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An earlier study using sequences of online learning modules found that a significant fraction of undergraduate
students were unable to solve similar new problems after learning from an online problem solving tutorial. The
current study examines the effectiveness of two methods to improve students’ subsequent problem solving per-
formance. First, an “on-ramp” module designed to help students develop proficiency in relevant basic skills was
added prior to the tutorial. We found that students’ performance on subsequent modules improved significantly
over the previous year, and in one of the two sequences we found evidence to support that the improvement was
due to the addition of the on-ramp module rather than other irrelevant factors. Second, a new “transfer” module
was added after the tutorial and before the final quiz module in which half of the students were given a compare-
contrast task and the other half were asked to answer tutorial-style scaffolding questions. On the subsequent
quiz module, we did not find significant performance differences between the two conditions, nor did students’
performance significantly improve over the previous year. The study demonstrated that mastery-style online
homework can serve as an efficient and flexible method for evaluating the effectiveness of new instructional
designs.



I. INTRODUCTION

Studies in both general human problem solving and prob-
lem solving in physics have long shown that it is difficult
for novices to transfer the understanding and skills learned
in one problem context to a different, new context [1–3]. In
physics, it is well known that novices tend to focus more on
superficial differences between problems and pay less atten-
tion to deep structural similarities between problems [4]. In
an earlier study involving a sequence of three online learn-
ing modules, we observed that while most introductory-level
college physics students learned to solve a specific problem
after engaging with an online problem solving tutorial in the
first module, student performance when solving similar prob-
lems on two subsequent modules was either unchanged or
only slightly improved [5]. In the current study, we tested
two strategies for improving student performance on subse-
quent similar problems following an online tutorial.

First, research in both learning science [6–8] and physics
education [9, 10] have shown that explicitly comparing and
contrasting multiple examples can be more effective for un-
derstanding the common deep structure of the problems com-
pared to studying isolated examples in sequence. The the-
ory predicts that explicitly asking students to compare a new
problem to a previously solved similar problem results in bet-
ter performance on subsequent transfer tasks than only asking
students to study features of the new problem.

Second, students’ performance in our previous study could
have been negatively impacted by a lack of sufficient mas-
tery of one or more basic skills [11, 12] such as identifying
the direction of angular momentum using the right hand rule.
Students who are not fluent in those skills may have to devote
too many cognitive resources while executing those proce-
dures, leaving insufficient cognitive capacity to process the
deeper structure of the problem. Alternatively, students could
have implemented a correct problem-solving procedure with
a small mistake such as a sign error in one of the steps lead-
ing to an incorrect answer. In either case, performance on
subsequent similar problems could improve if they had the
opportunity to practice and strengthen their basic skills.

Therefore, we will investigate the following two research
questions:

RQ1. Does answering several compare-contrast style ques-
tions lead to better performance on a subsequent trans-
fer task compared to completing several guided-tutorial
style questions?

RQ2. Does the addition of an “on-ramp” module designed to
develop basic procedural skills improve students’ per-
formance on subsequent problem solving tasks?

Both research questions will be answered by analyzing
data collected from students’ interactions with a sequence of
online learning modules, which are assigned as regular home-
work for students to complete over a period of two weeks.
Since students’ performance on online homework problems
could be impacted by other extraneous factors (e.g., copy-
ing answers from various sources [13, 14]), we will also take
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FIG. 1. The sequence of Online Learning Modules (OLMs) de-
signed for this experiment. Each OLM contains an assessment com-
ponent (AC) and instructional component (IC). Students are required
to make at least one attempt on the AC first, then are allowed to view
the IC, and then make subsequent attempts on the AC. Modules 1
and 4 were added for the 2018 implementation. Further, students are
randomly assigned into groups that receive two different versions of
the IC in module 4, a compare-contrast (CC) task and a tutorial (TT).

measures to estimate whether the observed results are biased
by certain extraneous factors, as explained in section III.

II. METHODS

A. OLM Sequence Structure

The study was conducted using online learning modules
(OLMs) [5, 15, 16] implemented on the Obojobo platform
[17] developed by the Center for Distributed Learning at the
University of Central Florida (UCF). Each OLM contains an
assessment component (AC) and an instructional component
(IC). Students have 5 attempts on the AC which contains 1-2
multiple-choice problems, and must make at least one attempt
before being allowed to access the IC. The IC contains in-
structional text, figures, and/or practice questions which show
the solution to the AC problem on the first attempt either di-
rectly (modules 1, 3, and 4) or through a series of scaffolding
problems (module 2). A student must either pass the AC or
use up all 5 attempts on one module before being allowed
access the next module in an OLM sequence. Students’ in-
teraction with each OLM can be roughly divided into three
stages. In the pre-study (Pre) stage, students must make one
or more attempts on the AC prior to accessing the IC. Those
who failed during the Pre stage can study the IC during the
Study stage, before going into the post-study (Post) stage to
make additional attempts on the AC. In 80% of cases, stu-
dents accessed the IC of each module only once. In the rest
of the cases, their two longest IC access events were treated as
a single access event, and the rest of the shorter events were
neglected from analysis.

Each student is given a total of 5 attempts on each module,
one of which is required to be used before accessing the IC.
In this study, a student is counted as passing in the Pre stage
if the student correctly answers all problems in the AC within
2 attempts Alternatively, the student is counted as passing in
the Post stage if they did not pass in the Pre stage and then an-
swered correctly within 2 additional attempts after accessing
the IC.



TABLE I. Number of students participating in each OLM sequence,
either Rotational Kinematics (RK) or Angular Momentum (AM), in
each year, either 2017 or 2018. Since some students do not complete
every module, we report both the number of students who accessed
any module and the number who accessed every module.

Year Sequence N (any module) N (every module)

2017 RK 210 203
AM 202 200

2018 RK 206 199
AM 195 191

B. Study Setup

In Fall 2017, two sequences each containing 3 OLMs
(specifically, modules 2, 3, and 5 in Fig. 1) were assigned
to roughly 200 students (see Table I) enrolled in a calculus-
based introductory physics class at UCF. The ACs of each
OLM contain one problem that can be solved using the same
physics principle. The IC of the first OLM contains an online
tutorial for the problem in the AC, developed by DeVore and
Singh [18, 19]. The IC of the second OLM contains a worked
solution to the AC problem, and the IC of the last OLM is
empty since the last module is intended to serve the role of a
quiz. The first sequence is on rotational kinematics (RK), in-
volving Atwood machine type problems with blocks hanging
from massive pulleys. The second sequence is on conserva-
tion of angular momentum (AM), involving angular collision
problems such as a girl jumping onto a merry-go-round.

The two OLM sequences were modified as follows and
implemented again in Fall 2018 by the same instructor to
roughly another 200 students (see Table I). To investigate
RQ1, we added a new module (module 4 in Fig. 1) in the
2018 implementation between the worked-example module
and the quiz module. The AC for this module consists of a
new problem that shares the same deep structure as the prob-
lem in the previous module, but differs in surface features.
The IC for this module comes in two different formats. The
compare-contrast (CC) format asks students to first study the
solutions of current module’s AC (that they just attempted)
and of the previous module’s AC, then answer 2-3 practice
questions comparing the similarities and differences in the
solutions of both problems. Each question asks students to
select from a list of physics equations the ones that can either
be applied to both problems, or are only applicable to one of
the problems. In the tutorial (TT) format, the problem in the
AC is broken down into 2-3 tutorial-style sub-problems with
solutions given. The student population is divided into two
groups with matching average score on a previous midterm
exam. Each group is presented with one format of the IC in
the RK sequence, and the other format in the AM sequence.
RQ1 can be answered by comparing the performance of stu-
dents in the two groups on the AC of the Quiz module.

To investigate RQ2, we require students to complete an
“on-ramp” module (module 1 in Fig. 1) prior to accessing
the tutorial module, with the intention to develop or refresh

one or more basic procedural skills necessary for solving the
problem in the tutorial module. For the RK sequence, the on-
ramp module presents students with two of the simplest form
of Atwood machine problems, involving one or two blocks
hanging at the same radius from a single massive pulley.
Those problems are intended for students to focus on prac-
ticing writing down multiple parallel equations, including ap-
plying Newton’s second law to both the hanging blocks and
the pulley and stating the constraint conditions, without being
distracted by a more complicated problem setup. The prob-
lems are placed in the AC of the module, while their solutions
are in the IC. For the AM sequence, students commonly have
difficulty with calculating both the magnitude and the sign of
the angular momentum of an object traveling in a straight line
about a point that lies off of the line. Therefore, the on-ramp
module involves practice problems focusing on developing
that particular skill. RQ2 can be answered by measuring stu-
dents’ performance on their AC attempts on the following two
modules (tutorial and worked example), especially in the Pre
stage of each module, and comparing the performance of the
Fall 2018 student population with that of the Fall 2017 popu-
lation, who did not receive the on-ramp module.

Data analysis, statistical testing and visual analysis are con-
ducted using R [20] and the tidyverse package [21].

III. RESULTS

To answer RQ1, we calculated and compared the passing
rates on the Quiz module of Fall 2018 students subjected to
either the CC or the TT conditions on module 4, and found
no statistically significant differences between the two groups
in either sequence. Considering that some students may not
have fully engaged with the IC of module 4, we conducted
the same comparison among students who spent a “sufficient”
amount of time studying the IC of module 4. Since the dis-
tribution of study duration on the IC is approximately log-
normal, we considered two definitions for "sufficient" time
studying the IC: 1) more than the log-mean of study dura-
tion and 2) more than one standard deviation below the log-
mean of study duration. In neither OLM sequence did we
find any statistically significant differences between the two
conditions in the passing rates of any ACs, including the Post
stage of module 4 and the Quiz module.

To investigate the effects of the on-ramp module and an-
swer RQ2, we first plotted passing rates on the Pre and Post
stage AC attempts of each module in Fig. 2 for students in
both Fall 2017 and Fall 2018. The Pre passing rates are calcu-
lated based on all students who attempted the module, while
the Post passing rates are calculated only for those who failed
in Pre (i.e., the pass rates reported for Post are not cumula-
tive). Note that since modules 1 and 4 were added in 2018,
the 2017 population does not have data for those modules.
Furthermore, since the IC of the Quiz module was empty, we
did not distinguish between Pre and Post stage attempts when
analyzing its passing rates. Lastly, since we did not find any
differences between the CC and TT conditions on module 4,
the two groups were combined in this analysis.



FIG. 2. The passing rates on each assessment for the two OLM sequences. Passing rates are calculated as the fraction of students who attempt
the assessment and pass within two attempts, and plotted along with their standard error. Passing rates on Post assessments are calculated
only for those who did not pass in Pre.

TABLE II. Findings of student performance differences from 2017 to 2018. The left side compares overall pass rates from 2017 to 2018 while
the right compares pass rates separately for students whose first attempt duration was ≤ 30 s or > 30 s. Due to the elevated Type II error
caused by the large number of tests performed, we report the p-values adjusted by the Holm-Bonferroni method [22]. Tests with padj > 0.10
are not shown except AM Tutorial Pre and AM Tutorial Post, which are included as context for the corresponding entries on the right side.

Population Assessment 2017 2018
padj

1st Attempt Assessment 2017 2018
padj

Pass Rate Pass Rate Duration Pass Rate Pass Rate
All RK Tutorial Pre 22% 38% 0.01 > 30 s RK Tutorial Pre 20% 40% 0.02

All RK Example Pre 23% 45% < 0.01 > 30 s RK Example Pre 22% 51% < 0.01

All AM Tutorial Pre 49% 61% 0.48 ≤ 30 s AM Tutorial Pre 42% 68% 0.06

All AM Example Pre 63% 77% 0.12 ≤ 30 s AM Example Pre 48% 75% 0.05

As shown in Fig. 2, Fall 2018 students had higher pass-
ing rates than Fall 2017 students in every module common to
both years, though many of these differences were not statis-
tically significant. To examine the significance of the differ-
ences, we conducted Fisher’s exact test on each pair of pass-
ing rates common to both 2017 and 2018. Due to the large
number of tests performed throughout the analysis which can
cause elevated Type II error, the p-values were adjusted using
the Holm-Bonferroni method [22]. Of the ten such tests con-
ducted, only two were significant after p-adjustment, namely
RK Tutorial Pre and RK Tutorial Post, as seen on the left side
of Table II. AM Tutorial Pre and AM Tutorial Post, despite
being non-significant after p-adjustment, are also included as
context for the corresponding entries on the right side of the
table. To ensure that the observed differences were not caused
by the student population in 2018 being in general stronger
than the student population in 2017, we checked their scores
on four common problems given on a classroom exam that
was administered shortly before students were assigned the
modules. On none of the problems did 2018 students outper-
form the 2017 students.

As mentioned in section I, one extraneous factor that could
have contributed to the observed differences is that some stu-
dents may have obtained the answers to the problems from
other sources. A thorough and complete investigation of such
phenomena, such as in [13] is far beyond the scope of the
current paper. However, we can still make a less precise es-
timation by assuming that students who spent less than 30

seconds are much less likely to have actually solved the prob-
lem. If the observed improvement in performance were due to
increase in problem solving skills, then the difference should
not be observed among students who spent less than 30 sec-
onds on their attempts.

In order to determine whether or not the improvements ob-
served in Fig. 2 occurred among students who seriously at-
tempted the problem, we performed the same analysis on stu-
dents who spent ≤ 30 s and > 30 s on their AC attempts
separately, and listed the results that are either significant or
marginal at the α = 0.05 level after p-value adjustment on
the right side of Table II. On both RK Tutorial and RK Exam-
ple modules, the differences in Pre stage passing rates remain
significant for the > 30 s population, but not the ≤ 30 s pop-
ulation. On the other hand, for the same two modules in the
AM sequence, the differences were only marginally signifi-
cant for the ≤ 30 s population after p-value adjustment.

IV. DISCUSSION

For RQ1, we found no statistically significant differences
in subsequent Quiz module performance between students
subjected to the CC and TT conditions. There are several
possible explanations for this observation. First, unlike many
previous studies that relied on explicit self-explanation [6, 9,
10], the current implementation of the compare-contrast tasks
via multiple choice problems may not be sufficient to en-
gage many students in an authentic and productive compare-
contrast process. Second, the current compare-contrast prob-



lems focused on identifying the correct mathematical expres-
sion applicable in each situation which may have encouraged
rote memorization and a “plug-and-chug” approach. Future
implementations may explore more effective ways to focus on
contrasting surface feature differences and comparing deep
structure similarities. Finally, the current study design used
the Quiz module as the sole assessment for detecting poten-
tial differences between the CC and TT conditions. The prob-
lems in the Quiz modules could have insufficient discrimina-
tion power to detect any differences between the groups.

For RQ2, the consistent and significant increase in passing
rate from 2017 to 2018 in the Pre stages of the RK Tutorial
and RK Example modules serve as evidence for the benefit
of the on-ramp module, since students have not yet accessed
the ICs of the modules while in the Pre stage. The fact that
the improvement is significant for the > 30 s group and not
for the ≤ 30 s group further suggests that the improvement is
likely due to actual increase in problem solving ability, rather
than extraneous factors. On the other hand, the overall differ-
ences in the AM sequence are not only non-significant after
p-adjustment, but also mainly due to the increased passing
rate in the ≤ 30 s group as seen in Table II. This observation
suggests that the benefit of an on-ramp module is not uniform,
and can depend on various other factors such as content, as-
sessment and the implementation. However, we note that in
both the RK and AM sequences, Fig. 2 shows several 10-15%
passing rate improvements in 2018 over 2017. The differ-
ences are not all significant after p-adjustment in the current
study, thought some of them may turn out to be meaningful
improvements in future studies with larger sample size.

Another noteworthy observation is that, despite the addi-
tion of two new modules, the improvement in passing rates
over the 2017 population on the RK Quiz module is marginal
at best (and non-significant after p-adjustment), and insignif-
icant for the AM Quiz module. For the RK sequence, it is
likely that Atwood machine problems remain very challeng-
ing for the student population involved, since the RK Quiz
module passing rate remains at 50%, despite the improve-
ments seen on previous modules. For the AM sequence, how-
ever, it could be that the problems are not challenging enough,
since the AM Quiz module passing rate in 2017 was already
at 75%, leaving little room for further improvement. In addi-
tion, there is a noticeable drop in passing rate on AM Module
4 Pre, compared to the Pre stage of the two preceding mod-
ules. More careful analysis shows that most wrong answers
concentrated on one of the distractors which is written in a po-
tentially confusing way. This may have negatively impacted
the effectiveness of AM Module 4.

Overall, our observations suggest that even when instruc-
tional resources are created based on well established princi-
ples from learning science, their effectiveness can be highly
sensitive to implementation details and other factors such as
the difficulty of the content. This observation calls for new
methods that can quickly evaluate the effectiveness of new
instructional materials and pedagogical innovations in order
to reliably improve the quality of instruction. The current

study demonstrated two such methods using OLM sequences
and analysis of student log data. The first is a controlled AB
experiment conducted in a single course, similar to the design
in two previous studies [5, 23]. The second method involves
implementing improved instructional design in the same class
for consecutive years.

Compared to conventional clinical or classroom experi-
ments, both new methods are much easier to implement and
replicate, allow more flexibility in study design, and provide
rich information on students’ learning behavior that could
support in-depth data analysis. The first method has the ad-
vantage of reducing the number of extraneous impacting fac-
tors, but it is also more disruptive for students and more logis-
tically complicated to implement. It also resulted in a smaller
sample size since each group contains only half of the class
population. The second method provides a sample size of two
class populations and is far less intrusive to implement as part
of normal instruction. However, the results are subjected to
the influence of more extraneous factors, which require so-
phisticated data analysis procedures to validate.

A. Future directions

Several follow up analyses can be carried out in the future
to gain new insight into the current results and address some
of the shortcomings of the current study. For instance, the
current analysis for most part did not take into account the
variation in students’ level of engagement with the instruc-
tional material, as some students spent significantly less time
studying the IC than others. Future analysis could probe the
relationship between the level of engagement with the IC and
students’ performance on subsequent problem-solving task.

Furthermore, since the passing rate on the Pre stages for
each module are used as a measure of the effectiveness of
instruction, future studies should investigate what fraction of
students took the initial attempts seriously before accessing
the IC. Preliminary analysis on the duration of the attempts
has shown that some students seem to consistently submit a
random guess on their first attempt, perhaps since they know
that the IC will guide them towards solving the AC problem.
Since this type of behavior significantly reduces the valid-
ity of using Pre stage attempts as assessments, future studies
need to explore methods to encourage serious problem solv-
ing, such as providing small amounts of credit incentives.

Finally, an important topic for future analysis is to exam-
ine whether the observed benefits of new interventions are
uniform across the student population or selectively benefit
students of, e.g., certain demographic backgrounds.
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