Type decomposition in NIP theories

Pierre Simon

Abstract

A first order theory is NIP if all definable families of subsets have finite VC-
dimension. We provide a justification for the intuition that NIP structures should be
a combination of stable and order-like components. More precisely, we prove that
any type in an NIP theory can be decomposed into a stable part (a generically stable
partial type) and an order-like quotient.

Introduction

A family S of subsets of a set X is said to have finite VC-dimension if there is an integer
N, such that for any Xy C X of size N, the restriction of S to X is strictly smaller than
the full power set of X. The name VC-dimension comes from the seminal paper of Vap-
nik and Chervonenkis [VC71] in which they prove that families of finite VC-dimension
satisfy a uniform law of large numbers. This notion was introduced independently at about
the same time in model theory by Shelah [She71] under the name NIP (Negation of the In-
dependence Property). A first order structure M is NIP if all uniformly definable families
of subsets of M have finite VC-dimension. Classical NIP structures include algebraically
closed fields, abelian groups, real closed fields (and more generally o-minimal structures),
algebraically closed valued fields and fields Q, of p-adic numbers.

A subclass of NIP structures which plays a central role in model theory is that of
stable structures, example of which include abelian groups, algebraically closed fields,
separably closed fields... Stable structures exhibit properties characteristic of algebraic
geometry: one can define dimensions on definable sets (possibly ordinal-valued), there is
a canonical notion of independence, called forking-independence and with it comes the
notion of a generic point of definable sets.
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Another important subclass is that of o-minimal structures: a structure is o-minimal if
it is equipped with a definable linear order < such that every definable subset of the line
is a finite union of open intervals and points. O-minimality has proved to be a very effi-
cient framework for tame real geometry: the condition of o-minimality forbids topological
pathologies at the definable level, such as space-filling curves or nowhere differentiable
functions.

Algebraically closed valued fields (ACVF) are often presented as the prototypical NIP
structures since they exhibit both the phenomena of stability (seen in the residue field)
and o-minimality (the value group). In fact, one often seeks to understand NIP struc-
tures starting from the stable and o-minimal situations, which are well understood, and
looking for common properties (this was suggested by Shelah, see e.g. [She04, 4.1]). In
[Sim13], we set out to give a precise meaning to this intuition with the vague goal of
decomposing an NIP structure into a stable part and an order-like part. The first step of
this program was to define a class of structures in which the stable part is trivial, even
without knowing what the stable part would be in general. This led to the definition of
distal structures, which thus correspond to the opposite extreme to stability. Typical distal
structures are o-minimal structures and the field Q, of p-adic numbers. Distal structures
can be thought of as order-like, or purely-unstable. From a more geometric point of view,
we can think of distal structures as being related to semi-algebraic geometry the same way
stable structures are related to algebraic geometry: they are meant to abstract the typical
combinatorial properties of semi-algebraic structures such as R or QQ,,.

Distal structures are characterized by the fact that every type p(z) = tp(a/A) is com-
pressible: for any formula ¢(x;y), there is some formula (x;¢) such that for any finite
Ap C A, there is e € A with ((z;¢) € pand ((;e) - tp,(a/Ao). In other words, we can
uniformly compress every finite part tp,(a/Ao) of tp,(a/A) into a formula {(z;e).

Having defined the notion of order-like, the second part of the program involves de-
composing an arbitrary NIP structure. This can be tried at various levels. In the paper
[Sim13] we developed some tools to decompose types over indiscernible sequences and
over saturated models. We showed in both cases that one could construct some kind of
stable part over which the type behaved like in a distal theory. In the present paper, we
realize our goal by building such a decomposition for types over arbitrary sets of param-
eters (Theorem 4.1). The stable part that we obtain is what we call a generically stable
partial type. The statement is already interesting (and not easier to prove) if we weaken
the condition of generic stability to merely asking that the partial type is Ind-definable.
Here is a corollary of our main theorem that is easy to state:

Theorem 0.1. Let T be NIP and let p(x) = tp(a/A) be any type. Given a formula ¢(x;y),
there are formulas ((x;t) € L and 6(x;t,y) € L(A) such that:
(1) Definability of the d-type: for all (e,b) € AT, §(a; e, b) holds.
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(2) Relative compressibility: For every finite Ay C A, there is e € A such that
((x;e) € pand forallb € Aloy‘, either ((x;e) No(x;e,b) = ¢d(x;b) or ((z;e) Nd(x;e,b) F
—¢(; b).

(3) Uniformity: If we write §(z;y,t) = 0o(z,y,t;d) withd € A and 6y € L, then o
and ¢ depend only on ¢ and neither on A nor a.

As a consequence, we obtain a more explicit construction of honest definitions and
also prove the existence of non-realized compressible types in any unstable NIP theory.

Our program of decomposing types was strongly influenced by various works of She-
lah. The idea that types in NIP can be decomposed into a stable-like part and an order-like
one appears in [Shel0] and [She], where this intuition is explicitely stated and impor-
tant results supporting it are proved. Most notably in [She], Shelah proves a decompo-
sition theorem for types over a saturated model and deduces from it that under the NIP
assumption, the number of types up to automorphisms is small (and this characterizes
NIP). Although our work was inspired by that of Shelah, our approach is quite different
and our theorem neither implies nor is implied by those of Shelah. The two decomposi-
tion theorems can be seen as complementing each other. Whereas Shelah [She] considers
types over saturated models and studies them up to automorphisms, we consider arbitrary
types, and describe them up to elementary equivalence. In Shelah’s decomposition, the
stable-like part is a type finitely satisfiable over a small set with no additional stable-like
properties. In fact, assuming distality does not seem to help in simplifying his proof. Our
stable-like part is a generically stable partial type, which is a stronger condition. In partic-
ular, it is an object invariant over a set of size |T'|. A fair share of the hard work in [She]
has to do with understanding what happens when a type is orthogonal to all types finitely
satisfiable over very small sets (of size < J,), but not orthogonal to some type over a
small set (of size less than that of the saturated model). This intermediate scale disappears
when we take a saturated elementary extension of the type and therefore is not involved in
our work. From the point of view of Shelah’s decomposition, our analysis can be thought
of as looking more closely at what happens at the very small scale.

It is tempting to think that the two results could be combined (for types over saturated
models), but we have not found any way of doing so.

The paper is organized as follows: In the first section, we set our notations and recall
some properties of indiscernible sequences in NIP theories, in particular the theory of
domination from [Sim13]. Section 2 introduces generically stable partial types. Most of it
makes no assumption of NIP. In Section 3, we define compressible types and prove basic
statements about them. Finally Section 4 states and proves the decomposition theorem
along with a few corollaries.
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1 Preliminaries

Throughout this paper, 1" is a complete first order theory in a language L. We let U/ be a
monster model, which is <-saturated and k-strongly homogeneous for some large enough
k. All sets of parameters considered have size smaller that 5. If A C U and ¢(z) € L(U)
is a formula, by ¢(A), we mean the set of tuples a € Al*l satisfying ¢(x).

We use the notation ¢ to mean —¢ and ¢' to mean ¢. If ¢(x;y) € L, tpy(a/A) is the
set of instances of ¢(x;y) and —¢(x;y) in tp(a/A).

By an A-invariant type, we mean a global type p which is invariant under automor-
phisms fixing A pointwise. If p(x) and ¢(y) are both A-invariant, we can define the type
p(z) ® q(y) whose restriction to any set B O A is tp(a,b/B), where b = ¢|B and
a = p|Bb. It is also an A-invariant type. A Morley sequence of p over A is a sequence
I = (a; : i € 7) such that for each i € Z, a; = p|Aa;. A Morley sequence of p over A
is indiscernible over A and all Morley sequences of p over A indexed by the same order
have the same type over A.

Finally, if p is an A-invariant type and ¢ is any type over a base B O A, then we define
p(x) @ q(y) € Syy(B) as tp(a,b/B), where b |= ¢ and a |= p| Bb.

1.1 Indiscernible sequences

We set here some terminology concerning indiscernible sequences.

If [ is an indiscernible sequence, we let op(/) denote the sequence / indexed in the
opposite order. If ] is an endless indiscernible sequence and 7" is NIP, let lim(/) denote the
limit type of I: the global /-invariant type defined by ¢(z) € lim([) if ¢(I) is cofinal in 1.
Observe that if I; is a Morley sequence of lim (/) over I, then I + op(1;) is indiscernible.

A cut ¢ = (1o, I;) of [ is a pair of subsequences of I such that /; is an initial segment
of I and /; the complementary final segment, i.e., [ = Iy + ;. If J is a sequence such that
Iy + J + I is indiscernible (over A), we say that J fills the cut ¢ (over A). To such a cut,
we can associate two limit types: lim(/y) and lim(op(I)) (which are defined respectively
if Iy and op(/) have no last element). The cut (I, I1) is Dedekind if both I, and op(1)
have infinite cofinalities, in particular are not empty.

We now recall the important theorem about shrinking of indiscernibles and introduce
a notation related to it (see e.g. [Sim15, Chapter 2]).

Definition 1.1. A finite convex equivalence relation on Z is an equivalence relation ~ on
7 which has finitely many classes, all of which are convex subsets of Z.

Proposition 1.2 (Shrinking of indiscernibles). Let (a;);cz be an indiscernible sequence.
Let d be any tuple and ¢(yo, .., Yn—1;d) a formula. There is a finite convex equivalence

relation ~4 on I such that given:
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—tg<...<th_1inL;
-850 < ...<Sp_1inLwithty ~g4 s forall k;
we have ¢(ay,, .., ar, _,;d) <> ¢(asy, ..., as, ,;d).

Furthermore, there is a coarsest such equivalence relation.

Given I = (at)iez, ®(Yo,-- -, Yn—1;d) as above, we let T(I,$) denote the number
of equivalence classes in the coarsest ~ given by the proposition. By compactness, the
number T(/, ¢) is bounded by an integer depending only on ¢(yo, ..., ¥y,_1;2). (More
precisely, fix some countable dense order Z. Then by the proposition and compactness,
there is a bound on T(/, ¢) for sequences indexed by Z. Then any sequence [ contains a
countable subsequence with same T(/, ¢), which can then be extended to one indexed by
7. This shows that the bound obtained actually applies to all sequences.)

If I C J are indiscernible sequences and A is any set of parameters, we write [ <1, J
if for every &(yo, ..., yn—1;d) € L(A), we have T(I,¢) = T(J, ¢). Intuitively, formulas
with parameters in A do not alternate more on .J than they do on /.

Note the following special cases:

e If ] is indiscernible over A, then [ <, J simply means that .J is A-indiscernible and

contains /.

o If [ is without endpoints, [ <4 Iy + I + [; is equivalent to the statement that [ is a
Morley sequence in lim(op(7)) over I A and op(1;) is a Morley sequence in lim(7)
over Al .

e If ] is a Morley sequence of an A-invariant type g over A and b is a Morley sequence
of g over Al, then I <,; J holds if and only if .J is a Morley sequence of ¢ over
A containing I and b is a Morley sequence of g over A.J. (This is merely a special
case of the first point.)

e Assume that ¢ and ? are two distinct cuts in an A-indiscernible sequence I. Let a,
and d fill ¢ and d respectively, over A. Let .J be the sequence I with d added in ?.
Then I <45, J means that when we add both @, and d to I in their respective cuts,
the resulting sequence is indiscernible.

Notice also that if / = (a; : @ € Z) is indiscernible, where the indexing order Z is
dense, then given any Z C 7, we can find J = (a; : i € J) extending [ such that [ <4 .J.
This can be seen by a simple compactness argument. We can also build ./ more explicitly
as follows: let M be a model containing AI. Consider the pair (M, I') where [ is named by
a predicate. Take a sufficiently saturated elementary extension (M, 1) < (M’,I’). Then
I’ is A-indiscernible and I <4 I’. By saturation, one can find a subsequence J of I’ which

has the required order type.
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1.2 Domination in indiscernible sequences

In the course of the proof of the decomposition theorem, we will need the theory of
domination in indiscernible sequences presented in [Sim13]. We recall it here.

Definition 1.3 (Domination). Let ¢ be an A-invariant type and let [ be a dense indis-
cernible Morley sequence of ¢ over A. Let b be a Morley sequence of ¢ over AJ and ¢ a
Dedekind cut of I filled by a dense sequence a. = (a; : t € Z). We say that a, dominates
b over (I, A) if: For every Dedekind cut 0 of I distinct from ¢, and d a dense sequence
filling 0, we have, where .J is the sequence / with d added in the cut ?:

]S]A&*J:}IS]AI;J

We say that a, strongly dominates b over (I, A) if for every dense extension I’ O
such that both I <,;, I’ and I <,; I’ hold, and a, fills a Dedekind cut of I’, then a,
dominates b over (I’, A).

Existence of strongly dominating sequences was proved in [Sim13, Proposition 3.6].
We give here a statement phrased slightly differently to fit our needs.

Proposition 1.4. Let q be A-invariant and let Iy + a + I, be a dense Morley sequence
of q over A. Let b be a Morley sequence of q over Alyl,. Assume that I and I, have no
endpoints. Then there is some Iy + a + [, <4 Jy + ag + a + ay + J1, ag contains Iy and
a, contains I, such that b is a Morley sequence of q over AJyJy and a, ‘= ag + a + a;

strongly dominates b over (Jy + Ji, A).

Proof. The proof is essentially the same as that of [Sim13, Proposition 3.6].

Let I + a + I, be a dense Morley sequence of ¢ over A and b a Morley sequence of
q over AIyI;. Assume that @ does not strongly dominate b over (Iy + I;, A). Then there
is some Morley sequence I’ of g over A containing [y + I; such that Iy + I; <45 I’ and
b = q|AI', some tuple d filling a Dedekind cut of I’ over A such that I’ <45 I’ Ud (where
d is placed in its cut), but I’ 4,45 I' U d. In this case, this just means that I’ U d is not
indiscernible over Ab. Hence there is some formula ¢ € L(Ab) such that T(I' Ud, ¢) > 1
and one of the classes of the corresponding convex equivalence relation ~, lies entirely
in the cut determined by d (and in fact, we must have T(I’ Ud, ¢) > 3). Since d is placed
in a cut distinct from that of @, we have I’ Ua 4 I’ U a U d, witness by the same new
class of ~.

Let @, be equal to I’UaUd and build @, < 43 I} +a, + I1. Then b is a Morley sequence
of g over AI} 1.

Now iterate this construction building an increasing continuous sequence (a; : i < k).
At every successor stage, for some formula ¢ € L(Ab) the number T(a;, ¢) increases.
Since those numbers must remain finite, this process stops after less than (|A| + |T'])"
stages. At the end, we have what we were looking for. ]
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The condition @, strongly dominates b over (I, A) is defined looking only at extensions
of [. It turns out that it implies a much stronger domination which allows for arbitrary
parameters. The following is a reformulation of [Sim13, Proposition 3.7] (J/; and J3 there
are taken to be empty, J5 there is Jy+./; here and J, there is .J5 here). It is stated in [Sim13]
in the case where b is a unique realization of ¢, but the proof goes through unchanged if b
is a Morley sequence of ¢q. We also state the hypothesis slightly differently: note that our
hypothesis imply that Jy+a. + .J; is indiscernible over Ad.J; (since it is indiscernible over
Ad and tp(Jo/Ad + Jo + a, + Jp) is invariant over Ad). Thus the hypothesis in [Sim13]
are implied by those here.

Fact 1.5. Let I be a dense Morley sequence of q over A, b a Morley sequence of q over
Al. Fix some Dedekind cut ¢ of I and a, which fills ¢ over A. Assume that a, strongly
dominates b over (I, A), then for any d € U if

e there is a partition I = Jy + J1 + Jo, all sequences infinite without endpoints, such
that Jy + a,. + Ji is indiscernible over Ad and Js is a Morley sequence of q over
Ad+J0+C_L*+J1’

then b is a Morley sequence of q over AId.

2 Generically stable partial types

A partial type 7(z) is a consistent set of formulas closed under finite conjunctions and
logical consequences. We always think of 7 as being over /. Given a set A of parameters,
7|4 or m| A denotes the subset of m composed of formulas with parameters in A. Note that
a |= 7|4 if and only if there is a global extension of tp(a/A) which satisfies 7(x).

A partial type 7 is A-invariant if it is invariant under automorphisms of ¢/ fixing A
pointwise.

2.1 Ind-definable types

Definition 2.1. We say that a partial type 7 over U/ is Ind-definable over A if for every
o(z;y), the set {b : ¢(x;b) € 7} is Ind-definable over A (i.e., is a union of A-definable
sets).

One can represent an A-Ind-definable partial type as a collection of pairs

(Pi(w; ), doi(y)),

where ¢;(x;y) € L, dp;(y) € L(A) such that 7(x) is equal to | J,{¢;(z;b) : b € dop;(U)}.
The same formula ¢(x; y) can appear infinitely often as ¢;(x; y).
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Conversely, given a family of pairs (¢;(z;y), do;(y)), if the partial type 7(x) gen-
erated by [J,{¢:(z;b) : b € d¢;(U)} is consistent, then it is Ind-definable. Indeed if
say ¥(x;b) € m(z), then there are iy,...,7, and by,...,b, € U such that d¢;, (by)
holds for all k and U = (Vz)(\ ¢i, (z;b) — ¢(z;0)). Consider the formula di)(y) =
(Fz1, ooy ze) Ndoi, (zi) A (V) (N i, (25 21) — (x;y)). Then dv) is over A and for all
b e dy(U), we have (x; ') € .

We say that 7 is finitely definable if there is a finite set of pairs (¢;(x;y;), do:(y;))
which generate 7(z) as above. We will use the notation (¢(x;y),dd(y)) to denote the
finitely definable partial type generated by {¢(x;b) : b € dp(U)}. Observe that the partial

types (¢(z;y), dé(y)) and (dp(y) — ¢(z;y);y = y) are the same.

Lemma 2.2. Let w(x) be a partial A-invariant type. Then 7 is Ind-definable over A if and
only if the set X = {(a,b) : b € U*, a |= 7| Ab} is type-definable over A.

Proof. 1f 7 is Ind-definable, then the set X is type-defined by the conjunction of d¢(y) —
é(x, ) where (¢, d¢) ranges over all pairs of formulas in L(A) such that ¢(z, b) € 7(x)
for all b = do(7).

Conversely, assume that X is type-definable over A and take some ¢(z,y) € L(A).
The set X N —¢(x,7) is closed and so is its projection Y to the variables . If b ¢ Y,
then there is no a = 7| Ab such that =¢(a,b) holds. In other words, ¢(x,b) € 7. And
conversely, if ¢(x,b) € 7, then b ¢ Y. Hence the set {b : ¢(z,b) € 7} is open over A as
required. [

Let 7(x) and n(y) be two A-invariant partial types, where 7 is Ind-definable over A.
Then there is an A-invariant partial type (7 ® 7)(x,y) such that (a,b) = 7 ® 7 if and
only if b = n and a |= 7|Ub. Indeed (7 ® n)(x,y) is generated by n(y) along with pairs
(do(y, z) — ¢(x;y,2), 2z = z), where the partial type (¢(z; vy, 2), do(y, 2)) is in 7(z). If
in addition 7 is Ind-definable over A, then so is © ® 7. As usual, we define inductively
7™ (zy,...,1,) to be m(x,) @ 7™V (zy,...,2,_1). All those types are Ind-definable
over A.

Instead of a partial type 7, one could also consider the dual ideal [, of 7w defined as
the ideal of formulas ¢(z) such that =¢(z) € 7. Then an I.-wide type (namely a type not
containing a formula in I;) is precisely a type over some A containing 7|A. This is more
consistent with the usage in model theory, but we find that it is easier to think of the partial
type rather than the ideal due to the similarity between partial generically stable types to
be defined soon and complete generically stable types. The reader might nonetheless find
this point of view useful.?

3Thanks to Udi Hrushovski for pointing this out to me.
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2.2 Generic stability

Definition 2.3. We say that a partial type 7(x) over U is finitely satisfiable in A if any
formula in it has a realization in A (recall that we assume 7 to be closed under conjunc-
tions).

Lemma 2.4. Let 7 be a partial type Ind-definable over A. Let a |= |A and b such that
tp(b/Aa) is finitely satisfiable in A. Then a |= 7| Ab.

Proof. Assume not, then there is ¢(z;y) € L(A) such that ¢(z;b) € 7, but a = —¢(x; b).
By Ind-definability of r, there is some 6(y) € L(A) such that ¢(z;b') € 7 for all b =
0(y). As tp(b/Aa) is finitely satisfiable in A, there is by € A such that by = —¢(a;y) A
6(y). But this contradicts the fact that a |= 7| A. O

Definition 2.5. Let 7(z) be a partial type. We say that 7 is generically stable over A if 7
is Ind-definable over A and the following holds:

(GS) if (ay : k < w) is such that ay, |= 7| Aay and ¢(x;b) € 7, then for all but finitely
many values of k, we have = ¢(a;b).

This definition generalizes the one for complete types; see [Sim15, Section 2.2.2].

Proposition 2.6. Let 7 be a partial type generically stable over A. Then:

(FS) 7 is finitely satisfiable in every model containing A;

(NF) let ¢(x;b) € 7 and take a |= w|A such that |= —¢(a;b). Then both tp(b/Aa) and
tp(a/Ab) fork over A.

Proof. (FS): Fix a model M DO A and some ¢(x;b) € m. Let (a, : k < w) be such
that a, |= 7| Aa~y for all k and tp((ax)/Mb) is finitely satisfiable in M. Then by (GS),
for some k, a = ¢(z;b). As tp(ag/MD) is finitely satisfiable in M, there is a € M,
a |= ¢(x;b) as required.

(NF): We first show that tp(b/Aa) divides over A. Let 7’ = 7 U tp(a/A). It is a
consistent type since a = 7| A (in fact generically stable). Let @ = (az)p<o = 7' ().
By Ramsey and compactness, we can assume that the sequence a is indiscernible over
A. Then (GS) implies that the set {—¢(ax;y) A do(y) : k < w} is inconsistent. Hence
tp(b/Aa) divides over A.

Now assume that tp(a/Ab) does not fork over A. Build (ay : £ < w) an indiscernible
sequence of realizations of tp(a/Ab) such that tp(ay/Abay) does does fork over A (we
can build such a sequence by building a very long one which satisfies only the non-forking
condition and then obtain an indiscernible sequence from it using Erdés-Rado). By tran-
sitivity of non-forking, for every k, tp(asx/Aay) does not fork over A. Therefore, by the
previous paragraph, a; |= m|Aa~. By (GS) this implies that for every ¢(z;b) € m, the
set {k = —¢(ax; b)} is finite. As tp(ax/Ab) is equal to tp(a/Ab) for all k, we obtain a
contradiction. ]
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Proposition 2.7. (1" is NIP.) Let  be a partial type over U which is Ind-definable over A.
Then T is generically stable if and only if the following holds:
(Sym) whenever (ay, : k < w) is indiscernible over A such that a), |= mw|Aacy, then

Qe ): 7T|A(I7gk.

Proof. 1t is clear that (GS) implies (Sym). We show the converse.

Let (a; : k < w) | 7@ (Z) and assume that for some ¢(z;b) € 7, the set {k :=
—¢(ag; b)} is infinite. Without loss, —¢(ax; b) holds for all k£ and then by Ramsey and
compactness we may assume that the sequence (a; : k¥ < w) is indiscernible. Then by
(Sym), we have a;, |= 7| Aa, for all k. We will show the following statement by induction
on [:

For every s € 2!, there is bs, tp(bs/A) = tp(b/A) and for k < I, we have =
¢(ag; bs) <= s(k) = 1. This will contradict NIP.

For [ = 1, we set bipy = b and as ¢(x;b) € m, there is by such that ¢(ao; b(1y) holds
and tp(bgy/A) = tp(b/A).

Assume we know it for [ and let s € 271 If s(k) = 0 for all k, we may take b, =
b. Otherwise, take some k., < [ such that s(k.) = 1. By induction hypothesis, there
is V/, tp(b'/A) = tp(b/A) such that for k < [, k # k,, we have = ¢(az; b')**). We
have ¢(z;b') € m by invariance. Therefore for any formula 6(y) € tp(b/A), we have
(F)O(Y) A A<t ppr. Plar; y)*® A d(z;y) € m(x). As ay, = 7| Aayy,, we can find b, as
required. ]

Proposition 2.8. Let m be A-invariant. Assume that for all B O A, and for all p € S,(B)
extending
(GS).

B, T is included in every global non-forking extension of p. Then T satisfies

Proof. Assume that 7 satisfies the assumption and let (a; : ¢ < w) be such that a; =
m|Aa;. If for some ¢(x;b) € 7, {i ;= —¢(a;; b)} is infinite, then the set 7(z)|Aa<, U
{z # a; 1 < w}U{—¢(z;b)} is finitely satisfiable in {a; : i < w}. As such, it has a
global extension ¢ finitely satisfiable in that same set. Then ¢ is a fortiori finitely satisfiable
in B=AU{a; : i <w} and extends 7|p. But 7 ¢ ¢; contradiction. O

Lemma 2.9. Let 7w(x) be generically stable over A and let mo(x) C 7(x) be a partial
Ind-definable type, definable over some Ay C A. Then there is m.(x) C mw(x) containing
7o(x) which is generically stable and defined over some A, C A of size < |Ao| + |T|.

Proof. This is a simple compactness argument. As 7(x) is generically stable, for any
(¢(z;y),dd(y)) in mo(x), there is some ¥ (z; ..., z,) in 7™ (zy, ..., 2,) such that =
(Var ...z, y)((z1 ... 20) Ado(y)) = Vi, @(@k;y). The formula (x4, ..., x,) is
already in 7T£n) for some finitely definable 7T1(l’) C m(x). There are at most |Ag| + |T|
many schemes (¢(z;y), dp(y)) in my(z). Doing the same procedure for each of them, we
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obtain some 7 (z) C 7(z) Ind-definable over a set of size |T'| + | Ao| such that for any

formula ¢(x;d) € m, ﬂw) (20, --.) N Ngew —@(x1; d) is inconsistent. We may assume
that 7; contains my. Now iterate this construction to obtain my(x), m3(x), . ... Finally set
Tw = Ug <w Tk Then 7, is generically stable and contains 7. ]

Observe that if {m;(z) : i < a} is any small set of partial types, each of which is
generically stable over A, thenif | J,_, m;(7) is consistent, then it is generically stable over
A. This follows at once from the definition. If we assume that | J,__, m;(x)|4 is consistent
and does not fork over A, then we can conclude that | J,_, 7;(x) is consistent. This is
because any global non-forking extension of | J,_,, mi(x)|a will satisfy all the types m;(x)
by (NF). In particular, if A is an extension base (no type over A forks over A), for any
type p(z) € S(A) the union of all the partial types 7(x) generically stable over A such
that 7|4 C p is again a (consistent) generically stable partial type. As z = z is such a
type, there is a maximal 7 (x) generically stable over A such that 7|4 C p.

Over arbitrary sets A, the situation is less clear. We can however state the following
two lemmas (which will not be used later).

Lemma 2.10. (T is NIP.) Let (), () be Ind-definable over A. Assume that 7 (Z)| 4U
n“)(Z)| 4 is consistent, then m(x) U n(x) is consistent.

Proof. Assume that for some b, ¢(z;b) € mw(x), while =¢(x;b) € n(x). Let (a; : i <
w) E (@4 Un®],). We will build inductively tuples b, s € 2<%, such that b, =4 b
and = ¢(a;;bs) <= s(i) = 1 for i in the domain of s.

As ¢(z;b) € , for any formula 0(y) € tp(b/A), we have ag = (Fy)0(y) A o(x;y).
Also as —¢(z;b) € 0, ap = (Jy)0(y) A ~¢(x;y). Hence we can find by and by as
required. Assume we have b for s € 2<™. Let s € 2". Since ¢(z;bs) € 7(z), for every
0(y) € tp(b/A), we have (3y)0(y) ANy, (ar; y)* P AG(z;y) € m(z). Asa, = 7| Aacy,
we can find by as required. Similarly using 7 instead of m, we find bs. At the end, we
contradict NIP. ]

Lemma 2.11. Let 7(x) and n(x) be generically stable over A. Assume furthermore that
7@ (Z) is generically stable over A and that 7(x)|a U n(x)| 4 is consistent. Then 7(z) U

n(z) is consistent.

Proof. First note that the hypothesis that 7(z)| 4Un(x)| 4 is consistent implies that 7(z)|4U
n(x)|ap is consistent for any B. Indeed, if it was not consistent, there would be some
d(x;a) € w(x)|4 and Y(x;b) € n(x)|ap whose conjuction is inconsistent. Then by com-
pactness, there is some formula 6(y; a’) € tp(b/A) such that ¢(z;a) = —(3y)(0(y; a’) A
¥ (z;y)). But the formula (3y)(0(y; a’) A ¢ (x;y)) belongs to n(x)| 4, so w(z)|a Un(x)|a
is already inconsistent.
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Assume that the conclusion of the lemma does not hold, then there is ¢(z;b) € 7(z),
—¢(z;b) € n(x). Let N be maximal such that ™) (z ) |aUA, 5 =6 (;; b) is consistent.
Let (Z' : i < k) be a long Morley sequence in 7) over A such that for each 4, there is
bi = N;jen #(2%5y), bi =4 b. Now leta’ |= 7(x)|a Un(x)| ap.. Then =¢(a’; b;) holds for

N+1)

all 7. But also for some i, 7 E ) |Ad’, so a’ 7' satisfies 7 over A. This contradicts

the maximality of V. O

EXEMPLE 2.12. Consider the model companion of the theory of meet-trees in the lan-
guage {<, A} with an additional function f from the main sort to an extra sort C' with no
structure on it. This is an NIP (w-categorical) theory. Let q(y) be the global type of a new
element of C' and let my(z) be the empty type of an element of the main sort. Then q(y)
and my(x) are generically stable, but q(y) ® mg(x) is not. Also 7(y,z) = q(y) U mp(x) is
generically stable, but ) is not.

To see that q(y) ® my(x) is not generically stable, consider a sequence (c;, a; : i < w)
such that:

—a;Naj=a; Naj, forall j,j' >ianda; A\ 11 < aip1 A Giyo;

- fla; Naipq) = ¢

—¢; satisfies q over a<;, C<;.
This is a Morley sequence of ¢ ® mp, but the sequence in the reverse order is not. Hence
q ® my does not satisty (GS) by Proposition 2.7. Also m® is not generically stable as it
implies q @ mp (when restricted to two of its variables).

The following proposition will not be used later in the paper, but Proposition 4.6 in the
proof of the main theorem is inspired from it.

Proposition 2.13. Let a(y) be a partial type, generically stable over A. Fix some a,b € U,
b = a(y)|a and let p(x,y) C tp(a,b/A). Then the partial type 7(x) = (Jy)(a(y) A
p(x,y)) is generically stable over A.

Proof. Note that for any set B O A, 7|B = (Jy)(a(y)|B A p(z,y)).

Since a(y) is A-invariant, 7(z) is also A-invariant. We first show that 7 is Ind-definable
using Lemma 2.2. Fix a variable z and let X, (y, z) be the set of pairs {(b, ¢) : b |= a|Ac}.
For any tuples a and ¢, we have a |= 7|Ac if and only if there is b such that p(a,b)
and (b,¢) € X,. As X, is type-definable by Lemma 2.2, this whole condition is type-
definable. By the lemma again, 7 is Ind-definable.

We next show (GS). Assume for a contradiction that for some ¢(x;c) € m, the set
7@ (21 1 k < w)) U {=p(z;c) : k < w} is consistent. Let (az )<, realize it. Note that
if we replace (ay, : k < w) by a sequence (a), : kK < w) which has the same type over A,
then we can find ¢ =4 ¢ such that =¢(aj; ¢’) holds for all k. By invariance of 7, we have
¢(x; ') € m,s0 (a},) also witnesses a failure of (GS).
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We build by induction on k tuples (by : k& < w) such that tp(ay, by /A) = tp(a,b/A)
and b, = o|Aacibox. We can find by since ag = m|A. Assume we have found by.
As apy1 | m|Aa<g, there is an automorphism o fixing Aa<y such that o(axi1) =
m|Aa<kb<y. By the remark above, we may replace the sequence a~j by o(asy), since
this does not alter the type of the full sequence (a;);~.,. Hence we may assume that actu-
ally a1 = 7| Aa<ib<) and then we find by as required.

We now have a sequence (apb, : k < w) such that (a)pew = 7@ ((24)r<w) and
¢ such that ¢(x;c¢) € 7 and —¢(ay; c) holds for all k. Since the conditions (ay )< =
7@ ((z3)rew) and by = alAa by are type definable by Lemma 2.2, we can apply
Ramsey and compactness and assume that the sequence (axby : k < w) is indiscernible
over Ac. Using (GS) for the type «, we conclude that for every k, b, |= | Ac. But by the
definition of , this means that a;, = m|Ac. Contradiction. O

3 Compressible types

In this section, we define compressible types. This notion was introduced in [CS15] (with-
out giving it a name), where it is shown that a theory is distal if and only if all types are
compressible. The reader may take this as a definition of distal theories.

If A C U is any set of parameters, and a € U is a tuple, we let (A, a) be the structure
whose universe is A, with the induced structure coming from a-definable sets: for every
#(z;a) € L(A), we have a predicate R,(7) interpreted as {b € A : U = ¢(b;a)}. If
M = (A, a), then it is isomorphic to (A, a) for some A" C U.

We think of (A, a) as a first order structure encoding the type of a over A and we will
be mainly considering properties of tp(a/A) that translate into first order properties of the
structure (A, a). For example, if ¢(x;y) € L, the fact that tp,(a/A) is definable is a first
order property of (A, a) in the sense that if (4’,a) = (A, a), then tp,(a/A) is definable if
and only if tp,(a/A’) is definable.

Definition 3.1. A type p(xz) = tp(a/A) is compressible if given an |A|T-saturated ele-
mentary extension (A, a) < (A, a), for any formula ¢(z;y) € L, there is some (x;¢€) €
tp(a/A’) such that ((x;e) - tp,(a/A).

Observe that by compactness, this definition is equivalent to the following: for any
formula ¢(x; y), there is a formula ((x; ) such that for any finite Ay C A, thereise € A
such that a |= ((7;e) and ((7;¢) - tpy(a/Ao).

Recall the notion of honest definitions from [CS12] (see also [Sim15, Chapter 3]):
Given (A, a) and an NIP formula ¢(z;y), there is (A,a) < (A’,a) and some 6, (y;e) €
L(A’) such that 0;(A;e) = ¢(a; A) and 01 (A’;e) C ¢(a; A’). We call 6;(y; e) an honest
definition of ¢(a;y) over A. Note that e can be found in any | A|*-saturated extension of
(A, a) since the requirements on it are first order expressible over A in that structure.



14 Pierre Simon

One easily checks that if tp(a/A) is compressible and ((x;e) is as in Definition 3.1,
then the formula

01(y;e) = (Vo) [((z:€) = d(z3y)]
is an honest definition of ¢(a;y) over A. In fact, we even have the stronger property

0 (Use) C pla;U).

Lemma 3.2. If (A,a) = (A, d), then tp(a/A) is compressible if and only if tp(a'/A) is

compressible.

Proof. Assume that tp(a/A) is compressible. Fix a formula ¢(x;y) and let {(z;t) be
given by compressibility of tp(a/A). Define also

0(y;t) = [(Va)¢(25t) = o(a;y)] V [(Va)((25t) = —p(a;9)] -

By compressibility, for any finite Ay C A, there is ¢ € A such that ((a;e) holds and
Ap C 0(A;e). Hence for any integer m,

(A a) = (Vyo, - - Ym—1)(3H)

Clat) A N Q(yi;t)] :

i<m

Since (A, a’) is elementarily equivalent to (A, a), it satisfies all those formulas as ¢
varies. This in turns implies that tp(a’/A’) is compressible. (Note that 0(y;t) says that
((x;t) implies a ¢-type over y. If both ((a;e) and 6(b; e) hold, then the ¢-type over b
implied by ((x; e) has to be that of a since a |= ((z;e¢).) O

The following was implicit in the proof of [CS15, Proposition 19]. Recall that two
types p(z) and ¢(y) over the same set A are weakly orthogonal if p(x) U ¢(y) implies a
complete type over A.

Lemma 3.3. Let p(x) = tp(a/A) be any type and take (A, a) < (A, a), |A|T-saturated.
Then the following are equivalent:

1. pis compressible;
2. tp(a/A) is weakly orthogonal to all types q(y) € S(A’) finitely satisfiable in A;

3. for any q(y) € S(A') finitely satisfiable in A, tp,(a/A") U q(y) implies a complete

type in variables x"y over ().

Proof. Assume first that p(x) is compressible. Let ¢(y) € S(A’) be finitely satisfiable in
A and let ¢(x;y) € L. Let {(z;e) be given by the definition of compressibility. Consider
the formula

0(y; e) = [(Vr)( (x5 €) = d(z;y)] V [(Vo)((z:e) = —o(x;y)] .
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By assumption, every b € A satisfies 0(y; ). By finite satisfiability of ¢, we have ¢(y) -
(y; e). Thus for some € € {0, 1}, ((z;€) Aq(y) F ¢(x; y)¢ and in particular p(z) Ag(y) F
¢(x;y). This shows that (3) holds.

To see that (2) also holds, take b € A’ a finite tuple. There is A C A” C A’ such
that b € A”, (A,a) < (A”,a) < (A’,a) and |A"| = |A|. By Lemma 3.2, tp(a/A") is
also compressible. Hence everything done for A also applies for A”. Consider the type
¢ (y'z) = q(y) U{z = b}. Then ¢ is finitely satisfiable in A”. By the previous paragraph,
tp,(a/A") U ¢ (y) implies a complete type over (). As b € A’ was arbitrary, this implies
that tp(a/A’) and ¢(y) are weakly orthogonal.

Assume now that that p/(z) := tp(a/A’) is weakly orthogonal to every ¢(y) € S(A’)
finitely satisfiable in A and take some formula ¢(z;y). Let S C S,(A’) be the set of
types finitely satisfiable in A. It is a closed subset of .S, (A’) and thus compact. For each
q € S, for some ¢, € {0,1}, we have p'(z) A q(y) F ¢(z;y). By compactness, there
are formulas (,(x) € p'(z) and 0,(y) € ¢ such that already (,(z) A 0,(y) F ¢(x;y)%. Let
T C S finite such that the family {0,(y) : ¢ € T'} covers S. Define ((z) = A 7 (o(2).
Observing that any b € A satisfies \/ ;. 0,(y), one sees that ((z) F tp,(a/A). O

4 Decomposition

We now come to the main theorem of this paper. Intuitively, it says that if 7" is NIP, and
p(z) = tp(a/A) is any type, then there is a generically stable partial type 7(x) contained
in p and such that p is compressible up to .

Theorem 4.1. (7" is NIP.) Let p(x) = tp(a/A) be any type. Then there is 7(x) generically
stable over A with w(x)|a C p(z), such that if (A,a) < (A',a) is |A|"-saturated and
q(y) is a global type finitely satisfiable in A, then tp,(a/A") U (7 @ q)|a(z,y) implies the
complete type (¢ @ p)(y, )| a-

Note that as 7 is Ind-definable, we automatically have 7(x)|4 C p'(x). Also, if one
prefers to think about the dual ideal /,; rather than the partial type 7, then the conclusion
can be rephrased by saying that any two [.-wide extensions of p’(z) to a realization b of
q(y) have the same restriction to Ab.

We proceed with the proof.

Let p(x) = tp(a/A). Let ¢(y) be a global A-finitely satisfiable type which will be fixed
for most of the proof. We will write a |= Mor(q)|A to mean that a is a Morley sequence
of ¢ over A. The indiscernible sequences we consider will always be implicitly assumed
to be indexed by a dense order without endpoints.

Let ) be the class of types tp(a/Aa), where a = (a; : i € Z) is an indiscernible
sequence and there is a Morley sequence I of ¢ over Aa such that [ + a is A-indiscernible
(hence is a Morley sequence of q over A).
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Lemma 4.2. There is s(Z) € Q such that ifa |= s and a <4 @’ with tp(a’ /Aa) € €, then

a <y, a.

Proof. The proof is similar to that of Proposition 1.4: if some a does not have the required
property, we increase it introducing some additional alternation over Aa and iterate. So
start with any so € Q and @ |= so. We try to build by induction an increasing sequence
of types s; € Q, 1 < (JA| 4+ |T'|)" (where increasing implies that the variables of s; are
included in that of s;, ¢ < j) as follows:

At a limit stage ), set sy = (J,., Sa. For each o < A, let a, |= s, and let I, be a
Morley sequence of g over Aa such that I, + a, is A-indiscernible. Pick an ultrafilter §
on X extending the cofinal filter. Let (I, @) realize the limit of (tp(/,, dn/Aa) : o < \)
along §. Then a, realizes sy, I, is a Morley sequence of ¢ over A and I, + a, is A-
indiscernible. Hence s, € €. Note also that for each ¢, T(ay,¢) = sup .y T(Ga, @).
(Recall the definition of T given in Section 1.)

Assume that s, has been built and let a,, = s,. If s, has the required property, we are
done. Otherwise, there is some @, <4 Ga+1 such that tp(ae+1/A4a) € Qand a, Aaq o1
This implies that for some formula ¢ € L(Aa), we have T(an11,¢) > T(aq, ¢). Set
Sat1 = tp(Ga41/Aa).

As the numbers T(-, ¢) must remain finite, this construction ends after less than (| A| +
|T|)* steps. O

Pick some s € () given by the lemma and let a, realize it. One can think of a, as
encoding the g-stable part of a. Let also I be a Morley sequence of ¢ over Aa (indexed
by Q) such that I + a, is A-indiscernible. We show the following properties:

Xy I = Mor(q)|Aa and I + a, = Mor(q)|A.

X; Whenever [+a,<al+Ip+a.+1, then a, <, I+Io+a.+1, Io+1; = Mor(q)|Ala
and [; = Mor(q)|Aal lya,.

Property X, is immediate from the construction. We show property X;. Let [ + a, <4
I+ Iy + a, + I. Cut [ into two infinite pieces as [ = .Jy + J; and notice that tp(J; +
Iy + a, + I/Aa) € ) as witnessed by Jy. We also have a, <4 J; + Iy + a. + 1
since both those sequences are indiscernible over A. Hence by the choice of a,, we have
as aq J1 + Iy + @, + I;. Since J; can be an arbitrarily large subset of I, we have
Gy Dpo I+ Ip+a, + 1.

For the second point, let op(/_,) realize lim(/) over everything and I, realize Mor(q)
over everything, including I ;. Then I + I + Iy + a. + I + I is A-indiscernible, or in
other words I + a, <4 I + 1_1 + Iy + a, + I1 + I>. We therefore have a, <4, + 11 +
Iy + @, + I; + I by the previous paragraph, which implies that I + I and I; + I5 are
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mutually indiscernible over Alaa,. Since I 1 + I is a Morley sequence of ¢ over Ala,
so is Iy + I; and similarly since 5 is a Morley sequence of ¢ over Aallyay, so is ;.

Let 7(z) = m,(x) be the partial type
p(x) U (Fal)(tp(zal, /A) = tp(aa./A) & @, is indiscernible over I).
Lemma 4.3. If B is any set of parameters containing A, then w(x)|p is:
p(x) U (Fal)(tp(zal /A) = tp(aa./A) & @, is indiscernible over B).

Proof. Ttis clear that this partial type is included in 7| 5. Conversely, assume that tp(a’al, /A) =

tp(aa./A) and @’ is indiscernible over B. We have to show that ' |= 7|, i.e., that
tp(a’/B) has a global extension which satisfies 7. Work in a larger monster model ¢/’
U. By Ramsey and compactness, build an indiscernible sequence a” over U/ having the
same type as a, over B. Then we can find a” such that tp(a”a’/B) = tp(a'al,/B). This

shows that a” = 7|l and hence o' = 7|B. O

In particular, taking B = A, this shows that 7(x) is consistent.

For later purposes, let us note now that if we have any number of types of the form
above, with the same a and different a,, then their conjunction is also consistent. In fact,
we can concatenate all the a,’s into one indiscernible sequence of possibly infinite tuples
and apply the same argument.

Lemma 4.4. The partial type 7(z) is Ind-definable over A.

Proof. Given any index set Z, the set {(a = (a;);ez,b) : @ is indiscernible over Ab} is
type definable over A. The lemma then follows at once from lemmas 4.3 and 2.2. ]

Let a, <a7q lo + @y + I1. Then I + a, <a, [ + Iy + a, + I, so by X, we have
I+ Iy + I = Mor(q)|Aa.
Next build b, such that:

®o I+ Io+ I + b, = Mor(q)|4;
®; tp(b,/Aa) = tp(a,/Aa).

To see that this is possible, construct Iy + @, <z, Ip + 1] + a., where I{ has the same
order type as [;. Then I + Iy + I{ =4, I + Iy + 1, as both are Morley sequences of g
over Aa by X, and we can take b, such that I + Iy + I} + @, =aq I + Iy + I + ..

By Proposition 1.4, we can now find Iy + a. + [1 <a; Jo + ap + a. + a; + J1 such
that, denoting Gy + @, + @1 by G..:

X9 B* }Z MOI'(Q)|AIJOJ1,
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®3 Gy strongly dominates b, over (Jy + Jy, AI).

We now come to the main technical lemma of this proof.

Lemma 4.5. Assume that a' |= |B, then there is b, such that tp(a'b.,/A) = tp(aa./A)(=
tp(ab,/A)) and b, = Mor(q)|B.

Proof. We have
IT4+a, < Il+1Iy+a,+1L<ul+ Jy+ag+a. +ay + Ji.
By transitivity of <4 and X;, we have:
R4 ax ag L+ Jo+ao +a. +a; + Ji.

Let op(J2) be a Morley sequence in lim(.J;) over everything constructed so far. We
then have

I+ Jy+ag+ac+ar+J1 ul+ Jy+ag+ ax+ar + J1 + Jo.

By transitivity of <4 and the last statement in Xy, .J; is a Morley sequence of ¢ over

Aal JyaysJ1. Also we have Jy + J; < Jy + J; + Jo over everything constructed so far, and

by the definition of strong domination, @, strongly dominates b, over (Jo+ J1+ Jo, AI).
Also by ®, and the construction of .J5:

®s5 b, |= Mor(q)|AIJy ]y Js.

Assume that ' = 7| B and by Lemma 4.3, let @, be such that tp(a'a’, /A) = tp(aa./A)
and @, is indiscernible over B. Construct a, <p, I' + J| + ay + a, + a} + Ji, where each
primed sequence has the same order type as its unprimed counterpart. By ®,4, we have:

tp(I' Jyagalay Ji a' JA) = tp(I Joagasar Jy'a/A).
Build then J) = Mor(q) over everything constructed so far. Then again
tp(I' JagaLay Ji Jya' JA) = tp(I Joaga.ay Ji o a/A).
So we can find some ¥, such that
tp(I' Jyapalay J, Jyb a’ JA) = tp(I JoGoa.ay Jy Job a/A).
Let a,, = aja.a). We now have:
o J| + al, + Jj is indiscernible over BI’;

e, J) is a Morley sequence of g over B U Jja.,, J;;
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e, a., strongly dominates b, over (Jj + J| + J5, AI');
o3 0. = Mor(q)|AI' J}J. T,

By Fact 1.5 (takingd = B, A = AI',and I = J) + J| + J4), b. is a Morley sequence of
q over B as required. [

We can now show:
Proposition 4.6. The partial type 7(x) is generically stable over A.

Proof. We have already seen that 7(x) is Ind-definable over A.

To show property (GS), let A be some large enough cardinal. Assume that for some
d(z;d) € , the set 7@ ((2;)i<w)|A U {=é(xs;d) : i < w} is consistent, then by com-
pactness, 50 is 7N ((2;);cx)|A U {=d(zi;d) : i < A}. Let (a; : i < )) realize it. We
build inductively a sequence (@’ : ¢ < M) such that for each 4, tp(a;a’/A) = tp(aa./A),
a; | m|Aas;a’’, and the sequence @’ + al + - - - is a Morley sequence of g over A.

Let k < ) and assume that we have constructed @ for [ < k. As a, = 7|Aaza’r,
there is ¢* such that tp(a,c®/A) = tp(aa./A) and & = Mor(q)| Aaras*. The sequence
(a; : k < i < ) realizes 7™ over C' := Aa<pacs*. Therefore tp((a;)z<i<r)/C) has an
extension to C'@* which contains 7™ |Ce*. Let (a} : k < i < \) realize that extension.
There is an automorphism o fixing C' pointwise and sending a; to a} for all k < ¢ < .
Set a* = o~1(c"). Then tp(ara®/A) = tp(aa./A), a¥ = Mor(q)|C and (a; : k <
i < M) realizes 7 |Ca*. This finishes the construction. Note that at a 7 < A limit the
construction can go on: we have that (a; : n < i < \) realizes 7V over a_,a" since this
is true over any finite subset of it.

Having done this, recall our parameter d from the first paragraph. By shrinking of
indiscernibles, for some i < ), the sequence a! is indiscernible over Ad which implies that
a; |= 7| Ad. This contradicts the hypothesis that a; = —¢(x; d). Hence 7(x) is generically
stable. []

Next, we show domination.

Proposition 4.7. Let I be a Morley sequence of q over Aa and let b |= q|Al. Assume that
a |= m|ALb, then b = q|Aa.

Proof. Let b |= Mor(q)|AI containing b as one of the elements in the sequence. Then
tp(a/AIb) U w|AIb is consistent. Let a’ realizes that type and let o be an automorphism
fixing pointwise AIb and sending @ to a’. Then replacing b by o—!(b), we may assume
that a |= 7| AIb.

As a |= w|AIb, by Lemma 4.5 there is @, |= Mor(q)|AIb such that tp(aa./A) =
tp(aa./A). Then the sequence I + b + @’ is indiscernible over A. This implies that I +
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a. <4 I+b+a, and tp(b + a@./Aa) € €. Hence by X, I + b is indiscernible over Aa.
Therefore b |= Mor(q)|Aa and in particular, b = ¢|Aa. O

We now have all we need to conclude. For any type ¢(y), the construction described
above supplies us with a generically stable type 7,(x). Let 7(x) be the conjunction of
all those types as ¢ varies. Then by the remark before Lemma 4.4, 7(x) is consistent,
and therefore generically stable. Let (A,a) < (A’,a) be |A|T-saturated. So A’ contains
Morley sequences over Aa of all types ¢ finitely satisfiable in A. The domination property

then follows from Proposition 4.7, and the theorem is proved.

As a corollary, we obtain a more explicit form of honest definitions. Recall the follow-
ing special case of the (p, ¢)-theorem of Matousek (see [Sim15, Section 6.2]), which will
be needed to prove uniformity.

Fact 4.8. Let 0(y;t) be an NIP formula. Then for some n and N the following holds:

If B c UM is any set of parameters and A C U finite such that for any Ay C A of
size < n, there is e € B with Ay C 0(A;e), then there is a finite set B, C B of size < N
such that for any a € A, for some e € B,, 0(a;e) holds.

Corollary 4.9. (T is NIP.) Let ¢(x;y) be any formula, then there are formulas ((x;t),
Oo(y; 1), 01(y;t) and §(x,y,t;u), such that the following holds:

For any small set A of size > 2 and a € U\, there is d € A"l such that:

—forall (b,e) € AW |= §(x,b, e; d);

— for any finite Ag C A, there is some e € A, a |= ((z;¢e), Ag C Op(A;e) U b (A;e)

and for e = 0,1 we have:

F (Vo,y) [0(y; e) AC(x5e) AN, y,e;d)] — d(;y)".

Proof. Let ¢(x;y) € L and for now fix some type p(z) = tp(a/A).

Let w(x) be given by Theorem 4.1 for this p. Let (A,a) < (A’,a) be sufficiently
saturated and let .S be the set of types in S, (A’) finitely satisfiable in A. For ¢(y) € S, let
e = ¢(q) be such that ¢(y) ® p(x) - ¢(x; y)c. By Theorem 4.1 and compactness there are:

—04(y;e) € g4,

— G, (wie) € tpla/A),

— finitely many pairs ¢, ;(x;y,t), d,i(y,t;d), d € A, where each one of the partial
types (¢q.i(x;y,t), dibg(y, t;d)) is in 7(x), such that

O4(ys €) A Colwie) A N\ (dibgily, e5d) = vy, y,€)) F bl y)".

Allowing e and d to be infinite, we can assume that those parameters are the same for all
q.
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By compactness, let S, C S be a finite set such that {6,(y;e) : ¢ € S.} covers
S.Fore = 0,1, set Sc = {q € S : e(q) = €}. Define Oc(y;e) = V 5. 04(z;€),
C(z;e) = N,yes. Col@;€) and let (i, y,t), dii(y, t; d) ) i<, enumerate all pairs of formu-
las (¢g.i(x;y, 1), dg.i(y, t; d)) for ¢ € S,.. We can now revert to assuming that e and d are

finite. Then we have:

= (Va,y) |Oc(yie) AC(zse) A N (dei(y, e;d) — iz, y,e)) | = dlaiy)".
i<n
We obtain what we want by setting §(z, y,t;d) = A,_, (d¥i(y,t;d) = ¥i(z,y,1)).

It remains to show uniformity, i.e., that the formulas ¢, 6., 6 can be chosen so as to
depend only on ¢ and not on p. The proof is exactly like the proof of uniformity of honest
definitions in [CS15, Theorem 11]. Fix some ¢(x;y) and n < w. Extend the language L
to add a new unary relation symbol P(y,). Let Lp be the resulting language. Let M = T
and M’ an expansion of M to Lp. Set A = P(M’) and pick some a € M. Then there
are ((x;t), 6(x,y,t;u), O (y;t) and d € Al such that for any Ay C A of size < n, we
can find e € A as in the statement. This last condition is first-order expressible as we are
quantifying over subsets of A of size < n. Hence by compactness, there are finitely many
tuples {(¢;, d;,60.;) : i < r.} such that for any M |= T, any expansion M’ of M to Lp
and any a € M, there is one tuple of formulas in this finite set which has the property
above (still quantifying over Aq of size < n). By usual coding techniques, we can find
one tuple of formulas (¢, 0, 6y, ;) which works for all expansions to Lp of a model of T’
and all choices of a and A, as long as |A| > 2.

Take n large enough so that Fact 4.8, applies for the formula 6(y;t) = 0y(y;t) V
01(y;t). Then take any (A, a), A of size > 2, and any Ay C A finite. For any 4; C A,
of size < n, we can find e € A such that A; C 60(A;e). By Fact 4.8, we can find
€g,...,en_1 € A such that

Ao € | 0(Aser) = | 0o(A;er) Ui (Aser).

k<N k<N

‘We now define:

C(l‘; lo.. ~tN—1) = /\k<N C($, tk:)’

Oc(ysto, - tn-1) = Vi be(yi th) and

5(ZE, Yy, to Ce tN—l; d() Ce dN—l) = /\k<N 5(1’, Y, tk, dk)
Those formulas have the required properties. [

Taking the notations of the corollary, note that if (A, a) < (A’, a) is sufficiently satu-
rated, we can find e € A’ suchthat A C 6y(A’, e)Ubd,(A’,e) and a |= ((x;e). Then 6, (y; e)
is an honest definition of ¢(a;y) over A since by elementarity, for all (b, ') € A'WIFl

a = o(x,b,¢;d).
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Corollary 4.10. In Theorem 4.1, we can take 7 to be based on some Ay C A of size
<|T.

Proof. In Theorem 4.1, we can replace 7(x) by any my(z) C 7(x) which is generically
stable and contains the | 7’| many partial types (¢;(z; y, t), di;(y, t; u)) defined in the proof
of Corollary 4.9 as ¢(z; y) ranges over L. Such a 7y exists by Lemma 2.9. []

4.1 Existence of compressible types

It is an open question whether any unstable NIP theory has a distal (non-constant) indis-
cernible sequence (as defined in [Sim13]). In this section, we answer positively a related
question, namely we construct a non-realized compressible type over a model.

If p(z) is a type over some set A and ¢(x;y) a formula, we denote by p, the partial
type of all instances of ¢ and —¢ in p. We say that p, is definable if there is a formula
do(y) € L(A) such that forany b € A, p - ¢(z;b) <= = dp(b).

Let M < N, q € S,(N) and p = ¢q|p;. We say that ¢ is a conservative extension of p if
for any formula ¢(x;y) € L(M), if g4 is definable, then so is py. In particular, if p is not
a definable type, then ¢ is not either and so is not a realized type.

Lemma 4.11. Let (p; : i < «) be an increasing sequence of conservative extensions of p,

then p, =, <o Pi IS also a conservative extension of p.

Proof. We can assume that « has no last element. Let ¢(z; y) be a formula such that (p,)
is definable by a formula d¢(y). Then there is some @ < « for which the parameters in
d¢ belong to the domain of p;. But then (p;), is also defined by the formula d¢(y) and
therefore by hypothesis p, is definable. ]

Lemma 4.12. Let k > |T|. Let M be k*-saturated and q € S(M) which is finitely
satisfiable in a set of size k. Then there is an extension M < N containing a realization
of q such that for any finite tuple ¢ € N, tp(c/M) is finitely satisfiable in some subset of
size K.

Proof. Expand M to a Skolemization T°% of T. Let A C M be of size x such that q is
finitely satisfiable in A. Extend ¢ to a type ¢ over M in the sense of 7% which is still
finitely satisfiable in A. Let b = ¢ and let N be the Skolem hull of Mb. Then N is an
extension of M. If c is a finite tuple in N, then ¢ = f(b, m) for some finite m € M and
tuple f of (-definable functions. Then tp(c/M) is finitely satisfiable in the Skolem hull

of Am which has size k. ]

Lemma 4.13. (T is NIP) Let p € S(M) and assume that p is not compressible. Then
there is some partial type T generically stable over M, m|M C p, and a conservative
extension ¢ € S(N) of p such that 1|N € q. Furthermore, we can find N such that
IN| = [M]+|T].
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Proof. Let a |= p and take (M, a) < (Mj,a) an | M|*-saturated elementary extension.
Define p; = tp(a/Mj). Then p C p; is conservative. Let w be generically stable over M
given by Theorem 4.1 for p. Since p is not compressible, by Lemma 3.3, there is a type
r € S,(M,) finitely satisfiable in A/ such that p;(x) U r(y) does not imply a complete
type over (). Since by Theorem 4.1 p;(z) U (w(x) @ r(y))|s, implies a complete type
over M, if b |= r, there is an extension of p; to M;b, say ps, such that 7|Mb € p,. By
Lemma 4.12, we can find a model N > M; containing b such that for every finite tuple
¢ € N, tp(c/M,) is finitely satisfiable in some set of size |M|. Let ¢ be an extension of
p1 to N such that 7|[N & ¢. Then ¢ is a conservative extension of p;: Let ¢(x;y) be any
formula such that g, is definable. Let ¢ € NV be the parameters used in the definition. Let
A C M, be aset of size | M| such that tp(c/M;) is finitely satisfiable in A. Then (p;), is
A-invariant. Let S; C S, (A) be the set of types s such that p; F ¢(z;d) for d € s(M;),
and let ¢ be in the closure of Sp, then as (M, a) is | M|"-saturated, there is d € t(M;)
with p; F ¢(x;d). Hence S; is closed and so is its complement by the same argument.
Therefore (p;), is definable.

To show the furthermore part, take an elementary substructure (N',a) < (N,a) of
size | M|, where a |= g and N’ contains Mb. O

Recall that a type p(x) is stable if there is no formula ¢(z;y), realizations (a;);<,, of
p and tuples (b;);<,, such that ¢(a;; b;) holds if and only if ¢ < j. A type is stable if only
if all of its extensions are definable. A theory is stable if and only if all types are stable.
(See for example [HO10].)

Theorem 4.14. (T is NIP.) Let p € S(M) be non-stable, then there is an extension q of p
which is non-realized and compressible.

Proof. As p is not stable, it has an extension which is not definable, so we may assume
that p is not definable. We build a chain of conservative extensions p = pyg C p; C ...
of p such that each p; is over a model M; of size |M| + |T'| and such that the following
holds: for each 4, for every definable partial type (¢(z;y), do(y)) defined over M; and
consistent with p;, either this partial type is not consistent with p;,1, or it is consistent
with every conservative extension of p; ;. This can be done easily: given p; and M;, list
all definable partial types over M; as (m;(x) : j < k). Then build by induction a chain
of models M7 containing M; and an increasing sequence p € S(M?7) of conservative
extensions of p; as follows: set M° = M;, p° = p;. At a successor stage j + 1, if there is
a conservative extension of p’ which is not consistent with 7;(z), let p’*! € S(M7™!) be
such an extension, otherwise set p’ ! = p/. At limit stages, take the union. At the end, set
My = U, M7 and piyy = ;. . This has the required properties.

Having done this, let ¢ = (J,_, p;- Then ¢ is a conservative extension of p. In par-
ticular, it is not realized. Let 7w(z) = (¢(z,y), do(y)) be a partial type finitely definable
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over M, := |J M; and consistent with g. Then 7 is definable over M, for some i. As 7
is consistent with p;, 1, by construction, this implies that it is consistent with all conser-
vative extensions of p;,; and a fortiori with all conservative extensions of ¢. Therefore
for any Ind-definable partial type 7 (), defined over M,, if w(x) is consistent with g, it is
consistent with all conservative extensions of ¢. By the previous lemma, this implies that
q is compressible. O
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