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This study investigates patterns in students’ learning and problem-solving behavior as they proceed through 

a sequence of 10 mastery-based online learning modules and how these patterns correlate with overall course 

outcome. Students' interaction with each module, as measured by analyzing the platform log data, was 

categorized into nine different states. The student population was divided into top, middle and bottom cohorts 

based on their total course credit, and we visualized each cohort’s distribution among the nine states over the 

10 modules using a series of parallel coordinates graphs. We found that the patterns of interaction were mostly 

similar on the first six modules, but are significantly different on modules 7-10. For the later modules, the top 

cohort mostly concentrated on the state corresponding to high problem-solving effort after learning, while the 

majority of the bottom cohort did not access the learning materials after multiple failed attempts.



I. INTRODUCTION 

   The large amounts of data generated by online learning 

systems provide researchers with ample opportunities to 

observe and measure various aspects of students’ learning 

behavior, such as accessing learning resources [1–3], 

problem-solving [4–7], decision making [8], and 

engagement in online discussion [9,10]. There is a 

significant and rapidly growing body of research that 

examines the relationship between students' online learning 

behavior and course outcomes. For example, Bowman et. al. 

[4] found that the average time spent on online homework 

problems positively correlated with final course grade in an 

introductory chemistry course, while using multiple attempts 

for each problem correlated negatively. Kortemeyer 

observed that regular access of online materials is a predictor 

for success on physics exams [11], and that the frequency of 

physics related discussion posts in an online discussion is a 

strong predictor of both course success and a positive 

attitude towards physics [10]. In an online psychology 

course, Koedinger et. al. estimated that students who are 

engaged in more activities learned six times more than 

students watching more videos or reading more pages [8]. 

While many earlier studies described student behavior via 

one or more variables averaged over the entire course, more 

recent studies have attempted to extract detailed patterns in 

sequential learning activities over an entire course [5] or 

learning session [12]. The implicit assumption behind those 

studies seems to be that differences in student behavior are 

largely being determined by the characteristics of the 

students, and less so by the differences in the instructional 

resources presented to the students. Such an assumption is 

acceptable when the behavioral patterns are observed over a 

large number of learning resources such as an entire course. 

However, this type of analysis cannot reveal how students' 

learning behavior changes as they interact with different 

learning resources in the course, and therefore has limited 

ability to inform instructors which resources in the course 

are more likely to be challenging to low performing students.  

   The current study investigates how students' behavior 

changes as they proceed through a relatively small number 

of learning resources and problems in sequence, and whether 

some activities in the sequence lead to larger behavioral 

differences between high and low performing students than 

others.  

   The learning resources and problems are organized and 

presented to students in the form of a sequence of 10 Online 

Learning for Mastery (OLM) modules [13–15], designed 

based on the idea of mastery learning [16–18].  We 

categorized students' interaction with each OLM module into 

9 interaction states, allowing each student's changes in 

interaction state when proceeding through the 10 modules to 

be visualized via a series of parallel coordinates graphs. The 

major patterns of change between different states for a given 

student population can be identified using a hierarchical 

clustering algorithm. 

   We divided the students in a calculus based introductory 

class into top, middle and bottom cohorts according to their 

total course credit earned at the end of the semester, and 

compared the major interaction patterns of the three cohorts 

to answer the following two questions:  

1. How do students change from one interaction state to 

another on different modules? Is one cohort more stable 

in terms of their behavior than another? 

2. On which of the modules do the top and bottom cohorts 

occupy different interaction states, and on which 

modules are the differences greatest?  

II. METHODS 

   A sequence of 10 OLM modules on the topic of 

conservation of mechanical energy was assigned as 

homework to students enrolled in a calculus based 

introductory physics course at University of Central Florida, 

to be completed in two weeks. Students were allowed 5 

attempts on the assessment component of each module. On 

the first three attempts students were given slightly different 

isomorphic problems, while on the final two attempts the 

problems from attempts 1 and 2 were repeated. A total of 230 

students attempted at least one module, and 223 students 

attempted all 10 modules. The modules are implemented on 

an open source platform, Obojobo [19], developed by the 

Center for Distributed Learning at the University of Central 

Florida. 

A. Classification of interaction states 

   Each OLM module consists of an instructional component 

(IC) containing learning resources, and an assessment 

component (AC) containing 1-2 multiple-choice problems 

(FIG 1). To pass, students must answer all questions 

correctly. Upon accessing a new module, students are 

required to make one attempt at the AC before being able to 

access the IC. The IC contains learning resources directly 

related to solving the problem in the AC. 77% of students 

accessed the IC after their first attempt, and 13% accessed 

the IC after their second. A student can proceed onto the next 

module in the sequence after either passing the AC or using 

up all the attempts. Depending on when or whether the 

FIG 1: Schematic outline of an OLM module sequence 



student studied the IC of the module, students' interaction 

can be sorted in to 4 general categories:  

I. Initial pass:  The student passed the AC on his/her 1st or 

2nd attempt without accessing the IC. 

II. Pass after study: The student studied the IC after failing 

the 1st or 2nd attempts on the AC, then passed within 2 

additional attempts after accessing the IC. 

III. Fail after study: The student studied the IC after failing 

the 1st or 2nd attempts on the AC, but also failed the 

next two attempts. 

IV. Multiple attempts without study: The student made 3 or 

more attempts on the AC without accessing the IC.  

   We believe that category IV is different in nature from 

category I, because if a student deliberately chose not to 

access the IC after more than 2 failed attempts, they are more 

likely to be guessing than actually trying to learn from the 

modules.  

   In addition, previous research into online learning has 

repeatedly demonstrated that some students will submit 

answers to problems in unusually short amounts of time, 

which are often attributed to either random guessing or 

answer copying [20–22]. Therefore, a student who passed a 

module in an abnormally short attempt is likely interacting 

with the AC of the module qualitatively differently from 

someone who spent a normal amount of time on an AC 

attempt. Different studies have suggested different cutoff 

times for classifying abnormally short attempt times, ranging 

from 20 s to 60 s [14,20,21]. In the current study, we use 40 

s as a cutoff to distinguish "Brief" attempts from "Normal" 

attempts, which was measured to be approximately the time 

required to open the AC, briefly look at the problem body, 

and submit a random choice.  

 
FIG 2: Two examples of AC attempt duration distribution plotted 

on a log scale. Passing attempts are plotted in green and overlaid on 

top of failed attempts plotted in red. The vertical lines are drawn at 

𝑡 = 40s and 𝑡 = 180s respectively. 

   Finally, when examining the distribution of duration for 

students’ AC attempt after studying the IC, we found that on 

modules 1-6, the distribution roughly follows a single log-

normal distribution, but on modules 7-10, there is a separate 

sub-group of students who spent > 180 s on their AC attempt, 

as shown in the two examples in FIG 2. In addition, on 

modules 7, 8, and 10, students spending > 180 s have a 

higher percentage of correct responses than those who spent 

< 180 s. A possible explanation is that the AC of modules 7-

10 contains complex calculation problems, whereas the ACs 

of modules 1-6 contains either simple calculation problems 

or conceptual problems. Therefore, we categorized student 

AC attempts on modules 7-10 after studying the IC as 

"Extensive" if the attempt duration is > 180 s. 

   Combinations of the "Brief," "Normal," and "Extensive" 

labels for each attempt and the four general interaction 

categories resulted in 9 interaction states as listed in Table 1.  

The ordering of those states roughly reflects the level of 

effort in interacting with the module, with state 8 being the 

highest and state 0 being the lowest. In addition, neighboring 

states are more similar in problem-solving duration than 

distant states. One exception is that students in state 4 (initial 

pass with normal attempt duration) likely spent less effort 

than those in states 2 and 3 by passing the AC in their initial 

attempt and skipping the IC. We ranked it as state 4 because 

those students likely have a higher level of incoming 

knowledge on the subject, and are qualitatively very 

different from students in state 1, who passed the AC in a 

Brief attempt, and are more likely to have guessed in their 

attempt. 

 

 
FIG 3: Transition paths for every student between two modules 

(left) and highlighted major transition paths after clustering 

algorithm (right). 

B. Visualization of transition between interaction 

states on adjacent modules 

   Each student's transition from one interaction state to 

another between two adjacent modules can be visualized by 

a path on a parallel coordinates graph, as illustrated in FIG 

3.  The left axis represents student states for the first module 

and the right axis represents the state for the next module. A 

horizontal path indicates that the student remained in the 

same interaction state on two consecutive modules.  

 
Table 1: List of 9 interaction states categorizing students' 

interaction with each OLM. * States 7 and 8 are only applicable to 

modules 7 - 10 

State Attempt 

Duration 

Interaction Category 

8* Extensive II: Pass after study 

7* Extensive III: Fail after study 

6 Normal II: Pass after study 

5 Normal III: Fail after study 

4 Normal I: Initial pass 

3 Brief II: Pass after study 

2 Brief III: Fail after study 

1 Brief I: Initial Pass 

0 N/A IV: Multiple attempts 

without study 



 

 
FIG 4: Parallel coordinates graph of all major interaction state transition paths for the top, middle, and bottom cohorts. Note that 

states 7 and 8 are only applicable to module 7 – 10. 

   The student population is divided into top, middle and 

bottom cohorts according to their final course credit, which 

includes homework, classroom activities, labs, and exams.   

The OLM homework accounts for less than 2% of the of the 

total grade. 

   To identify the major transition paths for a given student 

population between any two adjacent modules, an 

agglomerative hierarchical clustering algorithm was 

employed [23]. Complete-link clustering was performed on 

the Euclidian distance between students, using their 

interaction state on every pair of adjacent modules as 

location variables. Each cluster, identified at a cut-height of 

0.02, can represent either a single path or an average between 

two or more neighboring paths. The most populated clusters 

accounting for up to half of the population in a given cohort 

are highlighted by a yellow line, as shown in FIG 3 and FIG 

4. The width of each line is proportional to the fraction of 

students in the cohort that belongs to this cluster. When a 

cluster contains more than one path, the start and end point 

of the highlighted path is the average of the paths in the 

cluster, weighted by the population of each path.  

   Data analysis, hierarchical clustering, and statistical testing 

were conducted using R [24] and the tidyverse package [25], 

while the visualization was created using Python’s 

Matplotlib [26]. 

III. RESULTS 

   The major transition paths of interaction states across the 

10 modules for the top, middle, and bottom cohorts are 

plotted in FIG 4. Individual paths were hidden for clarity. 

For all cohorts, most major paths start and end on or close to 

four interaction states:  0, 4, 6, and 8.  Only a few paths start 

or end between two neighboring states. 

   There are some remarkable differences between the top 

and bottom cohorts in terms of their major paths between 

adjacent modules. On one hand, the top cohort mostly 

transitioned between states 4 and 6 for modules 1-6, and 

transitioned between states 8 and 4 for modules 7 -10. Only 

on the last two modules did a major transition pathway end 

on state 0. 

   On the other hand, for the bottom cohort, there are multiple 

major paths that start or end on state 0 across all 10 modules. 

In particular, on the last three modules, the horizontal path 

that starts and ends both on state 0 is the most populated path, 

following a significant shift from states 8, 6, and 5 to states 

0 and 1 on module 7. In addition, no major path passed 

through either state 8 or state 6 on the last three modules. 

   The transition patterns for the middle cohort seem to be a 

mix between the top and bottom cohort, with many more 

pathways identified for the last three modules. 

 
Table 2: p values for Fisher’s Exact test conducted on the 

correlation between interaction states and student cohorts. Values 

< 0.01 are highlighted by two asterisks. 

Module p-values  Adjusted p-values 

1 0.063 0.31 

2 0.33 0.67 

3 0.20 0.50 

4 < 0.01** < 0.01** 

5 0.14 0.41 

6 0.98 0.98 

7 < 0.01** < 0.01** 

8 < 0.01** < 0.01** 

9 < 0.01** < 0.01** 

10 < 0.01** < 0.01** 

 

   The difference in the interaction states occupied by the 

three cohorts on each module can be verified by conducting 

an extended Fisher's Exact Test [27–29]using the 8 states as 

dependent variables. To account for Type 1 errors caused by 

conducting multiple statistical tests, Hommel corrections 

were applied to the p-values [30], the results of which are 



shown in Table 2. At 𝛼 = 0.01  level, interaction states 

occupied by the three cohorts are significantly different on 

modules 4, 7, 8, 9, and 10, according to adjusted p-values.  

IV. DISCUSSION  

   We visualized major patterns in students' change in 

interaction states as they proceed through 10 OLM modules.  

Under the current classification of interaction states, we saw 

significant differences between the top and bottom cohorts.  

   The interaction states of the top third cohort are remarkably 

stable across all 10 modules, transitioning between states 6 

or 8, which are passing the module on either a normal or 

extensive attempt after studying the IC, and state 4 which is 

passing the module on a normal initial attempt before 

studying the IC. This pattern is consistent with the intended 

behavior in a mastery learning design, in which students 

determine their learning effort based on their own level of 

mastery.  

   In contrast, the behavior of the bottom cohort is different 

in two ways. First, on modules 1-6, there were multiple 

pathways starting or ending on state 0 or between states 0 

and 1. Second, on the last three modules, no major transition 

paths involved states 5-8, and the most populated paths 

started and ended on state 0 or between states 0 and 1. Given 

that state 0 is making more than 2 failed attempts before 

accessing the IC, and state 1 is initial passing on a Brief 

attempt, this pattern suggests that students in this cohort are 

less motivated to study the IC. One possible reason is that 

some of those students started working on the modules closer 

to the due date, and thus had insufficient time to study the 

IC, especially on the last few modules. This explanation can 

be easily verified in the future by linking the current data set 

with students’ start times for each module. Another possible 

explanation is that some students in the bottom cohort had 

less success in learning from the IC on earlier modules, and 

were discouraged on later modules. This could explain why 

a major shift toward state 0 or 1 took place between modules 

7 and 8, since module 7 had the lowest passing percentage 

of all modules.   

   Those two possible explanations suggest two potential 

strategies for helping struggling students persist in 

productive learning behavior. First, one could introduce 

mechanisms such as extra credit for early completion to 

encourage students to start early. Second, one could improve 

the instructional quality of module 7, or add an easier module 

between modules 6 and 7. Both strategies are currently being 

developed for future implementations of the modules.  

   Finally, the behavior pattern of the middle cohort is more 

similar to the top cohort on the first six modules, with fewer 

pathways involving state 4. This suggests that those students 

have weaker incoming knowledge but were equally 

successful in learning from the IC. The paths on the last few 

modules resembled a mix of the top and the bottom cohort, 

indicating that the behavior of this cohort becomes more 

diverse towards the end of the sequence. 

V. CONCLUSION AND FUTURE DIRECTIONS 

   The current study shows that the difference in learning 

behavior between high and low performing students can 

become significantly larger on more challenging contents 

near the end of an OLM sequence. The results also suggested 

detailed strategies that could remediate the behavioral gap 

between top and bottom students. 

   As an exploratory effort, the current analysis also leaves 

several major caveats that can be examined and addressed in 

more extensive future follow up studies.  

   First of all, the current categorization scheme focused on 

the duration of AC attempts, while other important aspects 

of learning behavior such as duration of study on the IC were 

either simplified or neglected. Future studies should include 

more aspects of student learning behavior to gain a more 

comprehensive understanding of the relation between 

learning behavior and performance. In addition, future 

studies involving more modules could also track students’ 

transition in learning behavior over longer periods on time, 

such as over an entire semester. 

   Second, the ordering of the interaction states in this study 

grouped attempts with similar durations closer than those 

with similar outcomes. While the grouping does not affect 

the statistical test outcomes, it does impact the clustering 

outcomes as well as the visual representation. How the 

results would change under different ordering of states needs 

to be examined carefully in more extensive follow up 

analyses.  

   Third, a number of decisions such as using 40s as the cutoff 

between Brief and Normal attempts or dividing the 

population into three cohorts were made in order to 

categorize complex student behavior into a reasonable 

amount of interaction states. How each of those decisions 

impact the outcome can be tested in multiple future studies, 

as well as investigating whether there are more “natural” 

cutoffs between different student populations or different 

types of learning behavior.  

   Finally, the current analysis cannot identify one kind of 

state that could potentially be highly populated: if students 

transitioned from multiple different states on a previous 

module into a single state on the current module, then in turn 

transitioned from that state to multiple different states on the 

subsequent module, then that single "hub" state in the current 

module will not be highlighted, as it is not involved in a 

major path. Whether those type of states exist and how 

different cohorts populate such states could also serve as an 

interesting topic for future investigations.  
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