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Phenology of nocturnal avian migration has
shifted at the continental scale

Kyle G. Horton
Garrett Bernstein3, Subhransu Maji

Climate change induced phenological shifts in primary pro-
ductivity result in trophic mismatches for many organisms'*,
with broad implications for ecosystem structure and function.
For birds that have a synchronized timing of migration with
resource availability, the likelihood that trophic mismatches
may generate a phenological response in migration timing
increases with climate change®. Despite the importance of a
holistic understanding of such systems at large spatial and
temporal scales, particularly given a rapidly changing cli-
mate, analyses are few, primarily because of limitations in the
access to appropriate data. Here we use 24 years of remotely
sensed data collected by weather surveillance radar to quan-
tify the response of a nocturnal avian migration system within
the contiguous United States to changes in temperature. The
average peak migration timing advanced in spring and autumn,
and these changes were generally more rapid at higher lati-
tudes. During spring and autumn, warmer seasons were pre-
dictive of earlier peak migration dates. Decadal changes in
surface temperatures predicted spring changes in migratory
timing, with greater warming related to earlier arrivals. This
study represents one of the first system-wide examinations
during two seasons and comprises measures from hundreds
of species that describe migratory timing across a continent.
Our findings provide evidence of spatially dynamic phenologi-
cal shifts that result from climate change.

Scale is a fundamental consideration in assessing the magnitude
of climate change impacts, whether spatial, temporal or taxonomic.
Broad perspectives are required to understand how climate change
affects entire systems. Organisms are now displaying a number of
ecological and evolutionary responses to climate change®, which
include shifts in their phenologies. As climate change leads to shifts
in the phenology of primary productivity’, mismatches are occur-
ring at higher trophic levels. Seasonal migration represents a system
for which broader perspectives would be invaluable. For example,
with migratory birds, the peak demand for insect prey may occur
after the peak supply, which results in a mismatch of resources®’.
For migratory birds that use many ecosystems at a diversity of
scales, changes in phenology may directly impact the population
distributions and ultimately lead to expansion or extirpation>'’.

Numerous mechanisms for phenological shifts and mismatches
exist*®!!. Migratory birds synchronize movements in time and
space with seasonal food resources, which magnifies risks of dra-
matic mismatches and the effects thereof. For birds that migrate
long distances to winter in the tropics, endogenous cues together
with subtle but predictable exogenous cues, such as photoperiod,
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entrain migratory departure behaviours'?. However, these cues may
conflict with highly variable exogenous cues encountered en route.
As a result, populations that travel long distances in the spring may
be slow to adapt the timing of departure and other migratory behav-
iours to rapid climatic changes that occur elsewhere'”. Conversely,
populations that travel shorter distances may experience closer
relationships between exogenous cues that initiate movements and
cues representing important phenological shifts en route'*. Species
that do not shift their phenologies may exhibit population declines,
assuming they do not increase fitness in other portions of their
annual cycle, whereas those that adjust their migration timing may
maintain or increase population size'.

We do not understand how individual-level changes in migra-
tion phenology scale to affect an entire migration system'®". To
date, challenges in measuring phenology at scales that capture
the full extent of migratory events have constrained inferences.
Phenological change can be incremental, and often requires long
time series to detect shifts. Changes in climate are spatially vari-
able and observations across broad spatial extents are essential to
capture differential responses. Much of our knowledge about avian
responses to climate change originates from individual-based stud-
ies*'®". Inferences that originate from individual-level studies can
be constrained and open to biological and statistical biases based
on the species under consideration and where and when they were
sampled. A broader view of avian responses that represents diverse
assemblages of migrants, captures continental movements at an
aggregate level and samples across long time periods during spring
and autumn migration would provide a unique insight into pheno-
logical changes driven by changing climate'.

Advances in remote-sensing technologies have enhanced our
ability to quantify phenological changes. These platforms provide
repeated and consistent observations over time. Most notably,
they have led to the development of large-scale vegetation indi-
ces”. Remote-sensing platforms for animals are rarer, but the US
weather surveillance radar (WSR) network is emerging as a com-
prehensive source of information about flying animals. Radars have
revealed numerous insights into avian migration*, but only recent
advances in data access and processing allow the examination of
weather radar archives to study long-term phenological change®.
The use of WSRs avoids many of the sampling biases associated with
individual-based examinations by providing a comprehensive rep-
resentation of the entire migration signal across the full migration
season and across a considerable portion of the longitudinal breadth
of the migration system. The methods employed in this study
can be readily replicated annually, which allows for the long-term
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Fig. 1| WSR locations and phenological time series. a, WSR stations

and corresponding migratory flyways. b,c, Yearly cumulative migration
activity for 143 WSR stations for spring and autumn from 1995 to 2018.
Peak migration dates (that is, date at which 50% of cumulative activity
occurred) are shown as circles below each curve. Station locations,
cumulative lines and dates of 50% passage are shaded according to
station latitude. Latitude predicted the date of peak migration for both
seasons (linear mixed-effect model with year as the random effect, spring
P<0.001, autumn P< 0.001). Spring migration showed a more rapid pace
across latitude (spring, 0.83 + 0.04 d per degree of latitude; autumn,

—0.68+0.06d per degree of latitude).

monitoring of migration phenology in a consistent and rigorous
fashion. To this end, we examined the past 24 years of radar data
collected over the continental United States to study the phenol-
ogy of nocturnally migrating birds. We provide the first system-
based indices of migration phenology and test whether migration
timing has shifted at these large scales. We focus on peak migra-
tion, defined as the date by which 50% of the cumulative passage
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occurred, to examine the timing of migration through the biogeo-
graphically distinct western, central and eastern flyways* across 143
radar sampling locations (Fig. 1). We predicted that peak migra-
tion dates would advance with warming seasonal temperatures and
changes would be greatest at northern latitudes where the magni-
tude of warming is strongest***".

We sampled 2,115 spring nights and 2,152 autumn nights, with
a total of over 13 million radar scans from 1995 to 2018. To test
whether migration timing changed, we used a generalized-addi-
tive mixed model to examine change in the peak migration date
across years and latitude (Fig. 2). The peak spring migration gen-
erally advanced, and more so with increasing latitude (Fig. 2a).
Considerable advances in spring timing occurred at 35,40 and 45° N;
however, no change was apparent at 30°N (Fig. 2b). Examining the
decadal trends in peak migration date at individual WSR stations,
using least-squares linear regression, the mean change was similar
across all three flyways (Fig. 3a) (analysis of variance: F,,,,=2.717,
P=0.0695), with a mean advancement of 0.60+0.15ddecade™!
(throughout the article, + refers to the 95% confidence interval).

The autumn phenological changes were similar to those that
occurred in spring (that is, an earlier peak migration), although the
changes were weaker, especially at northern latitudes (Fig. 2c). At
40 and 45°N, the magnitude of advance in the autumn was approxi-
mately half that in the spring (Fig. 2d). The western flyway showed
the strongest advances (—0.89 +0.14; Fig. 3b) and a significantly dif-
ferent coefficient of change (Tukey honestly significant difference,
P<0.001) as compared to the much weaker eastern (—0.52+0.12;
Fig. 3b) and central (—0.34+0.18; Fig. 3b) flyway trends.

Spring air temperatures at 2m above ground level increased
over this same time period (mean 0.58+0.06°C decade™;
Fig. 3c), with the greatest changes occurring within the central
flyway (0.7240.06°C decade™). Temperature changes differed
significantly across flyways (Tukey honestly significant difference,
P<0.001), except between western and eastern regions (P=0.85).
Within the radar coverage areas, the rate of change of average spring
temperature varied between —0.36 and 1.49°C decade™, with 96%
of the stations (137 of 143 stations) showing a warming trend
(Fig. 3c). Similarly, the autumn period showed increasing air tem-
peratures (mean 0.54 +0.05°C decade™’; Fig. 3d); however, temper-
ature changes did not differ significantly across flyways (analysis of
variance: F, ,,=0.87, P=0.421). The autumn slopes varied between
—0.03 and 1.32°C decade™, with 94% of the stations (134 of 143
stations) showing a warming trend (Fig. 3d).

At the yearly timescale, we compared anomalies (deviations
from station-specific means) in phenology to those in tempera-
ture using least-squares linear regression. We examined the 10th
and 90th percentiles of passage date in addition to the peak (that is,
median) to capture the earlier and later phases of migration. Spring
temperature anomalies predicted median passage date anomalies
(slope=—0.74+0.10, F,,,,=215.7, P<0.001, R*=0.07; Fig. 4a).
Early spring passage-date anomalies (10th percentile) showed
the steepest slope (slope=-1.40+0.17, F,,q,,=251.9, P<0.001,
R*=0.09; Fig. 4a) and late periods (90th percentile) showed the
shallowest (slope=—0.35+0.10, F, ,¢,=45.24, P<0.001, R*=0.02;
Fig. 4a). During all three autumn periods, the temperature anoma-
lies predicted the median passage date anomalies, yet with weaker
coefficients (10th percentile, slope=—0.51+0.17, F,,;c=34.17,
P<0.001, R*=0.01; 50th percentile, slope=—0.29+0.15, F, ;=
13.8,P<0.001,R*=0.01;90th percentile,slope =—0.37 +0.15, F 553, =
23.94, P<0.001, R*=0.01; Fig. 4b).

At the decadal timescale, changes in seasonal tempera-
ture predicted spring phenological change within the western
(slope=—1.09+0.89, F,,;=5.83, P<0.05, R*=0.13; Fig. 4b) and
eastern (slope=—-0.91+0.61, F, ;,,=38.60, P<0.01, R*=0.13; Fig. 4b)
flyways, but not the central (slope=-0.52+0.56, F,,=3.32,
P=0.0759, R*=0.08; Fig. 4b)—although all the flyways' spring
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Fig. 2 | Predicted seasonal phenological change. a,c, Predicted peak spring (a) and autumn (c) migration dates by year at 143 WSR stations. The fitted
lines and 95% confidence bands are derived from a generalized additive mixed model (GAMM). b,d, Distributions of phenological change extracted from
1,000 bootstrapped GAMM samples. The solid lines show the mean of the distribution and the dashed lines the 5th and 95th percentiles. The lines and
histograms are shaded by latitude (colour scale as in Fig. 1). Note that the y axes of b and d represent frequency, each of which have a different maxima,

but the same summed total number of samples (1,000).

relationships exhibited the same directional pattern (that is, posi-
tive slopes). Autumn relationships were not significant in the west-
ern (slope=—0.12+0.87, F, ;,=0.07, P=0.794, R*=0.002; Fig. 4d),
central (slope=0.76 +1.56, F, ,,=0.90, P=0.347, R*=0.02; Fig. 4d)
or eastern (slope=-0.36+0.66, F,;,=1.14, P=0.291, R*=0.02;
Fig. 4d) flyways.

Our system-level timing measurements arise from a diverse
collection of migration strategies, which include long and short
distances, and partial and full, obligate, facultative and irruptive
movements. Despite this variation, significant changes in the tim-
ing of bird migration have occurred at the continental scale based
on an aggregate measure of nocturnal migration using a network of
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standardized sensors (that is, WSR-88D). We observed shifts in tim-
ing of movements associated with an expected currency of climate
change—temperature. In the spring, we saw the strongest associa-
tion with annual temperature during the earliest periods (for exam-
ple, 10th percentile), a period of time probably dominated by the
shortest-distance migrants®' and most flexible in their adjustments
to resource availability. Observed increases in air temperature in the
spring were predictive of changes in the migration timing, with a
greater warming relating to earlier arrivals in the spring for all fly-
ways. This is the first analysis of the entire 24-year WSR-88D archive
in the contiguous United States. At these scales, changes comprise
millions of migrating birds of hundreds of species. Numerous
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of each flyway.

studies hinted at the value of such an analysis'®*, but it was pre-
viously impossible in the absence of a combination of advanced
machine learning, data accessibility and interoperability.

The diverse and complex system of behaviours that compose
birds’ migration strategies have evolved in direct relation to chang-
ing climates”. Changing resource availabilities during periods of
significant climatic change presumably influenced the ecological
and evolutionary histories of many species, and that individuals
and species respond to climate-driven changes in their environ-
ments is not surprising. Our results show a continental shift in
migration timing, particularly during spring, but the rate of change
at this scale is limited (for example, about <2d decade™), and may
not match the rapidity of climate-induced shifts in resource avail-
ability’””. Autumn patterns of decadal phenological change were
variable and not predicted by changing temperatures, but warmer
years generally resulted in earlier median passage dates (Fig. 4c)*.
Additional sources of variation in autumn, which included a relaxed
arrival pressure and variable departure dates stratified by age, sex
and success of breeding” probably result in more muted aggregate
responses to changing climates.

Numerous factors may be responsible for the variation in our
results among seasons, flyways and latitude. We observed stronger
phenological changes at higher latitudes, especially during spring,
which highlights the need for large-scale analyses of phenologi-
cal change: spatial gradients can result in highly variable conclu-
sions of phenological change. It is unclear whether this latitudinal
trend represents differential responses across populations and spe-
cies, and/or whether phenological plasticity at the level of the indi-
vidual is responsible. Whereas fixed exogenous cues (for example,
photoperiod) probably trigger the spring departure from winter-
ing grounds'’—which results in relatively consistent arrival dates

66

at southern latitudes (Fig. 2a)—behavioural changes en route may
allow migrants to recalibrate their pace based on proximate resource
availability. If so, what mechanism is responsible for this change in
pace? Reducing stopover duration has the capacity to allow migrants
to track resource availability’*!, but the degree of achievable change
by this mechanism may be limited for some species (that is, stop-
over is essential) and may not match sustained shifts in resource
availability without matching shifts in the initiation of migration.

Regardless of the underlying mechanisms, our findings high-
light geographical differences in migration systems of the continen-
tal United States. We observed the most rapid rates of change in
the western flyway, the part of the continental migration system
with the largest number of species migrating the shortest distances”
and perhaps most apt to exhibit systemic responses to changing
resource availability. However, the western flyway is also notably
understudied’” and is characterized by complex weather, atmo-
spheric and topographical features, all of which presumably drive
phenological patterns.

The integration of additional information on species-specific
patterns, for example, from citizen science or individual tracking, is
a priority to clarify specific mechanisms of phenology change®".
Acquiring sufficient time-series data from these sources of informa-
tion is challenging, but increasingly possible. Furthermore, a greater
understanding of the spatial resolution of phenological change is
important, as the macroclimate and microclimate may interact
within regions for numerous species. Although species’ responses
to changes in climate may vary, system-level phenology measure-
ments at large spatial and temporal scales can inform how rapidly
disruptions are affecting large assemblages of species. Our measures
show that migration systems are exhibiting widespread phenologi-
cal changes.
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Methods

Weather radar data acquisition. We quantified the intensity of avian migration
to measure the phenology of migratory movements and computed the speed and
direction to integrate traffic flows through the night from civil dusk to civil dawn
(the Sun 6° below the horizon). We sampled nocturnal time periods because they
capture the majority of migratory species that move through North America
(~80% of migratory species)*’. However, some taxonomic groups will not be
represented in our analysis, including most soaring species (for example, those

of Accipitridae, Cathartidae, Falconidae and Pelecanidae), aerial insectivores (for
example, those of Hirundinidae) and some diurnally migrating passerines (for
example, those of Fringillidae, Icteridae and Sturnidae). We used unfiltered (that is,
level IT) NEXRAD* WSR data from 143 stations from spring (1 March to 15 June)
and autumn (1 August to 15 November) that encompassed spring 1995 through
to spring 2018. We acquired radar data through the Amazon Web Service portal
(https://s3.amazonaws.com/noaa-nexrad-level2/index.html), extracting data every
30 min from local sunset to sunrise. During the history of this sensor system,
algorithmic changes occurred, which influenced how the data are processed.
Although this is not a concern for phenological analyses, because we do not make
comparisons of absolute magnitude across years, it is a concern when comparing
absolute magnitudes. For this reason, we did not include changes in abundance
because we sought to analyse the entirety of the NEXRAD archive. Rosenberg

et al.** give ten-year radar-derived comparisons of abundance.

Clutter removal from weather radar data. Prior to constructing height profiles
of migratory activity, we created binary masks separately for each calendar year
and radar to remove stationary clutter (for example, buildings, wind turbines and
terrain blockage) from the lowest elevational scan. We created masks by summing
a minimum of 100 low-elevation scans (0.5°), starting on 1 January (16:00 UTC to
18:00 uTc) and continuing to 15 January. If 100 samples were unavailable by 15
January, we expanded the window of selection until the threshold was met. We
classified any pixel above the 85th percentile of the summed reflectivity as clutter
and masked it from our analyses®'.

Precipitation removal from WSR. To remove weather contamination, we trained
a deep convolutional neural network (CNN) to segment regions of precipitation
from the biology in WSR volume scans and set the reflectivity of any pixel to zero
if it was classified as precipitation™. Precipitation and migratory movements tend
to be mutually exclusive, with precipitation, especially heavy precipitation, halting
the movement of migrants®**. We trained the CNN using scans sampled at 30 min
intervals for the first 3h after the local sunset for all WSR stations in April, May,
September and October 2014-2016 (239,128 scans in total). We assigned per-pixel
training labels using polarimetric variables: if the correlation coefficient exceeded
0.95, reflectivity was classified as rain, otherwise it was classified as biological. The
CNN used an FCNS architecture® with a VGG-16 backbone* modified to the
dimensions of the radar data, and was trained by back-propagation®' and stochastic
gradient descent”. The trained CNN classifies pixels using only legacy radar
variables (for example, reflectivity, radial velocity and spectrum width), and may
be run on any historical radar scan. We evaluated the performance on manually
segmented scans that were both historically and geographically representative; the
CNN retained 95.9% of all the biomass (summed reflectivity of the pixels classified
as biology) with a false-positive rate of 1.3%.

Quantifying migration activity from filtered WSR data. From clutter- and
precipitation-free data, we calculated the height profiles of migration intensity,
speed and direction using the lowest elevation scans (0.5-4.5°), at distances
between 5 and 37.5km from the radar. We determined the migration intensity
from reflectivity (# (cm*km™)) and migrant flight direction (that is, track) and
ground speed from the radial velocity from 100 to 3,000 m above ground level
within 100 m altitudinal bins*~**. When necessary, we de-aliased the radial velocity
measures using the WSRLIB package*”**. To limit the influence of migratory
insects, we excluded altitudinal bins with velocity azimuth displays with a root
mean squared error less than one, and we removed samples with a root mean
squared error greater than ten to limit the poor fits**". We further restricted
sampling nights to measures with seasonally appropriate flight directions,
allowing only samples with a northward component in the spring and a southward
component in the autumn (between 90 and 270°, depending on the season).

Quantifying traffic rate and peak migration date. To estimate the nightly
passage of migrants at each WSR station, we first converted the reflectivity factor
(decibel-transformed Z, dBZ) to reflectivity (dBn) following #[dB]=Z[dBZ] +f,
where f=10log,,(10°n°|K|*/4*) (ref. °'). We used an average WSR-88D wavelength
(4) of 10.7 cm and a dielectric factor (|K|?) for liquid water of 0.93. This yielded
p=13.37. Converting Z to 5 resulted in units of cm*km™. To account for the flow
of migrants over the sampling area, we multiplied cm?km™ by the northward (or
southward) component of the measured ground speed (kmh~') and integrated
through the night to account for the nightly passage using linear interpolation
for the area under the curve, which resulting in units of cm*km. We multiplied
by the altitudinal resolution (0.1 km) of each altitudinal bin, which resulted in
cm’km™ per night.
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We defined peak migration date as the date at which 50% of summed
reflectivity was recorded for each radar station (Fig. 1). A single seasonal peak
migration date was calculated for each WSR station for each year. Additionally, we
calculated the dates at which 10 and 90% of the summed reflectivity were recorder
to examine differential responses to temperature during early (10%), peak (50%)
and late (90%) migration periods. We only included seasonal station time series in
our analysis if more than 75% of the nights were sampled.

Quantifying change in date of peak migration. We examined phenological trends
at two spatial levels,: (1) across the entire United States, to capture a continental-
scale trend and (2) within three biogeographically distinct migration flyways
(western, central and eastern”). Our flyway definitions were based on La Sorte

et al.”, which used a hierarchical cluster analysis to identify species with shared
migration routes. The approach to delineate migration flyways was driven by
eBird™ probability-of-occurrence models from 93 migratory species.

To estimate the change in peak migration across the United States, we used a
generalized additive mixed model (GAMM)*. We constructed the GAMM with
the peak migration date as the response variable and used a tensor product smooth
with an interaction between latitude and year, setting the smoothing parameters
(k) to four and five for the respective terms. We used the station ID as a random
effect to account for a unique station variation not captured by latitude. From the
GAMM, we generated predictions of peak migration at four latitude bands (30, 35,
40 and 45°) and from 1996 to 2018 (spring) or to 2017 (autumn). We did not make
predictions to 1995 because the number of representative stations in each flyway
was limited (for example, <5 stations per flyway).

When conducting decadal change analyses, we required WSR station-
specific estimates of phenological change. We obtained these from a linear model
constructed with the WSR ID as a fixed effect and an interaction between the WSR
ID and year. This yielded site-specific coefficients of phenological change for each
WSR station. We applied a ridge-regression penalty (penalty =0.0001) while fitting
the model to control the variance of the station-specific slopes.

Quantifying change in the surface air temperature. To relate interannual
variation in the peak migration with climate, we extracted data on the diurnal air
temperatures (°C) at 2m above ground from the NCEP North American Regional
Reanalysis™ for the same dates for which WSR data were analysed. We extracted
diurnal temperature measures from the radar coverage area (37.5km from the
radar) and averaged the daily measures within each year, which resulted in a
seasonal time series per WSR station. To quantify the seasonal change in surface
temperature, we averaged the temperatures with season (spring or autumn)

and used a ridge-regression linear model with WSR ID as a fixed effect and an
interaction between WSR ID and year. This yielded site-specific coefficients of
change for each WSR station. We used a penalty of 0.00001.

Temperature as a predictor of migration passage: annual anomaly and decadal
change. We examined relationships between temperature and migration phenology
at two levels: (1) annual anomaly and (2) decadal change. We calculated the
anomalies as yearly deviations from station-specific means over the entire period
for both passage dates and temperature. We used anomalies in this analysis to
control for geography. A least-squares linear regression was used to relate the
passage-date anomalies to the temperature anomalies, fit for early (10th), peak
(50th) and late (90th) passage dates for each season. To quantify the dependence of
phenological change (d decade™) on surface temperature change (°C decade™), we
used a least-squares linear regression fit for each flyway for each season.

Data availability
The datasets generated during and/or analysed during the current study are
available at https://doi.org/10.6084/m9.figshare.10062239.v1.

Code availability
Radar processing code and algorithms can be found at https://zenodo.org/
record/3352264#.XXesby2ZPRY
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