Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke

LEARNING ALGORITHMS AND SIGNAL PROCESSING
FOR BRAIN-INSPIRED COMPUTING

Surrogate Gradient Learning
in Spiking Neural Networks

Bringing the power of gradient-based optimization

©ISTOCKPHOTO.COM/JUST_SUPER

Digital Object Identifier 10.1109/MSP.2019.2931595
Date of current version: 29 October 2019

to spiking neural networks

piking neural networks (SNNs) are nature’s versatile solu-

tion to fault-tolerant, energy-efficient signal processing. To

translate these benefits into hardware, a growing number of
neuromorphic spiking NN processors have attempted to emulate
biological NNs. These developments have created an imminent
need for methods and tools that enable such systems to solve
real-world signal processing problems. Like conventional NNs,
SNNs can be trained on real, domain-specific data; however,
their training requires the overcoming of a number of challenges
linked to their binary and dynamical nature. This article elu-
cidates step-by-step the problems typically encountered when
training SNNs and guides the reader through the key concepts
of synaptic plasticity and data-driven learning in the spiking set-
ting. Accordingly, it gives an overview of existing approaches
and provides an introduction to surrogate gradient (SG) meth-
ods, specifically, as a particularly flexible and efficient method
to overcome the aforementioned challenges.

Introduction
Biological SNNs are a highly efficient solution to the problem
of signal processing. Therefore, taking inspiration from the
brain is a natural approach to engineering more efficient com-
puting architectures. In the area of machine learning, recur-
rent NNs (RNNGs), a class of stateful NNs whose internal state
evolves with time (see “Recurrent Neural Networks”), have
proven highly effective at solving real-time pattern recognition
and noisy time-series prediction problems [1]. RNNs and bio-
logical NNs share several properties, such as a similar general
architecture, temporal dynamics, and learning through weight
adjustments. Based on these similarities, a growing body of
work is now establishing formal equivalences between RNNs
and networks of spiking leaky integrate-and-fire (LIF) neurons,
which are widely used in computational neuroscience [2]-[5].
RNNs are typically trained using an optimization procedure
in which the parameters or weights are adjusted to minimize a
given objective function. Efficiently training large-scale RNNs is
challenging due to a variety of extrinsic factors, such as noise and
nonstationarity of the data, but also due to the inherent difficulties

1053-5888/19©2019IEEE |EEE SIGNAL PROCESSING MAGAZINE | November 2019 | 51

52

of optimizing functions with long-range temporal and spatial
dependencies. In SNNs and binary RNNSs, these difficulties are
compounded by the nondifferentiable dynamics implied by the
binary nature of their outputs. Although a considerable body of
work has successfully demonstrated the training of two-layer
SNNs [6]-[8] without hidden units as well as networks with re-
current synaptic connections [9], [10], the ability to train deeper
SNNs with hidden layers has remained a major obstacle. Because
hidden units and depth are crucial for efficiently solving many
real-world problems, overcoming this obstacle is vital.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are networks of inter-
connected units, i.e., neurons, in which their network
state at any point in time is a function of both external
input and the network'’s state at the previous time point,
as shown in Figure S1. More precisely, the dynamics of
a network with L layers is given by:

y'[nl=c(a"[n]) forl=1,...,1,

a''[n]= Viy[n—1]+ Wihy="[n-1] forl=1,...,1,
y“nl=x[n],

where a[n] is the state vector of the neurons at layer |,
o is an activation function, and V! and W are the
recurrent and feedforward weight matrices of layer |,

respectively. External inputs x[n] typically arrive at the
first layer. Nonscalar quantities are typeset in boldface.

y@[n]

a(1)[n]

w©)

x[n]

FIGURE $1. One popular RNN structure arranges neurons in multiple
layers, where every layer is recurrently connected and also receives
input from the previous layer.

As network models grow larger and make their way into
embedded and automotive applications, their power efficiency
becomes increasingly important. Simplified NN architectures
that can run natively and efficiently on dedicated hardware are
now being devised. This includes, e.g., networks of binary neu-
rons or neuromorphic hardware that emulate the dynamics of
SNNs [11]. Both types of networks dispense with energetically
costly floating-point multiplications, making them particularly
advantageous for low-power applications compared to NNs
executed on conventional hardware.

These new hardware developments have created an immi-
nent need for tools and strategies that enable efficient infer-
ence and learning in SNNs and binary RNNs. In this article,
we discuss and address the inherent difficulties in training
SNNs with hidden layers and introduce various strategies
and approximations used to successfully implement them. (A
repository containing tutorials for SG learning in SNNs can be
found at: https://github.com/surrogate-gradient-learning.)

Understanding SNNs as RNNs

We begin by formally mapping SNNs to RNNs. Formulating
SNNs as RNNs will allow us to directly transfer and apply
existing training methods for RNNs and will serve as the con-
ceptual framework for the rest of this article.

Before we proceed, we must make a note about termi-
nology. We use the term RNN5s in its widest sense to refer to
networks whose state evolves in time according to a set of
recurrent dynamical equations. Such dynamical recurrence
can be because of the explicit presence of recurrent synap-
tic connections between neurons in the network. This is the
common understanding of what an RNN is. But, importantly,
dynamical recurrence can also arise in the absence of recurrent
connections. This happens, e.g., when stateful neuron or syn-
apse models, which have internal dynamics, are used. Because
the network’s state at a particular time step recurrently depends
on its state in previous time steps, these dynamics are intrinsi-
cally recurrent. In this article, we use the term RNN for net-
works exhibiting either or both types of recurrence. Moreover,
we introduce the term recurrently connected NN (RCNN) for
the subset of networks that have explicit recurrent synaptic
connections. We now describe the mathematical treatment of
RCNNs, which closely resembles that of RNNs.

We first introduce an LIF neuron model with current-based
synapses, which has wide use in computational neuroscience [12].
Next, we reformulate this model in discrete time and show its
formal equivalence to an RNN with binary activation functions.
Readers familiar with an LIF neuron model can skip the steps
in “Recurrent Neural Networks” as well as (1)~(4), up to (5).

An LIF neuron in layer [with index i can formally be
described in differential form as

auy’ 0) 0)
Tmemd_tl:_(Ui _Uresl)+RIi s (1)
where U f~l>(t) is the membrane potential, Urs is the rest-
ing potential, Tmem is the membrane time constant, R is the
input resistance, and [;(f) is the input current [12]. Equation

IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

(1) shows that U\" acts as a leaky integrator of the input cur-
rent 7\”. Neurons emit spikes to communicate their output to
other neurons when their membrane voltage reaches the firing
threshold . After each spike, the membrane voltage U @ is
reset to the resting potential Urest (Figure 1). Due to this reset,
(1) describes only the subthreshold dynamics of an LIF neuron,
i.e., the dynamics in absence of spiking output of the neuron.

In SNNs, the input current is typically generated by syn-
aptic currents triggered by the arrival of presynaptic spikes
S;l)(t). When working with differential equations, it is con-
venient to denote a spike train Sy)(t) as a sum of Dirac delta
functions S;l)(t) =2sec?8(t — s), where s runs over the firing
times C;l) of neuron j in layer /.

Synaptic currents follow specific temporal dynamics them-
selves. A common first-order approximation is to model their
time course as an exponentially decaying current following each
presynaptic spike. Moreover, we assume that synaptic currents
sum linearly. The dynamics of these operations are given by

a’ _ 1 -
Ao L0 s wosi o+ T visPe. @
syn j J

exp. decay feedforward recurrent

where the sum runs over all presynaptic neurons j and W,(f)
are the corresponding afferent weights from the layer below.
Further, the V,(}) corresponds to explicit recurrent connections
within each layer. Because of this property, we can simulate a
single LIF neuron with two linear differential equations whose
initial conditions change instantaneously whenever a spike oc-
curs. Through this property, we can incorporate the reset term
in (1) through an extra term that instantaneously decreases the
membrane potential by the amount (¢ — Urst) Whenever the
neuron emits a spike:
vy _ 1
At Tmem

(U = Unes) + RI") + SI(0) (Uress = 0).
3
It is customary to approximate the solutions of (2) and
(3) numerically in discrete time and to express the output spike
train S ,(-])[n] of neuron i in layer / at time step n as a nonlin-
ear function of the membrane voltage S ,(-l)[n] =0(U El)[n] - 19),
where © denotes the Heaviside step function and ¢ corre-
sponds to the firing threshold. Without loss of generality, we
set Urest =0, R =1, and ¢ = 1. When using a small simulation
time step A, > 0, (2) is well approximated by

I+ 1=l + X WSyl + 2 V'SPl ()
J J

with the decay strength o =exp(—(A//Ts;)). Note that

0 < a <1 for finite and positive Tsya. Moreover, S;l)[n] €{0,1}.

We use n to denote the time step to emphasize the discrete

dynamics. We can now express (3) as

UPn +11= U] + 1°[n] — S[n) ®)

with B = exp(—(A+/Tmem)).
Equations (4) and (5) characterize the dynamics of an RNN.
Specifically, the state of neuron i is given by the instantaneous

synaptic currents [¢ and the membrane voltage U @ (see
“Recurrent Neural Networks”). The computations necessary
to update the cell state can be unrolled in time, as is best illus-
trated by the computational graph shown in Figure 2.

We have now seen that SNNs constitute a special case of
RNNSs; however, we have not yet explained how their param-
eters are set to implement a specific computational function.
This is the focus of the rest of this article, in which we present
a variety of learning algorithms that systematically change the
parameters toward implementing specific functionalities.

Methods for training RNNs

Powerful machine-learning methods are able to train RNNs
for a variety of tasks ranging from time-series prediction, to
language translation, to automatic speech recognition [1]. In
this section, we discuss the most common methods before ana-
lyzing their applicability to SNN.

There are several common ingredients that define the
training process in RNNs. The first ingredient is a cost or loss
function, which is minimized when the network’s response
corresponds to the desired behavior. In time-series predic-
tion, e.g., this loss could be the squared difference between
the predicted and true values. The second ingredient is a
mechanism that updates the network’s weights to minimize
the loss. One of the simplest and most powerful mechanisms
used to achieve this is to perform gradient descent on the loss
function. In network architectures with hidden units (i.e.,
units whose activity affect the loss indirectly through other
units), the parameter updates contain terms that relate to the
activity and weights of the downstream units they project
to. Gradient-descent learning solves this credit assignment
problem by providing explicit expressions for these updates
through the chain rule of derivatives.

Output Neuron

u
o —_

(o)

E ° ° e .. :.. LN .:
= 000 @ o0 oo
o ° ®e oo om
@ T T R

Input Neurons g 0 0.4 0.8
Time (ms)
(a) (b)

FIGURE 1. An example of LIF neuron dynamics. (a) The schematic of a
network setup. Four input neurons connect to one postsynaptic neuron.
(b) The input and output activity over time. At the bottom of (b) is the
Raster plot, which shows activity of the four input neurons; in the middle
is the synaptic current /; and at the top is the membrane potential U of
the output neuron as a function of time, with output spikes shown as
points. During the first 0.4 s, the dynamics are strictly “subthreshold,”
and individual postsynaptic potentials are clearly discernible. Only when
multiple postsynaptic potentials start to sum up is the neuronal firing
threshold (dashed) reached and output spikes generated.

|EEE SIGNAL PROCESSING MAGAZINE | November 2019 | 53

As we will now see, the learning of hidden-unit parameters
depends on an efficient method to compute these gradients.
When discussing these methods, we distinguish between solv-
ing the spatial credit assignment problem, which affects mul-
tilayer perceptrons (MLPs) and RNNs in the same way, and
the temporal credit assignment problem, which only occurs in
RNN:s. In the following section, we discuss the common algo-
rithms that provide both types of credit assignment.

Spatial credit assignment

To train MLPs, credit or blame needs to be assigned spatially
across the layers and their respective units. This spatial credit as-
signment problem is solved most commonly by the backpropa-
gation (BP)-of-error algorithm (see “The Gradient Backpropa-
gation Rule for Neural Networks”). In its simplest form, this
algorithm propagates errors “backward” from the output of the
network to upstream neurons. Using BP to adjust hidden-layer
weights ensures that the weight update will reduce the cost func-
tion for the current training example, provided the learning rate
is small enough. Although this theoretical guarantee is desirable,
it comes at the cost of certain communication requirements, i.e.,
that gradients must be communicated back through the network,
and increased memory requirements as the neuron states must be
kept in memory until the errors become available.

Temporal credit assignment
When training RNNs, we also must consider the temporal in-
terdependencies of network activity. This requires solving the

b weA w@ A
stop | | sy | | s
p \ﬂ, \ﬁ,
uMo] UM uMp2]
N V(1) V(1)
N o N o A
|(1)[o] |(1)[1] |(1)[2]
W
sO)o] sO)[1] sO)2]

FIGURE 2. An illustration of the computational graph of an SNN in discrete
time. The time steps flow from left to right. Input spikes 8© are fed into
the network from the bottom and propagate upward to higher layers. The
synaptic currents 1V are decayed by o in each time step and fed into the
membrane potentials U™. The U™ are similarly decaying over time, as
characterized by B. Spike trains S are generated by applying a thresh-
old nonlinearity to the membrane potentials U™ in each time step. Spikes
causally affect the network state (red connections). First, each spike
causes the membrane potential of the neuron that emits the spike to be
reset. Second, each spike may be communicated to the same neuronal
population via recurrent connections V. Finally, it may also be com-
municated via W@ to another downstream network layer or, alternatively,
a readout layer on which a cost function is defined.

temporal credit assignment problem shown in Figure 2. There
are two common methods used to achieve this:

1) The “backward” method: This method applies the same
strategies used for spatial credit assignment by “unrolling”
the network in time (see “The Gradient Backpropagation
Rule for Neural Networks”). BP through time (BPTT)
solves the temporal credit assignment problem by back-
propagating errors through the unrolled network. This
method works backward through time after completing a
forward pass. The use of standard BP on the unrolled net-
work directly enables the use of autodifferentiation tools
offered in modern machine-learning toolkits [3], [13].

The forward method: In some situations, it is beneficial to
propagate all necessary information for gradient computa-
tion forward in time [14]. This formulation is achieved by
computing the gradient of a cost function £[n] and main-
taining the recursive structure of the RNN. For example, the
“forward gradient” of the feedforward weight W becomes

9L [n] :Z 9L [n] plLlm

2

~

AW,[W] oc ;
P Wl T 2 gy
with
plm 10
P [n]= [m] Vi [n]
’ Wy

Pz(-f’k'")["] =0 (a(')[n])<z V(I)Pfjlj'") 1

+ZW(” Py ""ln 1]+5,my§"”[n—1]). (6)

Gradients, with respect to recurrent weights ijl), can be com-
puted in a similar fashion [14].

The backward optimization method is generally more efficient
in terms of computation, but requires the maintaining of all inputs
and activations for each time step. Thus, its space complexity for
each layeris O(NT), where N is the number of neurons per layer,
and T is the number of time steps Conversely, the forward method
requires maintaining variables P,]k , resulting in an O(N*) space
complexity per layer. Although O(N?) is not a favorable scaling
compared to O(NT) for large N, simplifications of the compu-
tational graph can reduce the memory complexity of the forward
method to O(N?) [2], [15], or even O(N) [4]. These simplifica-
tions also reduce computational complexity, rendering the scaling
of forward algorithms comparable to, or better than, BPTT. Such
simplifications are at the core of several successful approaches,
which we describe in the “Applications” section. Furthermore,
the forward method is more appealing from a biological point of
view, since the learning rule can be made consistent with synaptic
plasticity in the brain and “three-factor” rules, as discussed in the
“Supervised Learning With Local Three-Factor Learning Rules”
section. In summary, efficient algorithms used to train RNN exist.
In the following section, we focus on training SNNS.

Credit assignment with spiking neurons:

Challenges and solutions

Thus far, we have discussed common algorithmic solutions
used for training RNNs. Before these solutions can be applied

54 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

to SNNs, however, two key challenges need to be overcome.
The first challenge concerns the nondifferentiability of the
spiking nonlinearity. Equations (52) and (6) reveal that the ex-
pressions for both the forward- and backward-learning meth-
ods contain the derivative of the neural activation function
o' =0y"/0a" asa multiplicative factor. For a spiking neuron,
however, we have S(U(r)) = O(U (r) — ®), whose derivative is
zero everywhere except at U = ¢, where it is ill defined (see
Figure 3). This all-or-nothing behavior of the binary spiking
nonlinearity stops gradients from “flowing” and makes LIF
neurons unsuitable for gradient-based optimization. The same
issue occurs in binary neurons, and some of the solutions pro-
posed in this section are inspired by methods first developed in
binary networks [16], [17].

The second challenge concerns the implementation of the
optimization algorithm itself. Standard BP can be expensive in
terms of computation, memory, and communication and may
be poorly suited to the constraints dictated by the hardware that
implements it (e.g., a computer, brain, or neuromorphic device).
Processing in dedicated neuromorphic hardware and, more gen-

erally, non-von Neumann computers may have specific locality
requirements (see “Local Models of Computation”), which can
complicate matters. On such hardware, the forward approach
may therefore be preferable. In practice, however, the scaling
of both methods (O(N?) and O(NT)) has proven unsuitable for
many SNN models. For example, the size of the convolutional
SNN models trained with BPTT for gesture classification [20]
are graphics processing unit (GPU) memory bounded. Addi-
tional simplifying approximations that reduce the complexity
of the forward method will be discussed in greater detail. In the
following sections, we describe approximate solutions to these
challenges that make learning in SNNs more tractable.

To overcome the first challenge in training SNNs, which is
concerned with the discontinuous spiking nonlinearity, several
approaches have been devised with varying degrees of success.
The most common approaches can be coarsely classified into
the following categories: 1) resorting to entirely biologically
inspired local learning rules for the hidden units; 2) translating
conventionally trained “rate-based” NNs to SNNs; 3) smooth-
ing the network model to be continuously differentiable; or

The Gradient Backpropagation Rule for Neural Networks

The task of learning is to minimize a cost function £ over
the entire data set. In a neural network (NN), this can be
achieved by gradient descent, which modifies the network
parameters W in the direction opposite to the gradient

ayi ;
Wi = Wi — nAWi;, where AW = aa—\f,” = g—fa—é aaa'i[,

with a;=3w;x; as the total input to the neuron, y; as the
output of neuron i, and 77 as a small learning rate. The first
term is the error of neuron i, and the second term reflects
the sensitivity of the neuron output to changes in the
parameter. In multilayer networks, gradient descent is
expressed as the backpropagation (BP) of the errors start-
ing from the prediction (output) layer to the inputs. Using
superscripts [=0,...,L to denote the layer (O is input, L
is output)

BVZ\’/UJ L= 5$/)y}/7”, where 8! = G’(agll)zk:égmw;’“), (S1)
i

where o’ is the derivative of the activation function,
s = BL/Byf” is the error of output neuron i, and y$°’ = X;
and T indicate the transpose.

This update rule is ubiquitous in deep learning and known
as the gradient BP algorithm [1]. Learning is typically carried
out in forward passes (evaluation of the NN activities) and
backward passes (evaluation of §s).

The same rule can be applied to recurrent NNs. In this
case, the recurrence is “unrolled,” meaning that an auxilia-
ry network is created by making copies of the network for

|EEE SIGNAL PROCESSING MAGAZINE | November 2019 |

each time step, as depicted in Figure S2. The unrolled net
work is simply a deep network with shared feedforward
weights W' and recurrent weights V!, on which the stan-
dard BP applies

AW L£n= y " m]y!'"[m], and
IOCaWE;] [] mgo [])’/ []

33(0 Lhn]= Y 8"m]ym—1]
i

m=1

8[m)= a'(af.”[m])(z st mwWi + > 8 im +1] v;‘”).
k k

AV o

(52)

Applying BP to an unrolled network is referred to as BP
through time.

w) w w

v“@ vy v“@

w©) w0 w)
x[0] x[1] x[2]

FIGURE S2. An “unrolled” recurrent NN.

55

56

4) defining an SG as a continuous relaxation of the real gradients.
Approaches pertaining to biologically motivated local learning
rules (i.e., category 1) and network translation (i.e., category
2) have been reviewed extensively [5], [21]. In this article, we
therefore focus on the latter two supervised approaches (i.e., cat-
egories 3 and 4), which we will refer to as the smoothed and SG
approaches, respectively. First, we review existing literature on
common “‘smoothing” approaches before turning to an in-depth
discussion of how to build functional SNNs using SG methods.

Smoothed SNNis

The defining characteristic of smoothed SNNs is that their formu-
lation ensures well-behaved gradients, which are directly suitable
for optimization. Smooth models can be further categorized into
1) soft nonlinearity models; 2) probabilistic models, for which
gradients are well defined only in expectation, or models that
either rely entirely on 3) rate; or (4) single-spike temporal codes.

Gradients in soft nonlinearity models

This approach can, in principle, be applied directly to all spik-
ing neuron models, which explicitly include a smooth spike-
generating process. This includes, e.g., the Hodgkin—Huxley,
Morris—Lecar, and FitzHugh—Nagumo models [12]. In practice,
this approach has been applied successfully only by Huh and
Sejnowski [22], using an augmented IF model in which the bi-
nary spiking nonlinearity was replaced by a continuous-valued
gating function. The resulting network constitutes an RCNN,
which can be optimized using standard methods of BPTT or re-
al-time recurrent learning (RTRL). Importantly, the soft thresh-
old models compromise on one of the key features of SNNG, i.e.,
the binary spike propagation.

Cradients in probabilistic models

Another example of smooth models is binary probabilistic
models. In simple terms, stochasticity effectively smooths out
discontinuous binary nonlinearity, which makes it possible to
define a gradient on expectation values. Binary probabilistic

Derivative

T T
0 0.5 1
Membrane Potential U

FIGURE 3. Commonly used surrogate derivatives. The step function has a
zero derivative (violet) everywhere except at 0, where it is ill defined. The
green (piecewise linear) [3], [18], [19], blue (derivative of a fast sigmoid) [2],
and yellow (exponential) [13] lines are examples of surrogate derivatives that
have been used to train SNNs. The gray shaded area is inaccessible due to the
spike generation. Note that we have plotted absolute values and rescaled the
axes on a per-function-basis for illustration purposes.

models have been objects of extensive study in machine-learn-
ing literature, mainly in the context of (restricted) Boltzmann
machines [23]. Similarly, the propagation of gradients has been
studied for binary stochastic models [17]. Probabilistic mod-
els are practically useful because the log-likelihood of a spike
train is a smooth quantity, which can be optimized using gradi-
ent descent [24]. Although this insight was first discovered in
networks without hidden units, the same ideas were later ex-
tended to multilayer networks [25]. Similarly, Guerguiev et al.
[26] used probabilistic neurons to study biologically plausible
ways of propagating error or target signals using segregated
dendrites (see the “Feedback Alignment and Random Error
BP” section). In a similar vein, variational learning approaches
were shown to be capable of learning useful hidden-layer rep-
resentations in SNNs [27]-[29]. However, the injected noise
needed for smoothing out the effect of binary nonlinearities of-
ten poses a challenge for optimization [28]. How noise, which
is found ubiquitously in neurobiology, influences learning in
the brain remains an open question.

Local Models of Gomputation

The locality of computations is characterized by the set
variables available to the physical processing elements
and depends on the computational substrate. To illus-
trate the concept of locality, we assume two neurons, A
and B, and would like neuron A to implement a func-
tion on domain D, defined as: D = Dioc U Dnjoc, Where
Dioc = {WBA, SA("), UA(f)}

Here, S8(t—T) refers to the output of neuron B, T sec-
onds ago, Ua and Us are the respective membrane
potentials, and Waa is the synaptic weight from B to A,
as shown in Figure S3. Variables under Dioc are directly
available to neuron A and are thus local fo it.

Conversely, variable SE(t—T) is temporally nonlocal
and Us is spatially nonlocal to neuron A. Although local-
ity in a model of computation can make its use challeng-
ing, it enables massively parallel computations with
dynamical interprocess communications.

B({—

Wga

<&
<

Un Us

Sa(t) Sg(t)

FIGURE S3. Nonlocal information can be transmitted through spe-
cial structures, e.g., dedicated encoders and decoders for Us and a
form of working memory (WM) for S8(¢ —T).

IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

Gradients in rafecoding networks

Another common approach to obtain gradients in SNNs is
to assume a rate-based coding scheme. The main idea is that
spike rate is the underlying information-carrying quantity. For
many plausible neuron models, the suprathreshold firing rate
depends smoothly on the neuron input. This input-output de-
pendence is captured by the so-called f-I curve of a neuron.
In such cases, the derivative of the f-I curves is suitable for
gradient-based optimization.

There are several examples of this approach. For instance,
Hunsberger and Eliasmith [30] as well as Neftci et al. [31] used
an effectively rate-coded input scheme to demonstrate compet-
itive performance on standard machine-learning benchmarks,
such as CIFAR-10 and MNIST. Similarly, Lee et al. [32] dem-
onstrated deep learning in SNNs by defining partial deriva-
tives on low-pass filtered spike trains.

Rate-based approaches can offer good performance, but they
may be inefficient. On the one hand, the precise estimation of
firing rates requires averaging over a number of spikes. Such
averaging requires either relatively high firing rates or long aver-
aging times because several repeats are needed to average out
discretization noise. This problem can be partially addressed
by spatial averaging over large populations of spiking neurons.
However, this may require the use of larger neuron numbers.

Finally, the distinction between rate coding and probabilis-
tic networks can be blurry because many probabilistic network
implementations use rate coding at the output level. Both types
of models are differentiable, but for different reasons: Probabilis-
tic models are based on a firing probability densities [24]. Impor-
tantly, the firing probability of a neuron is a continuous function.
Although measuring probability changes requires “trial averag-
ing” over several samples, it is the underlying continuity of the
probability density that formally allows for defining differential
improvements and thus, for deriving gradients. By exploiting this
feature, probabilistic models have been used to learn precise out-
put spike timing [24], [25]. In contrast, deterministic networks
always emit a fixed-integer number of spikes for a given input.
To nevertheless get at a notion of differential improvement, one
may consider the number of spikes over a given time interval
within single trials. When averaging over sufficiently large inter-
vals, the resulting firing rates behave as a quasi-continuous func-
tion of the input current. This smooth input-output relationship is
captured by the neuronal f-I curve, which can be used for optimi-
zation [30], [31]. Operating at the level of rates, however, comes
at the expense of temporal precision.

Cradients in single-spike timing-coding networks
In an effort to optimize SNNs without potentially harmful
noise injection and without reverting to a rate-based coding
scheme, several studies have considered the outputs of neurons
in SNNs to be a set of firing times. In such a temporal coding
setting, individual spikes could carry significantly more infor-
mation than rate-based schemes that consider only the total
number of spikes in an interval.

The idea behind training temporal coding networks was
pioneered in SpikeProp [33]. For this article, the analytic

expressions of firing times for hidden units were linearized,
allowing for the analytical computing of approximate hidden-
layer gradients. More recently a similar approach, devoid of the
need for linearization, was used in [34], where the author com-
puted the spike-timing gradients explicitly for non-LIF neu-
rons. Intriguingly, the work showed competitive performance
on conventional networks and benchmarks.

Although the spike-timing formulation does, in some cases,
yield well-defined gradients, it may suffer from certain limita-
tions. For instance, the formulation of SpikeProp [33] required
each hidden unit to emit exactly one spike per trial because it is
impossible to define firing time for quiescent units. Ultimately,
such a nonquiescence requirement could be in conflict with
power efficiency, for which it is conceivably beneficial to, e.g.,
have only a subset of neurons active for any given task.

Surrogate gradients

SG methods provide an alternative approach for overcoming
the difficulties associated with the discontinuous nonlinearity.
Moreover, they offer opportunities to reduce the potentially high
algorithmic complexity associated with training SNNs. Their
defining characteristic is that, instead of changing the model
definition as in the smoothed approaches, an SG is introduced.
In this section, we make two distinctions. We first consider
SGs, which constitute a continuous relaxation of the nonsmooth
spiking nonlinearity for purposes of numerical optimization
(Figure 4). Such SGs do not explicitly change the optimiza-
tion algorithm itself and can be used, e.g., in combination with
BPTT. Further, we also consider SGs with more profound
changes that explicitly affect locality of the underlying opti-
mization algorithms themselves to improve the computational
and/or memory access overhead of the learning process. One
example of this approach that we will discuss involves replacing
the global loss by a number of local loss functions. Finally, the
use of SGs allows for the efficient end-to-end training of SNNs
without needing to specify which coding scheme is to be used
in the hidden layers.

Similar to standard gradient-descent learning, SG learn-
ing can deal with the spatial and temporal credit assignment
problem by either BPTT or forward methods, e.g., through the
use of eligibility traces (see the “Methods for Training RNNs”
section for details). Alternatively, additional approximations,
which may offer advantages specifically for hardware imple-
mentations, can be introduced. In the following section, we
briefly review existing work that relies on SG methods before
focusing on a more in-depth treatment of the underlying prin-
ciples and capabilities.

In the example in Figure 4(a), we linearly interpolated
between the random initial and final (postoptimization) weight
matrices of the hidden-layer inputs W) (network details: two
input, two hidden, and two output units trained on a binary
classification task). Note that the loss function [gray in Fig-
ure 4(a)] displays characteristic plateaus with a zero gradient,
which is detrimental for numerical optimization.

As shown in Figure 4(b), to perform numerical optimization
in this network, we constructed an SG (violet) which, in contrast

|EEE SIGNAL PROCESSING MAGAZINE | November 2019 |

57

58

to the true gradient (gray), is nonzero. Note that we obtained the
“true gradient” via the finite differences method, which, in itself,
is an approximation. Importantly, the SG approximates the true
gradient but retains favorable properties for optimization, i.e.,
continuity and finiteness. The SG can be thought of as the gra-
dient of a virtual surrogate loss function [the violet curve in (a)
obtained by numerical integration of the SG and scaled to match
loss at the initial and final points]. This surrogate loss remains
virtual because it is generally not computed explicitly. In practice,
suitable SGs are obtained directly from the gradients of the origi-
nal network through sensible approximations. This is a key dif-
ference with respect to some other approaches [22], in which the
entire network is replaced explicitly by a surrogate network on
which gradient descent can be performed using its true gradients.

Surrogate derivatives for the spiking nonlinearity

A set of works have used SG to specifically overcome the
challenge of discontinuous spiking nonlinearity. In these
works, typically, a standard algorithm such as BPTT is used
with one minor modification: within the algorithm, each oc-
currence of the spiking nonlinearity derivative is replaced
by the derivative of a continuously differentiable function.
Implementing these approaches is straightforward in most
autodifferentiation-enabled machine-learning toolkits.

One of the first uses of such an SG is described by Bohte
in [19], where the derivative of a spiking neuron nonlinearity
was approximated by the derivative of a truncated quadratic
function, thus resulting in a rectifying linear unit as the sur-
rogate derivative, as shown in Figure 3. This is similar in spirit

Q
(]
(%]
o
—
T T
Initial Final
W Interpolation Position
(a)
Q
=
T T
Initial Final

W) Interpolation Position
(b)

| True = Surrogate ‘

FIGURE 4. An empirical comparison of gradients and SG in an SNN. (a)
The value of the loss function (gray) of an SNN classifier along an inter-
polation path over the hidden-layer parameters W, (b) The absolute
value of the hidden-layer SG along the interpolation path.

to the solution proposed to optimize binary NNs [16]. The
same idea underlies the training of large-scale convolutional
networks with binary activations on classification problems
using neuromorphic hardware [18]. Zenke and Ganguli [2]
proposed a three-factor online learning rule using a fast sig-
moid to construct an SG. Shrestha and Orchard [13] used an
exponential function and reported competitive performance on
a range of neuromorphic benchmark problems. Additionally,
O’Connor et al. [35] described a spike-based encoding method
inspired by sigma-delta modulators. They used their method to
approximately encode both the activations and errors in stan-
dard feedforward artificial NNs (ANNs), and apply standard
BP on these sparse-approximate encodings.

Surrogate derivatives have also been used to train spiking
RCNNs, where dynamical recurrence arises due to the use of
LIF neurons as well as recurrent synaptic connections. Recent-
ly, Bellec et al. [3] successfully trained RCNNs with slow tem-
poral neuronal dynamics using a piecewise linear surrogate
derivative. Encouragingly, the authors found that such networks
can perform on par with conventional long short-term memory
networks. Similarly, WozZniak et al. [36] reported comparable
performance on a series of temporal benchmark data sets.

In summary, a plethora of studies have constructed SG
using different nonlinearities and trained a diversity of SNN
architectures. These nonlinearties, however, have a common
underlying theme: All functions are nonlinear and monotoni-
cally increase toward the firing threshold, as shown in Figure 3.
Although a more systematic comparison of different surrogate
nonlinearities is still pending, overall, the diversity found in
current literature suggests that the success of the method is
not crucially dependent on the details of the surrogate used to
approximate the derivative.

Surrogate gradients that affect the locality of update rules
The majority of studies discussed in the previous section intro-
duced a surrogate nonlinearity to prevent gradients from vanish-
ing (or exploding), but, by relying on methods such as BPTT,
they did not explicitly affect the structural properties of the learn-
ing rules. There are, however, training approaches for SNNs that
introduce more far-reaching modifications, which may com-
pletely alter the way error or target signals are propagated (or
generated) within the network. Such approaches are typically
used in conjunction with the aforementioned surrogate deriva-
tives. There are two main motivations for such modifications,
which are typically linked to physical constraints that make it im-
possible to implement the “correct” gradient-descent algorithm.
For instance, in neurobiology, biophysical constraints make it
impossible to implement BPTT without further approximations.
Studies interested in how the brain could solve the credit assign-
ment problem focus on how simplified “local” algorithms could
achieve similar performance while adhering to the constraints of
the underlying biological wetware (see “Local Models of Com-
putation”). Similarly, neuromorphic hardware may pose certain
constraints with regard to memory or communications, which
impede the use of BPTT and call for simpler and often more lo-
cal methods for training on such devices.

IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

As training SNNs using SGs advances to deeper architec-
tures, it is foreseeable that additional problems, similar to the
ones encountered in ANNs, will arise. For example, several
approaches currently rely on SGs derived from sigmoidal acti-
vation functions, as shown in Figure 3. The use of sigmoidal
activation functions, however, is associated with vanishing
gradient problems. Another set of challenges, which may need
addressing in the future, could be linked to the bias that SGs
introduce into the learning dynamics.

In the following section, we review a selection of promis-
ing SG approaches, which introduce far larger deviations from
the “true gradients” and still allow for learning at a greatly
reduced complexity and computational cost.

Applications

In this section, we present a selection of illustrative applica-
tions of smooth or SGs to SNNs, which exploit both the inter-
nal continuous-time dynamics of the neurons and their event-
driven nature. The latter allows a network to remain quiescent
until incoming spikes trigger activity.

Feedback alignment and random error BP

One family of algorithms that relaxes some of the require-
ments of BP is feedback alignment or, more generally, random
BP algorithms [Figure 5(b) and (c)] [37]-[39]. These are ap-
proximations to the gradient BP rule that sidestep the nonlocal-
ity problem by replacing weights in the BP rule with random
ones, as shown in Figure 5(b): 651) = o"(afl)) 2k 52” b G;cl,-), where
G is a fixed, random matrix with the same dimensions as
W. The replacement of W™ with a random matrix G*
breaks the dependency of the backward phase on W, en-
abling the rule to be more local. One common variation is to
replace the entire backward propagation by a random propaga-
tion of the errors to each layer, as depicted in Figure 5(c) [38]:
1) ,(-1) = G'(agl)) ZkSEL)H ,(f,) , where H? is a fixed, random matrix
with appropriate dimensions.

Random BP approaches lead to remarkably little loss in clas-
sification performance on some benchmark tasks. Although a
general theoretical understanding of random BP is still a subject
of intense research, simulation studies have shown that, during
learning, the network adjusts its feedforward weights such that
they partially align with the (random) feedback weights, thus
permitting them to convey useful error information [37]. Build-
ing on these findings, an asynchronous spike-driven adapta-
tion of random BP using local synaptic plasticity rules with
the dynamics of spiking neurons was demonstrated in [31]. To
obtain SGs, the authors approximated the derivative of the neu-
ral activation function using a symmetric function that is zero
everywhere except in the vicinity of zero, where it is constant.
Networks using this learning rule performed remarkably well,
and were shown to operate continuously and asynchronously
without the alternation between forward and backward passes,
which is necessary in BP. One important limitation with ran-
dom BP applied to SNNs was that the temporal dynamics of the
neurons and synapses was not taken into account in the gradi-
ents. SuperSpike solves this problem.

Supervised learning with local three-factor learning rules
SuperSpike is a biologically plausible three-factor learning
rule. In contrast to many existing three-factor rules that fall
into the category of “smoothed approaches” [24]-[29], Super-
Spike is an SG approach that combines several approximations
to render it more biologically plausible [2]. Although the under-
lying motivation of the study is geared toward a deeper under-
standing of learning in biological NNs, the learning rule may
prove interesting for hardware implementations because it is an
online rule that does not require backpropagating error infor-
mation through time. Specifically, the rule uses synaptic eligi-
bility traces to solve the temporal credit assignment problem.

The SuperSpike learning rule is a forward-in-time opti-
mization procedure that was derived for temporal supervised
learning tasks in which a given output neuron learns to spike
at predefined times. To that end, it minimizes the van Ros-
sum distance with kernel A between a set of output spike trains
S:(f) and their corresponding target spike trains S;(7)

L=5 [X x(Sils=Silshyds v 53 A+ (Slnl=SinD?,
i mk =eilnl
)

where the last approximation corresponds to transitioning to
discrete time. To avoid nonlocality, SuperSpike relies on a
form of random BP to propagate error signals directly from
the output layer to the hidden units. In deep networks, we ex-
pect this coarse approximation to cause problems for learn-
ing. In such cases, it may be important to compensate for
layer-specific delays or to use entirely different approaches for
credit assignment (compare the “Learning Using Local Er-
rors” section). Because hidden layers use the same learning
rule as the output layer, in the following section, we focus on
a network without hidden layers to illustrate the online char-
acter of the rule.

[ve] [y@] [)] [y@ £@
[v] [y] : [v] [y £

(d)

FIGURE 5. The strategies for relaxing gradient BP requirements. The
dashed lines indicate fixed, random connections. (a) BP propagates
errors through each layer using the transpose of the forward weights
by alternating forward and backward passes. (b) FA [37] replaces the
transposed matrix with a random one. (c) DFA [38] directly propagates
the errors from the top layer to the hidden layers. (d) Local errors [29]
uses a fixed, random, auxiliary cost function at each layer.

|EEE SIGNAL PROCESSING MAGAZINE | November 2019 |

59

60

To perform online gradient descent on £, we com-
pute the gradients of the squared output error signals e#[n]
at each time step n. Here, we first encounter the derivative
(0/0Wij) A = Si[n]. Because the (discrete) convolution is a lin-
ear operator, this expression simplifies to A * (3S:[n]/oW;).
To compute derivatives of the neuron’s output spike train of
the form 9S:[n]/dW;;, we differentiate the network dynamics,
i.e., (4) and (5), and obtain

ASin+11 _ ~vyr _ dUiln +1]
78Wij =0'(Uiln +1] ﬂ)[‘awl_j , ®)
QUiln+1] _ ,9Uin] | dl[n] 9Sin]

ow; B oW + IW;; ow;; ’ ©)
oliln +1]1 _ 9alin] A

W, a W, + §[n]. (10)

Equations (8)—(11) define a dynamical system which, given
the starting conditions S;[0] = U;[0] = I;[0] = 0, can be simu-
lated online and forward in time to produce all relevant deriva-
tives. Importantly, the convolution with A is implemented
similarly to (9) and (10) as a double integrator (see [2]). These
equations are conceptually similar to those derived under
RTRL, i.e., (6). Crucially, to arrive at useful SGs, SuperSpike
makes two approximations. First, © is replaced by a smooth
surrogate derivative o’(U[n] — ®) (compare Figure 3). Second,
the reset term with the negative sign in (9) is dropped, which
empirically leads to better results. With these definitions in
hand, the final weight updates are given by

AWyln] < eiln] A +| o' (Uiln] — ﬂ)%U—‘jV[Z] ’

an
where ei[n] = A = (S; — Si). These weight updates depend only
on local quantities and error signals (see “Local Models of
Computation”).

So far, in this section, we have considered a simple two-
layer network (compare Figure 2) without recurrent connec-
tions. If we were to apply the same strategy to compute updates
in an RCNN or a network with an additional hidden layer, the
equations would become more complicated and nonlocal.
SuperSpike, when applied to multilayer networks, sidesteps
this issue by propagating error signals from the output layer
directly to the hidden units, as in random BP (compare the
“Feedback Alignment and Random Error BP” section) Fig-
ure 5(c), [37]-[39]. For networks with additional hidden layers,
the output errors are simply broadcast through either random
or structured weights A:

aUn]

A% /
awy

AW n] oc[DAY exln] o' (U n]—0) . (12)
k

Thus, SuperSpike achieves temporal credit assignment by propa-
gating all relevant quantities forward in time through eligibility
traces defined by the neuronal dynamics [(9) and (10)], while
it relies on random BP to perform spatial credit assignment.

Although the work by Zenke and Ganguli [2] was centered
around feedforward networks, Bellec et al. [15] show that simi-
lar biologically plausible three factors rule can also be used to
train RCNNG efficiently.

Learning using local errors

In practice, the performance of SuperSpike does not scale fa-
vorably for large multilayer networks. The scalability of Su-
perSpike can be improved by introducing local errors, as de-
scribed in this section.

Multilayer NNs are hierarchical feature extractors. Through
successive linear projections and pointwise nonlinearities, neu-
rons become tuned (i.e., respond most strongly) to particular
spatiotemporal features in the input. Although the best features
are those that take into account the subsequent processing stag-
es, and which, are learned to minimize the final error (as the
features learned using BP do), high-quality features can also
be obtained by more local methods. The nonlocal component
of the weight update, i.e., (S1), is the error term 551)[n]. Rather
than obtaining this error term through BP, it can be generated
using information local to the layer. One way of achieving this
is to define a layerwise loss LPP[n]) and use this local loss
to obtain the errors. In such a local learning setting, the local
errors 5 become

d

Or7— (O
8:'[n]=o'(a; [n])dy,(l)[n]

L0y [n),

where

L% = LGPy [n], §V[n), (13)

with §”[n] a pseudotarget for layer /, and G a fixed random
matrix that projects the activity vector at layer / to a vector
having the same dimension as the pseudotarget. In essence,
this formulation assumes that an auxiliary random layer is at-
tached to layer /, with the goal of modifying W so as to min-
imize the discrepancy between the auxiliary random layer’s
output and the pseudotarget. The simplest choice for the pseu-
dotarget is to use the top-layer target. This forces each layer to
learn a set of features that can match the top-layer target after
undergoing a fixed random linear projection. Each layer builds
on the features learned by the layer below it, and we empiri-
cally observe that higher layers are able to learn higher-quality
features that allow their random and fixed auxiliary layers to
better match the target [40].

A related approach was explored with SNNs [41], where
separate networks provided high-dimensional temporal signals
that improve learning. Local errors were recently used in SNNs
in combination with the SuperSpike (compare the “Supervised
Learning With Local Three-Factor Learning Rules” section)
forward method to overcome the temporal credit assignment
problem [4]. As in SuperSpike, the SNN model is simplified
by using a feedforward structure and by omitting the refrac-
tory dynamics in the optimization; however, the cost func-
tion was defined to operate locally on the instantaneous rates
of each layer. This simplification results in a forward method
whose space complexity scales as O(N) [rather than O(N %)

IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

Model Error
IBM EEDN
SLAYER

This Work

Training
5.51% Offline
6.36% Offline
5.82% Offline

Other

Air Guitar

Air Drums

Arm Roll

Left Arm CCW
Left Arm CW
Right Arm CCW
Right Arm CW
Left-Hand Wave
Right-Hand Wave
Hand Clapping

0 500
Y3

Local Cost

FIGURE 6. DECOLLE with spikes [4] applied to the event-based DVS Gestures data set. The feedforward weights (green) of a three-layer convolutional
SNN are trained with SG; local errors are generated using fixed random projections onto a local classifier. Learning in DECOLLE scales linearly with the
number of neurons, thanks to local rate-based cost functions formed by spike-based basis functions. The circular arrows indicate recurrence due to the
statefulness of the LIF dynamics (no recurrent synaptic connections were used here) and are not trained. This SNN outperforms BPTT methods [13]
and requires fewer training iterations [4] compared to other approaches. SLAYER: Spike Layer Error Reassignment [20]; EEDN: energy-efficient deep

neuromorphic networks.

for the forward method, O(N?) for SuperSpike, or O(NT) for
the backward method], while still making use of spiking neu-
ral dynamics. Thus, the method constitutes a highly efficient
synaptic plasticity rule for multilayer SNNs. Furthermore, the
simplifications enable the use of existing automatic differen-
tiation methods in machine-learning frameworks to system-
atically derive synaptic plasticity rules from task-relevant cost
functions and neural dynamics (see [4] and included tutorials),
thereby making deep continuous local learning (DECOLLE)
easy to implement. This approach was benchmarked on the
dynamic vision sensor (DVS) Gestures data set (Figure 6), and
performs on par with standard BP or BPTT rules.

Learning using gradients of spike times

Difficulties in training SNNs stem from the discrete nature
of the quantities of interest, such as the number of spikes in
a particular interval. The derivatives of these discrete quanti-
ties are zero almost everywhere, which necessitates the use of
SG methods. Alternatively, we can choose to use spike-based
quantities that have well-defined, smooth derivatives. One such
quantity is spike times. This capitalizes on the continuous-time
nature of SNNs and results in highly sparse network activity, as
the emission time of even a single spike can encode significant
information. Just as importantly, spike times are continuous
quantities that can be made to depend smoothly on the neuron’s
input. Working with spike times is thus a complementary ap-
proach to SG and achieves the same goal: obtaining a smooth
chain of derivatives between the network’s outputs and inputs.
For this example, we use nonleaky neurons described by

d(i{[:h with ;=) W; D> 0@ —t)exp(—(t —t5)), (14)
J r

where 77 is the time of the rth spike from neuron j and O is the
Heaviside step function.

Consider the simple exclusive or problem in the temporal
domain: a network receives two spikes, one from each of
two different sources. Each spike can either be “early” or
“late.” The network must learn to distinguish between the
case in which the spikes are either both early or both late,
and the case where one spike is early and the other is late,
as shown in Figure 7(a). When designing an SNN, there is
significant freedom in how the network input and output are
encoded. In this case, we use a first-to-spike code in which
we have two output neurons, and the binary classification
result is represented by the output neuron that spikes
first. Figure 7(b) shows the network’s response after train-
ing (see [34] for details on the training process). For the
first input class (early/late or late/early), one output neuron
spikes first, and for the other class (early/early or late/late),
the other output neuron spikes first.

Condlusions

We have outlined how discrete-time SNNs can be studied
within the framework of RNNs and discussed successful
approaches for training them. We have specifically focused
on SG approaches for two reasons: SG approaches are able to
train SNNs to perform at unprecedented performance levels
on a range of real-world problems. This transition marks the
beginning of an exciting time in which SNNs will garner in-
creasing interest for applications that were previously domi-
nated by nonspiking RNNs; SGs provide a framework that
ties together ideas from machine learning, computational
neurosciences, and neuromorphic computing. We empha-
size that, although SGs are well defined in the discrete-time

|EEE SIGNAL PROCESSING MAGAZINE | November 2019 | 61

Hidden-Layer Neurons

Output-Layer Neurons

1 1 —
N ;/ffﬂ 05 4
0 0
Output -0.5 T<\f/ Early/Late 05 ""\%J/TT
Laver 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Hidden 1 i — 1
Layer 5 05 %? 0.5 /T
0 0
Input o5 1 Late/Early —05 T T
Layer 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
sl 1 /
0.5 / 0.5
cl N f Late/Late 0 l(I
BES TTime -0.5 -0.5
o L oot 0o 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
§ CI?ss — TTime ; 1 :
s 1 L. rrereeesseeesasessasesaaes]
n- — — . ,/ .
*g_ Clgss TTime = Og /” T Og
B O e _ _0_5$ Early/Early 05 i
0 — — [mme 01 2 3 4 5 6 7 01 2 3 4 5 6 7
.................................... Time (&) Tone (&
() (b)

FIGURE 7. The temporal exclusive or problem. (a) An SNN with one hidden layer. Each input neuron emits one spike, which can either be late or early, re-
sulting in four possible input patterns that should be classified into two classes. (b) For the four input spike patterns (one per row), the right plots show
the membrane potentials of the two output neurons, while the left plots show the membrane potentials of the four hidden neurons. Arrows at the top of

the plot indicate output spikes from the layer, while arrows at the bottom indicate input spikes. The output spikes of the hidden layer are the input spikes
of the output layer. The classification result is encoded in the identity of the output neuron that spikes first.

framework studied in this article, the theoretical founda-
tions of SGs for SNNs remain an open problem, including
the generalization of spike-based BPTT to continuous-time
dynamics and the optimal choice of smooth activation func-
tions. From the viewpoint of computational neuroscience,
the approaches presented in this article are appealing be-
cause several of them are related to “three-factor” plastic-
ity rules, which are an important class of rules believed to
underlie synaptic plasticity in the brain. Finally, for the neu-
romorphic community, SG methods provide a way to learn
under various constraints on communication and storage,
which makes SG methods highly relevant for learning on
customized, low-power neuromorphic devices.

The spectacular successes of modern ANNs were enabled
by algorithmic and hardware advances that made it possible
to efficiently train large ANNS on vast amounts of data. With
temporal coding, SNNs are universal function approxima-
tors that are potentially far more powerful than ANNs with
sigmoidal nonlinearities. Unlike large-scale ANNs, which
had to wait for several decades until the necessary compu-
tational resources were available for training them, we cur-
rently have the necessary resources, whether in the form
of mainstream compute devices such as CPUs or GPUs,
or custom neuromorphic devices, to train and deploy large
SNNs. The fact that SNNs are less widely used than ANNs
is thus primarily due to the algorithmic issue of trainability.
In this article, we provided an overview of various excit-
ing developments that are gradually addressing the issues

62

encountered when training SNNs. Fully addressing these
issues would have immediate and wide-ranging implica-
tions, both technologically and in relation to learning in
biological brains.

Acknowledgments

This work was supported by the Intel Corporation (to Emre
Neftci), the National Science Foundation under grant 1640081
(to Emre Neftci), the Swiss National Science Foundation
Early Postdoc Mobility Grant P2ZHP2_164960 (to Hesham
Mostafa), and the Wellcome Trust [110124/Z/15/Z] (to Friede-
mann Zenke).

Authors
Emre O. Neftci (eneftci@uci.edu) received his M.Sc. degree
in physics from Ecole Polytechnique Fédérale de Lausanne,
Switzerland, and his Ph.D. degree in neuroinformatics from
the Institute of Neuroinformatics at the University of Ziirich
and ETH Ziirich, in 2010. Currently, he is an assistant profes-
sor in the Department of Cognitive Sciences and Computer
Science at the University of California, Irvine. His current
research explores the bridges between neuroscience and
machine learning, with a focus on the theoretical and compu-
tational modeling of learning algorithms that are best suited to
neuromorphic hardware and non-von Neumann computing
architectures. He is a Member of the IEEE.

Hesham Mostafa (hesham.mostafa@intel.com) received
his M.Sc. degree in electrical engineering from the Technical

IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

University of Munich, Germany, in 2010 and his Ph.D. degree
in neuroinformatics from the Institute of Neuroinformatics at
the University of Ziirich and ETH Ziirich in 2016. Currently,
he is a research scientist in the office of the CTO with Intel’s
Artificial Intelligence Products Group. His research interests
include combining ideas from machine learning and computa-
tional neuroscience for developing biologically inspired and
hardware-efficient learning and optimization algorithms, and
physically implementing these algorithms using CMOS and
novel device technologies.

Friedemann Zenke (friedemann.zenke @fmi.ch) received
his diploma in physics from the University of Bonn, Germany,
and the Australian National University, Canberra, in 2009 and
received his Ph.D. degree from the Ecole Polytechnique
Fédérale de Lausanne, Switzerland, on the interaction of syn-
aptic and homeostatic plasticity in spiking neural network
models, in 2014. Currently, he is a junior group leader at the
Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland. His research interests include studying learning
in biologically inspired network models with a focus on deep
credit assignment and unsupervised learning.

References
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA:

MIT Press, 2016.

[2] F. Zenke and S. Ganguli, “SuperSpike: Supervised learning in multilayer spiking
neural networks,” Neural Comput., vol. 30, no. 6, pp. 1514-1541, 2018.

[3] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long short-
term memory and learning-to-learn in networks of spiking neurons,” in Advances
in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Red Hook,
New York: Curran Associates, 2018, pp. 795-805.

[4] J. Kaiser, H. Mostafa, and E. Neftci, Synaptic plasticity for deep continuous
local learning. 2018. [Online]. Available: arxiv:1811.10766

[5] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, ‘“Deep
learning in spiking neural networks,” Neural Netw., vol. 111, pp. 47-63, Mar. 2019.

[6] R. Giitig, “To spike, or when to spike?” Curr. Opin. Neurobiol., vol. 25,
pp. 134-139, Apr. 2014.

[7] R.-M. Memmesheimer, R. Rubin, B. Olveczky, and H. Sompolinsky, “Learning
precisely timed spikes,” Neuron, vol. 82, no. 4, pp. 925-938, 2014.

[8] N. Anwani and B. Rajendran, “NormAD-normalized approximate descent based
supervised learning rule for spiking neurons,” in Proc. IEEE Int. Joint Conf. Neural
Networks (IJCNN), 2015, pp. 1-8. doi: 10.1109/IJCNN.2015.7280618.

[9] A. Gilra and W. Gerstner, “Predicting non-linear dynamics by stable local learn-
ing in a recurrent spiking neural network,” eLife, vol. 6, Nov. 2017. doi: 10.7554/
eLife.28295, [Online]. Available: https://elifesciences.org/articles/28295

[10] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks
with FORCE training,” Nat. Commun., vol. 8, Dec. 2017. doi: 10.1038/s41467-017-
01827-3, [Online]. Available: https:/www.nature.com/articles/s41467-017-01827-3

[11] K. Boahen, “A neuromorph’s prospectus,” Comput. Sci. Eng., vol. 19, no. 2,
pp. 14-28, 2017.

[12] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[13] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassignment in
time,” in Advances in Neural Information Processing Systems 31, S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Red
Hook, New York: Curran Associates, 2018, pp. 1419-1428.

[14] R. J. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,” Neural Comput., vol. 1, no. 2, pp. 270-280, 1989.
[15] G. Bellec, F. Scherr, E. Hajek, D. Salaj, R. Legenstein, and W. Maass,
Biologically inspired alternatives to backpropagation through time for learning in
recurrent neural nets. 2019. [Online]. Available: arxiv:1901.09049

[16] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized
neural networks: Training deep neural networks with weights and activations con-
strained to +1 or —1. 2016. [Online]. Available: arxiv:1602.02830

[17] Y. Bengio, N. Léonard, and A. Courville, Estimating or propagating gradients
through stochastic neurons for conditional computation. 2013. [Online]. Available:
arxiv:1308.3432

[18] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry et al., “Convolutional networks for
fast, energy-efficient neuromorphic computing,” Proc. Nat. Acad. Sci., vol. 113,
no. 41, pp. 11,441-11,446, 2016.

[19] S. M. Bohte, “Error-backpropagation in networks of fractionally predictive spik-
ing neurons,” in Proc. Int. Conf. Artificial Neural Networks (ICANN), 2011, 60—68.

[20] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassignment in
time,” in Advances in Neural Information Processing Systems, vol. 31, S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Red
Hook, New York: Curran Associates, 2018, pp. 1412-1421. [Online]. Available:
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf

[21] L. F. Abbott, B. DePasquale, and R.-M. Memmesheimer, “Building functional
networks of spiking model neurons,” Nat. Neurosci., vol. 19, no. 3, pp. 350-355, 2016.

[22] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural networks,” in
Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Red Hook,
New York: Curran Associates, 2018, pp. 1440-1450.

[23] D. Ackley, G. Hinton, and T. Sejnowski, “A learning algorithm for Boltzmann
machines,” Cogn. Sci.: A Multidisciplinary J., vol. 9, no. 1, pp. 147-169, 1985.

[24] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal spike-timing-
dependent plasticity for precise action potential firing in supervised learning,”
Neural Comput., vol. 18, no. 6, pp. 1318—1348, 2006.

[25] B. Gardner, 1. Sporea, and A. Griining, “Learning spatiotemporally encoded

pattern transformations in structured spiking neural networks,” Neural Comput.,
vol. 27, no. 12, pp. 2548-2586, 2015.

[26] J. Guerguiev, T. P. Lillicrap, and B. A. Richards, “Towards deep learning with
segregated dendrites,” eLife, vol. 6, Dec. 2017. doi: 10.7554/eLife.22901, [Online].
Available: https://elifesciences.org/articles/22901

[27] J. Brea, W. Senn, and J.-P. Pfister, “Matching recall and storage in sequence learn-
ing with spiking neural networks,” J. Neurosci., vol. 33, no. 23, pp. 9565-9575, 2013.

[28] D. J. Rezende and W. Gerstner, “Stochastic variational learning in recurrent
spiking networks,” Front. Comput. Neurosci., vol. 8, p. 38, April 2014. doi:
10.3389/fncom.2014.00038.

[29] H. Mostafa and G. Cauwenberghs, “A learning framework for winner-take-all
networks with stochastic synapses,” Neural Comput., vol. 30, no. 6, pp. 1542-1572,
2018.

[30] E. Hunsberger and C. Eliasmith, Spiking deep networks with LIF neurons.
2015. [Online]. Available: arxiv:1510.08829

[31] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven random
back-propagation: Enabling neuromorphic deep learning machines,” Front.
Neurosci., vol. 11, p. 324, June 2017.

[32] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Front. Neurosci., vol. 10, Nov. 2016. doi: 10.3389/
fnins.2016.00508, [Online]. Available: https://www.frontiersin.org/articles/
10.3389/fnins.2016.00508/full

[33] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in temporal-
ly encoded networks of spiking neurons,” Neurocomputing, vol. 48, no. 1-4,
pp. 17-37, 2002.

[34] H. Mostafa, “Supervised learning based on temporal coding in spiking neural
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 3227-3235,
2018.

[35] P. O’Connor, E. Gavves, and M. Welling, Temporally efficient deep learning
with spikes. 2017. [Online]. Available: arxiv:1706.04159

[36] S. Wozniak, A. Pantazi, and E. Eleftheriou, Deep networks incorporating spik-
ing neural dynamics. 2018. [Online]. Available: arxiv:1812.07040

[37] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random syn-
aptic feedback weights support error backpropagation for deep learning,” Nat.
Commun., vol. 7, no. 1, 2016. doi: /10.1038/ncomms13276, [Online]. Available:
https://www.nature.com/articles/ncomms13276

[38] A. Ngkland, “Direct feedback alignment provides learning in deep neural net-
works,” in Advances in Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Red Hook, New York:
Curran Associates, 2016, pp. 1037-1045.

[39] P. Baldi and P. Sadowski, “A theory of local learning, the learning channel, and
the optimality of backpropagation,” Neural Netw., vol. 83, pp. 51-74, Nov. 2016.
[40] H. Mostafa, V. Ramesh, and G. Cauwenberghs, “Deep supervised learning
using local errors,” Front. Neurosci., vol. 12, p. 608, Aug. 2018.

[41] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks
with force training,” Nat. Commun., vol. 8, no. 1, 2017. doi: 10.1038/s41467,
[Online]. Available: https:/www.nature.com/articles/s41467-017-01827-3 m

|EEE SIGNAL PROCESSING MAGAZINE | November 2019 |

63

