmentation method of hand contouring using Amira
(Thermo Fisher Scientific, Waltham, MA, USA). Three
experienced users, blinded to the algorithm results, manually
segmented 11 regularly-spaced images from each data set. All
data was checked for normality using a Kolmogorov-Smirnov
test (¢ = 0.05). The median percentage error in cortical area
(Ct.Ar) between measurements from our algorithm and
manual contouring was calculated. We further subdivided
each image into anatomical quadrants, determined the cortical
thickness (Ct.Th) for each quadrant, and calculated the median
percentage error as compared to the gold standard. Note that
the quadrant encompassing the open border for the gorilla data
set was not included in the analysis of cortical thickness.
Median differences in cortical thickness and percent errors
were compared for modality types and within the spatial
quadrants. Percentage errors were classified as either Type 1
(over-estimation) or Type II (under-estimation) for Ct.Th. All
statistical analyses were performed using RStudio (version
1.1.447, RStudio, Inc).

III. RESULTS

The algorithm was able to separate trabecular bone from the
cortical shell and subchondral compartments in all data sets
(Fig. 5). Comparing all data sets (Fig. 6, Supplementary Table
I), the median processing time for the algorithm (11.3 + 10.0
seconds/slice) was approximately 11 times faster than the
median time required to manually segment the images (126 +
33.2 s/slice). The rat data set took the least amount of time to
segment for the algorithm and users (~0.42, 51.7 + 27.0
s/slice). Because of the short time-scale the algorithm used to
process the rat tibia data, the average time per slice was
estimated and the standard deviation could not be reported.
The algorithm took longer to process larger species such as the
chimpanzee and gorilla data sets at 30.45 and 29.10 s/slice
respectively. This result was reflected in the manual
segmentation time, where users took the most amount of time
on the chimpanzee data set, 173 s/slice.
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Fig. 6. Algorithm-based and manual segmentation timings for all data sets
(average + standard deviation) arranged in order of increasing algorithm-
based timing.

Data was not normally distributed; therefore, median +

standard  deviations are reported. @ The  algorithm
underestimated cortical area for all data sets, yielding a Ct.Ar
percentage error of -4.47 + 4.15 (Supplementary: Fig. 1,
Table II). As expected, the largest Ct.Ar percentage error
occurred in the u-CT gorilla data set with the open border (-
7.89 + 3.83), and the highest accuracy was in the HR-pQCT
radius data set (-0.03 £ 1.85). Overall, errors in cortical
thickness were less than one voxel and there were more than
twice as many Type II errors (n=19, -40.2 + 71.7 um) than
Type I errors (n=8, 10.5 + 31.4 um) (Fig. 7A).
Errors in cortical thickness using u-CT data tended towards
underestimation of thickness (Type I error = -36.7 + 80.2 um)
whereas the radius and tibia HR-pQCT data sets slightly
overestimated thickness (Type II error = 4.08 + 77.4 um). In
general, the u-CT rat tibia data set demonstrated the highest
Ct.Th difference of -58.7 + 38.8 um (less than a voxel), and
the lowest Ct.Th was in the femoral head data (-1.84 + 37.0
um). There was no significant correlation between cortical
thickness and error. The median Ct.Th percent error across all
data sets was -2.61 + 7.75% and was highest in the rat tibia
data set (Fig. 7B).



TBME-01421-2018.R2

A L Head Neck Rat Chimp  Gorilla  Radius Tibia
0.1
el -
Error.o‘ J|* +“ % ‘~ “ ++|4F+%
i IR T
01 +
-0.2 *
Type 11 Quadrant
* |
Error | 3 A e
(um) - 3
+ 4
-0.4
v
B 4 Head Neck Rat Chimp  Gorilla  Radius Tibia
10
Type I
Error Jv
o O T O
]
Typell | 19 J{
Error
(%)
-20
v
Fig. 7. Distribution of Type I (over-estimation) and Type II (under-

estimation) cortical thickness per quadrant displayed in (A) cortical thickness
difference and (B) percentage error.

IV. DiscusSION

We have presented a structure-based methodology for
segmenting cortical or subchondral bone from binarized u-CT
and HR-pQCT images. Overall, the thickness results of our
algorithm were less than 1 voxel compared to the gold
standard resulting in an excellent initial segmentation, but as
expected, local thickness measurements were variable between
our algorithm and manually derived measurements.

The capacity to identify the cortical and trabecular junction
is likely dependent on the variation of cortical thickness within
a given image, image resolution, and the degree to which the
trabecular bone is connected to the cortical shell. A clear
benefit of the algorithm is the consistency in speed with which
the cortical boundary could be identified regardless of image
complexity. In general, the processing time for both manual
and algorithm increased with increasing segmentation area
(Supplementary Table I and II). From the rat data with the
smallest Ct.Ar to the chimpanzee data with the largest Ct.Ar,
the increase in time required to perform the segmentation
manually increased from 51.7 + 27.0 seconds to 173 £+ 76.5
seconds (Fig. 6). In comparison, the algorithm time increased
from approximately 0.42 seconds to a maximum of 30.5 +
1.69 seconds indicating robust performance with respect to
segmentation area

There remain options for further decreasing the
computational time by parallelizing the processing of data via
multiple instances of MATLAB when dealing with large data

Fig. 8. Examples of type I and II error demonstrated by overlays of manual
vs. algorithm segmentation for (A) femoral neck, (B) rat tibia, (C)
chimpanzee lateral condyle, (D) gorilla lateral condyle, and (E) human tibia.
White displays the regions of overlapping segmentation, magenta displays
algorithm segmented bone not present in the manual segmentation (Type I:
over-segmentation), green displays manually segmented bone not present in
the algorithm segmentation (Type II: under-segmentation).

sets. This option was tested with two instances of MATLAB
on the gorilla and chimpanzee data sets and improved the per
slice performance by decreasing the time by 60 percent.

The in vivo HR-pQCT tibia samples segmentation results
were within the same range of error as the ex vivo results. The
u-CT in vivo rat tibia sample resulted in a higher Ct.Ar
percentage error (-5.86 + 2.73 %) compared to the median (-
4.46 + 4.15 %) and had the largest percent error for Ct.Th
when analyzing all quadrants together (-6.52 + 4.72 %).
However, caution should be applied in interpreting the percent
error values for Ct.Th since large percent errors may be a
numerical artifact of the small thickness values (especially for
the rat data). On a quadrant basis, Q1 of the HR-pQCT tibia
data set demonstrated the highest Type II error (Fig. 7).
Estimations for Ct.Th usually differ the most where the cortex
is thin [28], but in this case, we believe the users qualitatively
over-segmented this quadrant by filling in small gaps and
irregularities observable within the cortex (green in Fig. 8E.)

The highest Ct.Ar percentage error (Type II) was in the
gorilla data set due to the open border on the 2™ quadrant.
During manual segmentation, the operator can use their
intuition to distinguish between periphery noise and cortical
bone, but the algorithm will not segment cortical bone unless
it is within the range of thickness values (2). The gorilla data
set demonstrated the algorithmic disadvantage with non-
continuous cortical bone, because the algorithm will "assume"
the trabecular bone on the open border is cortical bone.
However, in practice, this data would be discarded and not
included in an analysis of cortical thickness.

The Type II error in the femoral neck was the result of gaps
and small convex border sections in the binarized images
(displayed in green in Fig. 8A). Fig. 8C demonstrates how
pores in the cortical bone can affect the segmentation results.
The Type I error (overestimation) in the gorilla condyle was
due to inclusion of cortical segments that extended into the
trabecular region of bone (magenta regions in Fig. 8D). The
circular appearance of these magenta regions is due to the
thickness map which is based on the largest inscribed circle at
each point in the image. Whereas our final smoothing step
removes the majority of these internal circular irregularities,
there remains an opportunity for further local refinement
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based on user needs.

Others have reported reproducibility errors between
different segmentation techniques, [28, 29], but less data is
available on comparisons to manual segmentation likely
because of its time-consuming nature (Buie et al. conducted
manual segmentation). Li et al. used a combination of fuzzy
connectivity and topological methods to develop an automated
method for segmentation of cortical bone in multi-row
detector computed tomography (MDCT) distal tibia samples
and cadaveric u-CT ankle samples [16]. Interestingly, they
noted that their higher resolution p-CT samples had higher
cortical volume percentage errors (11.5%) than their lower
resolution MDCT samples (4.9%). Our results followed
similar trends when comparing u-CT samples and HR-pQCT
samples for both area and thickness in that lower resolution
HR-pQCT data resulted in lower errors.

Valentinitsch et al. used a texture-based threshold-
independent segmentation tool (TIST) on the human distal
radius of the same resolution as our HR-pQCT radius data set
(0.082 isotropic mm?®) [21]. They also compared their absolute
average percentage error Ct.Th results from TIST (10.4 *
8.0%) to the Scanco standard algorithm (15.5 + 19.5%) and
the segmentation algorithm (9.6 + 7.7%) from Burghardt et al.
[20]. We report the median Ct.Th percentage errors for each
quadrant (Fig. 7), but have also analyzed the absolute average
percentage error with all quadrants together for comparison.
Errors using our structure-based approach were lower 6.25+
5.44) than the three methods outlined above. Lastly, Kang et
al. reported Ct.Th errors within 1-2.5 voxels for the femur
using a 3D thresholding based technique. Our median error for
the femoral head and neck was less than 0.5 voxels (-22.0 +
27.8 um) [22].

Here we propose that once a binarized image is obtained,
the structure itself provides a reliable and unbiased means for
separating the cortex from the remaining bone. The results
presented were obtained using the same code for all data sets,
with Sovitzky-Golay filtering done on the u-CT data. The user
inputs that can be changed relate to the border search
parameters and the size of the section of image to analyze at
one time. These parameters both contribute to the efficiency of
the algorithm and can be fine-tuned to increase speed (e.g.
minimizing the size of the search window).

An important note is that the algorithm is 2D, with each
slice independently processed without input from adjacent
slices. The inclusion of three-dimensional thickness
information may also improve the accuracy of the algorithm.
However, in data sets with changing bone areas, the algorithm
in 2D successfully replicated changes in area over the tested
range of slices. The accuracy of this algorithm is also
dependent on the thresholding process used to remove scanner
artifacts and noise. The bone border can be affected by pixel-
wide gaps in the bone border and noise artifacts, especially
where the border is concave. Problems with removing imaging
noise and reading the bone border will cause complications
downstream of our process (Fig. 1). Therefore, evaluation of
the initial border provides a means of ensuring that a
continuous border exists, but the quality of the input binarized

image remains a significant determinant of the resulting
morphological measurements.

Our algorithm for separating subchondral and trabecular
bone allows for an effective analysis of isolated subchondral
and trabecular properties across joint surfaces. This
information is useful for a range of questions in comparative
biology and clinical applications. For example, the spatial
distribution of subchondral density and thickness across joint
surfaces has been used to identify normal and pathological
patterns of joint loading in human and other mammals [7, 8,
27, 30, 31]. This is also clinically relevant since local
(re)modeling responses in subchondral bone may be
implicated in osteoarthritis. The body of evidence suggesting
that osteoarthritis is a disease that is initiated in subchondral
bone is growing. Having the capacity to repeatably identify
spatially specific changes in subchondral bone is critical to
understanding how subchondral bone serves as an energy
absorbing material to dissipate stresses during everyday
loading of the joint 8, 31].

We have also shown that this algorithm is effective for
regions of diaphyseal bone (radius and tibia) that are used in
clinical assessment of bone quality. The use of HRpQCT as a
clinical and research assessment tool is increasing and is an
inviting imaging modality because of its capacity to image
bone microstructure with low radiation. Finally, we have
demonstrated utility of our algorithm to assess in vivo images
of animal skeletal structure. Animal models are among the
most widely used pre-clinical methods for evaluating
pharmaceutical and exercise interventions targeting bone
quality as well as fundamental studies aimed to identify
mechanobiological mechanisms driving bone formation,
resorption during growth, aging, and in the presence of
disease.

V. CONCLUSION

The assessment of bone microstructure continues to be a
critical component to understanding changes in bone during
growth, aging, and disease. Our method allows for the
quantification of trabecular and cortical structures and
properties across joint surfaces with accuracy comparable to
other cortical segmentation algorithms based on structure
rather than tuned threshold parameters. The median error in
cortical area was -4.46 t+ 4.15% and the median error in
cortical thickness was less than 1 voxel for u-CT data and less
than 0.05 voxel for HR-pQCT data. Importantly, this method
is implemented using open-source software, ImageJ, and
MATLAB which is available in most research laboratories.
All code is available for download (https://github.com/TBL-
UIUC/downloads.git). The development of automated
processing techniques for high-resolution data will allow for
more thorough analyses over larger spatial regions and
improve full-field characterizations of structure in complex
materials.
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