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Abstract—Objective: Structural measurements after separation 

of cortical from trabecular bone are of interest to a wide variety 
of communities but are difficult to obtain because of the lack of 
accurate automated techniques. Methods: We d present a 
structure-based algorithm for separating cortical from 
trabecular bone in binarized images. Using the thickness of the 
cortex as a seed value, bone connected to the cortex within a 
spatially local threshold value is identified and separated from 
the remaining bone. The algorithm was tested on seven biological 
data sets from four species imaged using micro-computed 
tomography (𝝁-CT) and high-resolution peripheral quantitative 
computed tomography (HR-pQCT). Area and local thickness 
measurements were compared to images segmented manually. 
Results: The algorithm was approximately 11 times faster than 
manual measurements and the median error in cortical area was 
-4.47 ± 4.15%. The median error in cortical thickness was 
approximately 0.5 voxels for 𝝁-CT data and less than 0.05 voxels 
for HR-pQCT images resulting in an overall difference of -28.1 ± 
71.1 𝝁m. Conclusion: A simple and readily implementable 
methodology has been developed that is repeatable, efficient, and 
requires few user inputs, providing an unbiased means of 
separating cortical from trabecular bone. Significance: 
Automating the segmentation of variably thick cortices will allow 
for the evaluation of large data sets in a time-efficient manner 
and allow for full-field analyses that have been previously limited 
to small regions of interest. The MATLAB code can be 
downloaded from https://github.com/TBL-UIUC/downloads.git. 
Index Terms—Bone, Cortical, Feature extraction, High-

resolution imaging, Image analysis, Image processing, Image 
segmentation, MATLAB, Morphological operations 
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I. INTRODUCTION 
 
icro-computed tomography (𝜇-CT) and high-resolution 

peripheral quantitative computed tomography (HR-pQCT) are 
primary sources of structure and composition information for 
analyses of bone properties [1]. The increase in 𝜇-CT 
availability and capacity, coupled with increased 
computational resources in research and clinical settings, has 
allowed for both cross-sectional and longitudinal studies to 
evaluate spatially local changes in bone under a variety of 
conditions. The (re)modeling response of bone to mechanical 
loading has been a longstanding subject of interest and has 
applications spanning from anthropology to medicine [1-8].  
Whereas the analysis of diaphyseal cortical properties are 

relatively straightforward, analyses of the epiphyses of bone 
remain challenging because of the simultaneous hierarchical 
and heterogeneous structure of bone. A rigorous assessment of 
cortical and trabecular properties requires separating these 
regions for independent analyses. However, quantifying 
cortical bone parameters is difficult in regions where the 
trabecular mesh is highly complex and closely connected to 
the outer shell of bone. Obtaining accurate bone parameters is 
especially problematic in the epiphyses of bone, where 
subchondral bone, the thin layer of cortical bone underlying 
the joint articular cartilage, is much thinner than bone at the 
diaphysis [9], [10]. 
To avoid misidentifying subchondral bone as trabecular 

bone, volumes of interest (VOI) at the center of the joint 
geometry have been used [11-14]. However, bone functional 
signals may be lost within this central region, and the clearest 
signal is likely to be present close to the joint surface [6], [15]. 
Accounting for the spatial variation in micro-structure 
throughout the entire bone, in contrast to single isolated VOI-
based analyses, may be a critical determinant for 
understanding how bone adapts to changes in mechanical 
loading. 
The use of different segmentation schemes based on global, 

local, or adaptive threshold values has been widely discussed 
in the literature and the reader is referred to Li et al. [16] and 
Wong and Manske [17] for a review of algorithms used to 
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binarize images. While there have been significant advances in 
cortical bone binarization algorithms for 𝜇-CT and HR-pQCT, 
the methods needed to analyze the resulting image stacks 
require further development. The separation of bone for 
cortical-only analyses requires the capacity to clearly 
distinguish the two structures. Several algorithms of varying 
complexity have been proposed to separate the cortex from the 
trabecular structure with many relying on a combination of 
threshold-based techniques combined with morphological 
opening/closing or erosion/dilation operations. The amount of 
bone to open/close or erode/dilate is determined by a kernel or 
structuring element size, which may be determined iteratively 
or via average trabecular thickness in the region of interest 
[18]. Work by Buie et al. (refined later by Burghardt et al.) 
showed that a small set of dual-threshold values could be used 
to reliably segment cortical bone in a variety of samples at 
different 𝜇-CT resolutions [19], [20]. For HR-pQCT, 
Valentinitsch et al. developed a threshold-independent 
segmentation tool (TIST) which utilized machine learning 
schemes to segment cortical bone [21]. 
Other methods for identifying cortical boundaries include 

profiling of the Hounsfield unit (HU) values along a line 
passing through the cortex [22]. Others have proposed using 
the normal vectors from an outer contour, again based on a 
threshold unit, in combination with morphological operations 
using kernel sizes derived from the trabecular structure to 
minimize artificial changes in structure [18, 23, 24]. However, 
variation due to scanner drift, image noise, and partial volume 
effects complicate the identification of a mean HU value or 
thresholds for segmentation and the value would have to be 
periodically tuned for optimal results.   
Here we present an automated two-dimensional (2D) 

approach that takes advantage of structural information within 
a binarized image to identify the cortical-trabecular border 
rather than a threshold or HU based approach. Furthermore, 
the implementation of the algorithm can be accomplished with 
commonly available research tools, ImageJ (BoneJ plug-in) 
[25] and MATLAB (Version R2019a MathWorks, Natick, 
MA, USA). Preliminary cortical thickness results utilizing the 
algorithm have been reported [26]. 

II. METHODS 

A. Image Input Requirements 
Two input datasets are required: 1. a binary image (Fig. 1A) 

and 2. a thickness map of the structures within the image (Fig. 
1C). The ImageJ plug-in, BoneJ, calculates a thickness map by 
defining the thickness as the greatest sphere that can fit within 
the input image structure [25]. Using BoneJ, thickness maps 
can be calculated from binarized image sets and imported into 
the MATLAB algorithm as matrices. If there is no thickness 
value within a pixel, the algorithm assigns these pixels zero. 

B. Image Border Detection  
Similar to Buie et. al. [19], we initially assume that the 

cortical shell of bone exists as a continuous surface in order to 
create an external boundary for evaluating cortical thickness. 

Note that this boundary may also include "zero" values based 
on the thickness map; however, it is common to have regions 
of cortical bone that are as thin as the surrounding trabecular 
bone or are undetectable in the initial segmentation due to 
image noise or partial volume effects. Similarly, gaps in 
cortical bone may exist in pathological specimens (e.g., 
osteoporotic bone) or specimens from museum collections. 
These image artifacts may result in errors in the detection of a 
continuous border. 
Therefore, we implemented an initial border check to ensure 

that a continuous border exists within the image by estimating 
a maximum border length and comparing it to the border 
within the image. The maximum border length was calculated 
using the extrema points of the binarized image to calculate 
the maximum distance from top to bottom, 𝑋%&', and from 
right to left, 𝑌%&', (Fig. 2). The extrema points are connected to 
form triangles enclosing rough quadrants of the object border. 
This evaluation of the border is based on the assumption that 
the external contour of bone is convex or concave, not 
undulating; therefore, the summation of the opposite and 
adjacent sides of the triangle will always be larger than the 
border. These maximum distances were used to calculate a 
maximum perimeter,	𝐵%, using (1). 
 

𝐵+ = 	2(𝑋%&' + 𝑌%&')       (1) 
 
The maximum rectangular perimeter value, 𝐵+, were 
compared to the initial calculation of the external border using 
MATLAB (function bwboundaries). If the border length is 
larger than the rectangular estimate, a warning is issued that 
the border should be corrected to fill gaps or holes that 

 
Fig. 1.  General work-flow of the algorithm based on two user inputs, 
binarized data and thickness matrix obtained from ImageJ plugin, BoneJ. 
Example images from the human femoral head. 
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typically cause an overestimation of the border. These can be 
corrected using morphological erosion and dilation operations 
or other corrective options available within image processing 
software packages. 

C. Thickness-Based Separation 
The thickness matrix, determined with BoneJ, was used to 

extract regions connected to the outer border that are of 
similar local thickness values. The thickness for any given 
pixel, p, along the boundary, th3, of bone was identified from 
the thickness matrix (Fig. 1C). The bone border was then 
sectioned into quadrants (Fig. 1D), and the average of all non-
zero thickness values at each quadrant was calculated, th4. 
The average quadrant thickness, th4, containing the pixel of 
interest was then used to determine the range of thickness 
values to include in the segmentation (2). 
Next, a subset of pixels, p&, to evaluate was identified by 

centering a window equal to 10% of the image width and 
length around the pixel of interest. Within this window, half of 
the global minimum thickness (th678) value of each quadrants 
average thickness value was used as an upper and lower 
threshold to identify pixels of similar local thickness to the 
pixel of interest according to (2).  
 
p&& 	= 	 (th3 −

':;<=
>

× th4) < p& < (th3 +
':;<=
>

× th4) (2) 
 
where p&& is the total subset of pixels, p&, within the range 

associated with the pixel on the border, th3, and p678 is the 
global minimum thickness value. 
This process was then repeated for every th3, continuing 

clockwise to the next location, i+1, along the entire boundary 
(Fig. 3). For each pixel evaluated, the connectivity of the 

results was verified to ensure that the pixel of interest was 
included in each subsequent calculation. If th3 = 0, then no 
subset of pixels would be identified for segmentation. The 
resulting subsets were then merged into the final segmented 
image (Fig. 3D) which was then smoothed by eroding and 
dilating the image using a disc structural element in 
combination with a Sovitzky-Golay filter (Fig. 3E).   

D. Evaluation: Biological Images 
We evaluated the accuracy of the algorithm on two different 

imaging modalities: micro-computed tomography (𝜇-CT) and 
high-resolution peripheral quantitative computed tomography 
(HR-pQCT). The image sets include four species and three 
different bones (femur, radius, and tibia)} in order to evaluate 
the utility of the algorithm across specimens with broad 
variation in cortical and trabecular thickness (Table I) [27]. 
Both the rat and human tibia data sets were from in vivo scans 
and all other data were ex vivo scans. Data from the human 
proximal femur was aligned to the femoral neck axis after 
which the femoral head and neck (Fig. 4A, B) were analyzed 
separately. 
As an example of a worst-case scenario, we also evaluated 

our algorithm on a data set without a closed border, such as 
the slices found at a mid-slice through the bone. To do so, we 
ran the algorithm on the mid-section of a lateral condyle from 
a gorilla 𝜇-CT data set (Fig. 4E). 
To evaluate speed, the algorithm was tested using a 

computer with an Intel i3-8109U processor with two cores and 
four threads available. Users noted their segmentation time for 

 
Fig. 4.  Biological images for evaluation of algorithm accuracy. The first five 
data sets are 𝜇-CT and the last two data sets are HR-pQCT. (A) Human 
femoral head and (B) neck, (C) rat tibia, (D) chimpanzee lateral condyle, (E) 
gorilla lateral condyle, (F) human radius, and (G) human tibia  

 
Fig. 2.  Rectangular estimation of the border, 𝐵%, calculated from extrema 
points for the lateral condyle of a chimpanzee. The maximum distances in 
each direction is denoted by 𝑋%&' and 𝑌%&'.  
 
 

 
Fig. 3.  Using the thickness matrix visualized in (A), the first pixel on the 
border (red asterisk in B) was identified and a subset of pixels within the set 
range (teal region) is shown on the thickness image. (C) Consecutive border 
pixel with corresponding areas. (D) The pixels identified were added to the 
previous cortical bone image to create a (E) final segmented image. 
 
 

TABLE I 
In vivo and ex vivo data sets evaluated: human femoral head and neck, rat 
tibia, chimpanzee and gorilla lateral condyles (LC), and human radius and 
tibia. Listed from higher resolution to lower resolution. 
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comparison to the processing time for the algorithm. 
The accuracy of the segmentation was quantified by 

comparing the results from our algorithm to a "gold standard" 
segmentation method of hand contouring using Amira 
(Thermo Fisher Scientific, Waltham, MA, USA). Three 
experienced users, blinded to the algorithm results, manually 
segmented 11 regularly-spaced images from each data set. All 
data was checked for normality using a Kolmogorov-Smirnov 
test (𝛼 = 0.05). The median percentage error in cortical area 
(Ct.Ar) between measurements from our algorithm and 
manual contouring was calculated. We further subdivided 
each image into anatomical quadrants, determined the cortical 
thickness (Ct.Th) for each quadrant, and calculated the median 
percentage error as compared to the gold standard. Note that 
the quadrant encompassing the open border for the gorilla data 
set was not included in the analysis of cortical thickness.  
Median differences in cortical thickness and percent errors 
were compared for modality types and within the spatial 
quadrants. Percentage errors were classified as either Type 1 
(over-estimation) or Type II (under-estimation) for Ct.Th. All 
statistical analyses were performed using RStudio (version 
1.1.447, RStudio, Inc). 

III. RESULTS 
The algorithm was able to separate trabecular bone from the 
cortical shell and subchondral compartments in all data sets 
(Fig. 5). Comparing all data sets (Fig. 6, Supplementary Table 
I), the median processing time for the algorithm (11.3 ± 10.0 
seconds/slice) was approximately 11 times faster than the 
median time required to manually segment the images (126 ± 
33.2 s/slice). The rat data set took the least amount of time to 
segment for the algorithm and users (~0.42, 51.7 ± 27.0 
s/slice). Because of the short time-scale the algorithm used to 
process the rat tibia data, the average time per slice was 
estimated and the standard deviation could not be reported. 
The algorithm took longer to process larger species such as the 
chimpanzee and gorilla data sets at 30.45 and 29.10 s/slice 
respectively. This result was reflected in the manual 
segmentation time, where users took the most amount of time 
on the chimpanzee data set, 173 s/slice.  

Data was not normally distributed; therefore, median ± 
standard deviations are reported. The algorithm 
underestimated cortical area for all data sets, yielding a Ct.Ar 
percentage error of -4.47 ± 4.15 (Supplementary: Fig. 1, 
Table II). As expected, the largest Ct.Ar percentage error 
occurred in the 𝜇-CT gorilla data set with the open border (-
7.89 ± 3.83), and the highest accuracy was in the HR-pQCT 
radius data set (-0.03 ± 1.85). Overall, errors in cortical 
thickness were less than one voxel and there were more than 
twice as many Type II errors (n=19, -40.2 ± 71.7 𝜇m) than 
Type I errors (n=8, 10.5 ± 31.4 𝜇m) (Fig. 7A). 
Errors in cortical thickness using 𝜇-CT data tended towards 
underestimation of thickness (Type I error = -36.7 ± 80.2 𝜇m) 
whereas the radius and tibia HR-pQCT data sets slightly 
overestimated thickness (Type II error = 4.08 ± 77.4 𝜇m). In 
general, the 𝜇-CT rat tibia data set demonstrated the highest 
Ct.Th difference of -58.7 ± 38.8 𝜇m (less than a voxel), and 
the lowest Ct.Th was in the femoral head data (-1.84 ± 37.0 
𝜇m). There was no significant correlation between cortical 
thickness and error. The median Ct.Th percent error across all 
data sets was -2.61 ± 7.75% and was highest in the rat tibia 
data set (Fig. 7B). 
 
 

 
Fig. 5.  Resulting cortical and trabecular bone segmentation for (A) human femoral head, (B) femoral neck, (C) rat tibia, (D) chimpanzee lateral condyle, (E) 
gorilla lateral condyle images, (F) human radius, and (G) human tibia before filtering the 𝜇-CT data sets. The human femoral head data set demonstrates how 
quadrants for all data sets are partitioned and labeled. 
 
 

 
Fig. 6.  Algorithm-based and manual segmentation timings for all data sets 
(average ± standard deviation) arranged in order of increasing algorithm-
based timing. 
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IV. DISCUSSION 
We have presented a structure-based methodology for 

segmenting cortical or subchondral bone from binarized 𝜇-CT 
and HR-pQCT images. Overall, the thickness results of our 
algorithm were less than 1 voxel compared to the gold 
standard resulting in an excellent initial segmentation, but as 
expected, local thickness measurements were variable between 
our algorithm and manually derived measurements. 
The capacity to identify the cortical and trabecular junction 

is likely dependent on the variation of cortical thickness within 
a given image, image resolution, and the degree to which the 
trabecular bone is connected to the cortical shell. A clear 
benefit of the algorithm is the consistency in speed with which 
the cortical boundary could be identified regardless of image 
complexity. In general, the processing time for both manual 
and algorithm increased with increasing segmentation area 
(Supplementary Table I and II). From the rat data with the 
smallest Ct.Ar to the chimpanzee data with the largest Ct.Ar, 
the increase in time required to perform the segmentation 
manually increased from 51.7 ± 27.0 seconds to 173 ± 76.5 
seconds (Fig. 6). In comparison, the algorithm time increased 
from approximately 0.42 seconds to a maximum of 30.5 ± 
1.69 seconds indicating robust performance with respect to 
segmentation area 
There remain options for further decreasing the 

computational time by parallelizing the processing of data via 
multiple instances of MATLAB when dealing with large data 

sets. This option was tested with two instances of MATLAB 
on the gorilla and chimpanzee data sets and improved the per 
slice performance by decreasing the time by 60 percent. 
The in vivo HR-pQCT tibia samples segmentation results 

were within the same range of error as the ex vivo results. The 
𝜇-CT in vivo rat tibia sample resulted in a higher Ct.Ar 
percentage error (-5.86 ± 2.73 %) compared to the median (-
4.46 ± 4.15 %) and had the largest percent error for Ct.Th 
when analyzing all quadrants together (-6.52 ± 4.72 %). 
However, caution should be applied in interpreting the percent 
error values for Ct.Th since large percent errors may be a 
numerical artifact of the small thickness values (especially for 
the rat data). On a quadrant basis, Q1 of the HR-pQCT tibia 
data set demonstrated the highest Type II error (Fig. 7). 
Estimations for Ct.Th usually differ the most where the cortex 
is thin [28], but in this case, we believe the users qualitatively 
over-segmented this quadrant by filling in small gaps and 
irregularities observable within the cortex (green in Fig. 8E.) 
The highest Ct.Ar percentage error (Type II) was in the 

gorilla data set due to the open border on the 2nd quadrant. 
During manual segmentation, the operator can use their 
intuition to distinguish between periphery noise and cortical 
bone, but the algorithm will not segment cortical bone unless 
it is within the range of thickness values (2). The gorilla data 
set demonstrated the algorithmic disadvantage with non-
continuous cortical bone, because the algorithm will "assume" 
the trabecular bone on the open border is cortical bone. 
However, in practice, this data would be discarded and not 
included in an analysis of cortical thickness. 
The Type II error in the femoral neck was the result of gaps 

and small convex border sections in the binarized images 
(displayed in green in Fig. 8A). Fig. 8C demonstrates how 
pores in the cortical bone can affect the segmentation results. 
The Type I error (overestimation) in the gorilla condyle was 
due to inclusion of cortical segments that extended into the 
trabecular region of bone (magenta regions in Fig. 8D). The 
circular appearance of these magenta regions is due to the 
thickness map which is based on the largest inscribed circle at 
each point in the image. Whereas our final smoothing step 
removes the majority of these internal circular irregularities, 
there remains an opportunity for further local refinement 

 
Fig. 7.  Distribution of Type I (over-estimation) and Type II (under-
estimation) cortical thickness per quadrant displayed in (A) cortical thickness 
difference and (B) percentage error. 
 

 
Fig. 8.  Examples of type I and II error demonstrated by overlays of manual 
vs. algorithm segmentation for (A) femoral neck, (B) rat tibia, (C) 
chimpanzee lateral condyle, (D) gorilla lateral condyle, and (E) human tibia. 
White displays the regions of overlapping segmentation, magenta displays 
algorithm segmented bone not present in the manual segmentation (Type I: 
over-segmentation), green displays manually segmented bone not present in 
the algorithm segmentation (Type II: under-segmentation). 



TBME-01421-2018.R2 
 

6 

based on user needs. 
Others have reported reproducibility errors between 

different segmentation techniques, [28, 29], but less data is 
available on comparisons to manual segmentation likely 
because of its time-consuming nature (Buie et al. conducted 
manual segmentation).  Li et al. used a combination of fuzzy 
connectivity and topological methods to develop an automated 
method for segmentation of cortical bone in multi-row 
detector computed tomography (MDCT) distal tibia samples 
and cadaveric 𝜇-CT ankle samples [16]. Interestingly, they 
noted that their higher resolution 𝜇-CT samples had higher 
cortical volume percentage errors (11.5%) than their lower 
resolution MDCT samples (4.9%). Our results followed 
similar trends when comparing 𝜇-CT samples and HR-pQCT 
samples for both area and thickness in that lower resolution 
HR-pQCT data resulted in lower errors. 
Valentinitsch et al. used a texture-based threshold-

independent segmentation tool (TIST) on the human distal 
radius of the same resolution as our HR-pQCT radius data set 
(0.082 isotropic mm3) [21]. They also compared their absolute 
average percentage error Ct.Th results from TIST (10.4 ± 
8.0%) to the Scanco standard algorithm (15.5 ± 19.5%) and 
the segmentation algorithm (9.6 ± 7.7%) from Burghardt et al. 
[20]. We report the median Ct.Th percentage errors for each 
quadrant (Fig. 7), but have also analyzed the absolute average 
percentage error with all quadrants together for comparison. 
Errors using our structure-based approach were lower 6.25± 
5.44) than the three methods outlined above. Lastly, Kang et 
al. reported Ct.Th errors within 1-2.5 voxels for the femur 
using a 3D thresholding based technique. Our median error for 
the femoral head and neck was less than 0.5 voxels (-22.0 ± 
27.8 𝜇m) [22]. 
Here we propose that once a binarized image is obtained, 

the structure itself provides a reliable and unbiased means for 
separating the cortex from the remaining bone. The results 
presented were obtained using the same code for all data sets, 
with Sovitzky-Golay filtering done on the 𝜇-CT data. The user 
inputs that can be changed relate to the border search 
parameters and the size of the section of image to analyze at 
one time. These parameters both contribute to the efficiency of 
the algorithm and can be fine-tuned to increase speed (e.g. 
minimizing the size of the search window). 
An important note is that the algorithm is 2D, with each 

slice independently processed without input from adjacent 
slices. The inclusion of three-dimensional thickness 
information may also improve the accuracy of the algorithm. 
However, in data sets with changing bone areas, the algorithm 
in 2D successfully replicated changes in area over the tested 
range of slices. The accuracy of this algorithm is also 
dependent on the thresholding process used to remove scanner 
artifacts and noise. The bone border can be affected by pixel-
wide gaps in the bone border and noise artifacts, especially 
where the border is concave. Problems with removing imaging 
noise and reading the bone border will cause complications 
downstream of our process (Fig. 1). Therefore, evaluation of 
the initial border provides a means of ensuring that a 
continuous border exists, but the quality of the input binarized 

image remains a significant determinant of the resulting 
morphological measurements. 
Our algorithm for separating subchondral and trabecular 

bone allows for an effective analysis of isolated subchondral 
and trabecular properties across joint surfaces. This 
information is useful for a range of questions in comparative 
biology and clinical applications. For example, the spatial 
distribution of subchondral density and thickness across joint 
surfaces has been used to identify normal and pathological 
patterns of joint loading in human and other mammals [7, 8, 
27, 30, 31]. This is also clinically relevant since local 
(re)modeling responses in subchondral bone may be 
implicated in osteoarthritis. The body of evidence suggesting 
that osteoarthritis is a disease that is initiated in subchondral 
bone is growing. Having the capacity to repeatably identify 
spatially specific changes in subchondral bone is critical to 
understanding how subchondral bone serves as an energy 
absorbing material to dissipate stresses during everyday 
loading of the joint [8, 31]. 
We have also shown that this algorithm is effective for 

regions of diaphyseal bone (radius and tibia) that are used in 
clinical assessment of bone quality. The use of HRpQCT as a 
clinical and research assessment tool is increasing and is an 
inviting imaging modality because of its capacity to image 
bone microstructure with low radiation. Finally, we have 
demonstrated utility of our algorithm to assess in vivo images 
of animal skeletal structure. Animal models are among the 
most widely used pre-clinical methods for evaluating 
pharmaceutical and exercise interventions targeting bone 
quality as well as fundamental studies aimed to identify 
mechanobiological mechanisms driving bone formation, 
resorption during growth, aging, and in the presence of 
disease.  

V. CONCLUSION 
The assessment of bone microstructure continues to be a 

critical component to understanding changes in bone during 
growth, aging, and disease. Our method allows for the 
quantification of trabecular and cortical structures and 
properties across joint surfaces with accuracy comparable to 
other cortical segmentation algorithms based on structure 
rather than tuned threshold parameters. The median error in 
cortical area was -4.46 ± 4.15% and the median error in 
cortical thickness was less than 1 voxel for 𝜇-CT data and less 
than 0.05 voxel for HR-pQCT data. Importantly, this method 
is implemented using open-source software, ImageJ, and 
MATLAB which is available in most research laboratories. 
All code is available for download (https://github.com/TBL-
UIUC/downloads.git). The development of automated 
processing techniques for high-resolution data will allow for 
more thorough analyses over larger spatial regions and 
improve full-field characterizations of structure in complex 
materials. 
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