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Biological and artificial agents must achieve goals to survive and 
be useful. This goal-directed or hedonistic behaviour is the 
foundation of reinforcement learning (RL)1, which is learning 

to choose actions that maximize rewards and minimize punishments 
or losses. Reinforcement learning is based on interactions between 
an agent and its environment (Fig. 1a,b). The agent must choose 
actions based on sensory inputs, where the sensory inputs define the 
states of the environment. It is the outcomes of these actions over 
time, either rewards or punishments, that the agent tries to optimize. 
This formulation is natural for behaviour in biological systems, but 
it has also proven highly useful for artificial agents.

Biological systems must find food, avoid harm and reproduce2. 
The environments in which they live are dynamic and key pro-
cesses unfold on multiple timescales (Fig. 1c). While some of these 
changes can be slow and persistent (for example, seasonal), oth-
ers can be sudden and ephemeral (for example, the appearance of 
a predator) and even fast and persistent (for example, destruction 
of a habitat). To deal with these changes, biological systems have 
to continuously adapt and learn on multiple timescales. Studies of 
biological systems have often focused on understanding how organ-
isms deal with learning problems where the associations between 
choices and rewards are immediate, but dynamic3–5. These are 
similar to ecological problems like learning which food to eat and 
whether conspecifics are friendly. The values assigned to choices 
in these cases can be updated rapidly with experience because the 
credit assignment problem—the link between the choice and the 
outcome—is straightforward. More concretely, in two-armed ban-
dit paradigms often used to study learning in animals, the rewards 
associated with choice options can be learned rapidly, and updated 
when they change6,7.

On the other hand, artificial agents are constructed from math-
ematical models and typically trained to solve a single problem in 
a static environment8,9, meaning that the reward contingencies and 
environmental responses are statistically fixed. In recent years, the 
most successful artificial systems, including neural networks, are 

generally trained in a data-driven fashion through statistical opti-
mization10. Training on these problems takes an enormous number 
of trials (Fig. 1d). Due to specific requirements for optimization, 
the training phase is generally separated from the performance 
phase (Fig. 1f). The separation of training and performance pre-
vents artificial agents from benefiting from ongoing experience or 
adapting to changes in the environment. As we discuss later, join-
ing these two phases to form one single ‘lifelong learner’ can lead 
to instabilities that challenge the assumptions made in statistical 
learning. Researchers are now attempting to address these issues 
(for example, DARPA’s Life Learning Machines (L2M) programme 
and DeepMind), using approaches like multitask reinforcement 
learning11,12. However, achieving the data efficiency and adapt-
ability of biological agents in dynamical environments remains a 
major challenge.

Despite differences between work on learning in biological and 
artificial agents, or perhaps due to these differences, there is much 
room for the flow of ideas between these fields. Systems neuro-
science has used many theoretical concepts from the study of RL 
in artificial agents to frame questions about biological systems. 
Theoretical RL algorithms, both model-free and model-based, 
are providing novel insights into reward-based learning processes 
in biology13,14. Moving from biology to theory, much of the work 
on learning in artificial neural networks was driven by ideas from 
learning in biology, including the perceptron15 and the wake–sleep 
algorithm16, which laid the foundations for efficient training of deep 
networks today.

A growing body of work explores the intersection of learning in 
artificial and biological systems. This work attempts on the one side 
to build an artificial brain and on the other to understand biologi-
cal brains. In this Review, we focus on describing areas where the 
flow of ideas from the study of learning in artificial systems has led 
to increased understanding of learning in biological systems, and 
vice versa. We also point to areas where this flow of ideas may be 
exploited in the future, to better understand biological learning 
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There is and has been a fruitful flow of concepts and ideas between studies of learning in biological and artificial systems. Much 
early work that led to the development of reinforcement learning (RL) algorithms for artificial systems was inspired by learning 
rules first developed in biology by Bush and Mosteller, and Rescorla and Wagner. More recently, temporal-difference RL, devel-
oped for learning in artificial agents, has provided a foundational framework for interpreting the activity of dopamine neurons. 
In this Review, we describe state-of-the-art work on RL in biological and artificial agents. We focus on points of contact between 
these disciplines and identify areas where future research can benefit from information flow between these fields. Most work 
in biological systems has focused on simple learning problems, often embedded in dynamic environments where flexibility and 
ongoing learning are important, similar to real-world learning problems faced by biological systems. In contrast, most work in 
artificial agents has focused on learning a single complex problem in a static environment. Moving forward, work in each field 
will benefit from a flow of ideas that represent the strengths within each discipline.
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Fig. 1 | Overview of approaches to learning in biological and artificial agents. a, RL is based on the interaction between an agent and its environment. Agents 
choose actions, at, which lead to changes of the state, st, and rewards, rt, which are returned by the environment. The agent’s goal is to maximize rewards over 
a defined time horizon. Action values, Q(st, at) in experiments used to study RL in biology are often simple functions of the frequencies of choices and rewards 
(that is, number of rewards R divided by the number of choices C for a small number of choices in bandit tasks). b, The same agent–environment distinction 
is important in artificial systems. In state-of-the-art artificial RL systems, action values are estimated by training deep networks. They are often complex 
functions of sensory inputs. c, Biological agents (for example, the brain) employ multiple learning systems that learn at different rates. The amygdala and 
striatum are two nuclei in the brain that can support RL learning. The amygdala (also see Fig. 3) learns at a fast rate, and therefore can track rapid changes 
in the environment, but at the expense of sensitivity to noise. The striatum, on the other hand, learns more slowly. While it cannot track rapid changes in 
environmental values, it is more robust to noise. d, Artificial agents are often trained on complex, statistically stationary problems. The number of training 
trials is huge, and therefore these systems cannot adapt rapidly to changes in the environment. Artificial agents are often trained on a single task and fail to 
learn in sequential multitask settings. Hierarchical RL, structural plasticity and consolidation can enable artificial agents to learn on multiple timescales.  
e, Biological agents interact with the environment in an ‘on-behaviour’ fashion—that is, learning is online and there is a single copy of the environment.  
f, While many RL approaches for artificial agents follow these principles, the most recent and successful strategies include a form of agent parallelism, where 
the agents learn on copies of the environment to stabilize learning (see, for example, A3C and IMPALA). Experience replays inspired by the hippocampus or 
more complementary learning systems can provide the necessary properties for on-behaviour agents, and thus form a point of contact between artificial and 
biological RL. Credit: Sebastian Kaulitzki/Alamy Stock Photo (brain image); Moritz Wolf/imageBROKER/Alamy Stock Photo (slot machine image).
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systems and to build artificial agents capable of solving increas-
ingly complex real-world problems. Finally, we consider how these 
bridges underlie recent advances in engineering brain-inspired, 
neuromorphic technologies.

The paper is organized by first considering RL in biological sys-
tems. We start by discussing computationally simple model-free 
learning problems, where much is known about both the neural 
circuitry and behaviour, and ideas from learning in artificial agents 
have had a deep influence. We then move on to more complex, 
model-based RL, where ideas from learning in artificial agents have 
provided tools for understanding behaviour, and work on neural 
systems is just beginning. The second half of the paper is focused 
on learning in artificial systems. We start with an overview of the 
recent successes in training artificial RL systems to solve complex 
problems that have relied on developments in deep neural networks, 
which were inspired by networks in biological systems. We then dis-
cuss hierarchical RL, a framework developed for learning in artifi-
cial agents. It is likely to prove useful in the future for understanding 
biological systems, as there is little known about the neural circuitry 
that underlies hierarchical learning in biological agents. Finally, we 
consider neuromorphic engineering, an area of research that draws 
explicitly from biology to solve real-world engineering problems.

Biological systems underlying RL
The theoretical constructs of model-free and model-based rein-
forcement learning were developed to solve learning problems in 
artificial systems. They have, however, been used to understand 
learning problems in biological systems at both the behavioural and 
neural levels. The neural basis of RL in mammalian systems, par-
ticularly model-free RL, is arguably one of the best understood in 
systems neuroscience17–21. This is due to the success of temporal-dif-
ference RL18 and Rescorla–Wagner theories for predicting the activ-
ity of dopamine neurons, and the effects of activating dopamine 
neurons on behaviour. Theories of model-free RL have emphasized 
the role of frontal-striatal systems20,21, which are the anatomically 
defined networks connecting prefrontal cortex to the striatum22, 
and dopamine-driven plasticity in these circuits (Fig. 2). According 
to one model, cortex represents the set of available choices23. The 
strength of cortical synapses on striatal cells encodes information 
about the values of each of the choices21. Stronger synapses drive 
increased activity in striatal cells. Therefore, the activity of striatal 

cells represents the values of the options represented by cortex24,25. 
The striatal activity drives choice activity, either via downstream 
circuitry through the basal ganglia and return loops through the 
thalamus to the cortex, or via descending projections to brain-stem 
motor output areas. After making a choice and experiencing an out-
come, dopamine encodes a reward prediction error, RPE = r – vi. 
The RPE is the difference between the expected value of the chosen 
option, vi, encoded by the striatum, and the experienced outcome, 
r. If the RPE is positive, the outcome was better than expected, and 
there is a phasic increase in dopamine. If the RPE is negative, the 
outcome was worse than expected, and there is a phasic decrease in 
dopamine. This change in dopamine concentration drives plastic-
ity on the frontal-striatal synapses representing the chosen option. 
Increases in dopamine drive increases in synaptic strength and 
decreases in dopamine drive decreases in synaptic strength (ignor-
ing for simplification direct and indirect pathways). The next time 
these choice options are experienced, the activity of the striatal 
neurons will reflect this updated synaptic efficacy, firing more for 
options that had a positive RPE in the previous trial, and less for 
options that had a negative RPE. This process in its simplest form is 
captured by the Rescorla–Wagner equation, which is a stateless RL 
update model17,26.

α+ = + −v k v k r k v k( 1) ( ) ( ( ) ( ))i i i

This equation summarizes the interaction of neural activity in three 
brain areas—cortex, which represents the options, i; the striatum, 
which represents their values vi; and mid-brain dopamine neurons, 
which code RPEs. The equation further describes at a formal level 
the process of changing value representations during learning that 
underlie behaviour, where the size of the update is controlled by a 
learning rate parameter, α. (Note that the original Rescorla–Wagner 
equation was developed in the context of Pavlovian cue condition-
ing and not choices.)

Temporal-difference (TD) learning, first developed for artificial 
systems27, provides an extension of the Rescorla–Wagner model, 
to cases where action values depend on states. The state is defined 
by the information relevant to choosing an option and can be, for 
example, time. The TD update rule for actions, i, is given by

α γ← + − + +v s v s r t v s v s( ) ( ) ( ( ) ( ) ( ))i t i t i t i t 1

In this case, we have used the assignment operator ← to indicate the 
update after an event. The variable st is the state at time t, and γ is 
a discount parameter that discounts the value of future states. The 
TD RPE is given by

δ γ= − + +t r t v s v s( ) ( ) ( ) ( )i t i t 1

This general theory has been highly successful, and it predicts 
much behavioural and neural data. For example, a substantial body 
of work has shown that dopamine neurons code TD RPEs under 
diverse conditions28, and activating dopamine neurons is equivalent 
to experiencing an RPE, with respect to learning29–31.

However, this model leaves many details unspecified. For exam-
ple, it is now clear that a larger set of interconnected areas underlies 
RL (Fig. 3). These networks are organized around a set of overlap-
ping but segregated cortical-basal ganglia-thalamo-cortical systems. 
Broadly speaking, there is one system interconnected with the dorsal 
striatum that mediates learning about rewarding spatial-cognitive 
processes—for example, spatially directed eye-movements32–34— 
and another system interconnected with the ventral striatum that 
mediates learning about rewarding stimuli, particularly visual 
stimuli in the primate35,36. The ventral system also has strong inputs 
from the amygdala, which plays an important role in learning about 
the values (positive and negative) of stimuli in the environment26,37. 

Lateral prefrontal cortex
available cognitive or
spatial choices, i

DStr

VStr

Orbital prefrontal cortex
available objects
to choose, i

Dopamine reward
prediction errors r – vi

Choice values, vi

Fig. 2 | Anatomy of a model of reinforcement learning shown on a 
schematic representation of the rhesus monkey striatum. The model is 
focused on dopamine and its effects in the striatum. DStr: dorsal striatum. 
VStr: ventral striatum. Red lines indicate anatomical inputs from the 
indicated neural population to the striatum. Cortical inputs are excitatory. 
The dopamine input arises in the midbrain dopamine neurons.
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There does not appear to be a corresponding structure for the dorsal 
circuit. The hippocampus, for example, which is not included here, 
projects to the ventral striatum, not the dorsal striatum37. It is also 
important to point out that while we present the dorsal and ventral 
systems as separate circuits, there is a gradient of circuitry intercon-
necting all parts of the prefrontal cortex to corresponding areas in 
the striatum35,38. The dorsal and ventral circuits represent two poles 
in the system. Furthermore, the role of the dorsal system in eye 
movements and the role of the ventral system in vision follows to 
some extent from the tasks that have been used to study them.

Multiple timescales of learning
Biological agents must solve learning problems on multiple tim-
escales and the neural systems underlying RL in biological agents 
reflect this need. In the ventral system (Fig. 3, red lines), there is an 
interacting and parallel organization of the amygdala and striatum. 
Work that has examined the relative contribution of these two sys-
tems to RL has suggested that plasticity within the amygdala oper-
ates on fast timescales, through an activity-dependent mechanism, 
whereas plasticity in the striatum operates on slower timescales, 
through a dopamine-dependent mechanism7,26. Having parallel 
neural systems that learn at different rates allows biological agents 
to learn efficiently and track changing values in environments char-
acterized by non-stationarities on different timescales39. The slower 
striatal/dopamine-dependent system learns more effectively in noisy 
environments (Fig. 1c), when the values of choices evolve on slower 
timescales. The amygdala/activity-dependent system, on the other 
hand, learns more effectively when environments and the underly-
ing values of choices evolve more quickly. However, the amygdala 
system is more susceptible to noise. The amygdala, due to its rapid 
activity-dependent plasticity mechanisms, erroneously tracks noisy 
fluctuations in values, which can lead to inaccurate value estimates 
if noise is large relative to signal. The striatum, because it updates 
values slowly, tends to integrate out this noise. Because these two 

systems both track values, a downstream system must mediate 
between them, combining the value estimates from each system, 
according to an ongoing reliability estimate. This mediation pro-
cess is known as mixture-of-experts in machine learning, where 
the concept was first developed40. If one of the systems is providing 
more accurate value estimates, its contribution to behaviour should 
be up-weighted, relative to the other. It is currently not clear where 
this downstream system is, although it may be in cortical motor 
structures, and therefore effector specific. Overall, however, this 
organization reflects a general principle underlying the biological 
solutions to RL problems. Specifically, the brain uses multiple inter-
connected systems to solve the RL problem (Fig. 3). It decomposes 
the problem into sub-problems and uses multiple parallel but inter-
acting systems to solve learning problems flexibly.

In computational neuroscience, studies of synaptic plasticity 
have shown that the timescales of learning are directly related to the 
dynamical processes of neurons and synapses41. Specifically, these 
studies found that the spike-timing-dependent plasticity learning 
window, which determines the magnitude of weight updates (that 
is, synaptic plasticity), is a direct reflection of the post-synaptic 
potential, typically in the 1 ms to 100 ms range depending on the 
neuron and synapse type. More generally, the theory implies that 
the timescales of the plasticity processes match the timescales of 
neural activity. Furthermore, theoretical and modelling studies 
show that having both slow and fast timescales achieves extended 
memory capacity42,43, improves performance44 and speeds up learn-
ing45. Therefore, even at the level of single neurons, learning with 
multiple timescales is advantageous. The multiplicity of timescales 
is also a central feature of certain artificial recurrent neural net-
works, such as those composed of long short-term memory (LSTM) 
units46. LSTMs were originally designed to improve the temporal 
horizon of learning by introducing a memory element whose decay 
time constant is dynamic and data-dependent, inspired by working 
memory processes studied in biology. Interestingly, models using 
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Fig. 3 | Expanded conception of neural circuitry underlying reinforcement learning. Example systems are taken from a rhesus monkey. The lines indicate 
anatomical connections between the indicated regions. The network on the left, in red, is specialized for associating values to objects defined by sensory 
information. This network interconnects mostly ventral structures, including orbito-frontal cortex and the ventral striatum. The network on the right, in 
blue, is specialized for associating values to cognitive and spatial processes. This network interconects dorsal systems, including dorsal-lateral prefrontal 
cortex and the dorsal striatum. These systems have a parallel organization, such that the circuits from the cortex, through the basal ganglia (striatum and 
GPi) and thalamus and back to cortex are organized similarly. The amygdala, however, only participates in the sensory network shown on the left. OFC: 
orbital prefrontal cortex. lPFC: lateral prefrontal cortex. MD: medial-dorsal thalamus. GPe/GPi: globus pallidus external and internal segments.
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working memory or multiple clock rates have been shown to repro-
duce some of the LSTM’s computational capabilities44,47.

The continuous operation of neural dynamics in the brain 
entails that, in contrast to conventional machine learning and RL 
in artificial agents, learning in the brain is an ongoing process. In 
continuous learning, parameters are updated (that is, plasticity) 
sequentially, following each data sample48 (that is, ‘online’ in the 
machine learning sense). In contrast, batch updates commonly used 
in machine learning involve processing many events or ‘trials’ before 
connection weights are updated. This requires storage of these tri-
als. Statistical learning theory shows that it is advantageous in gra-
dient-based learning to operate in the sequential fashion49, both in 
terms of memory and computational complexity, provided data are 
independent and identically distributed (iid). When the iid case is 
violated, correlations in the data sampling can lead to catastrophic 
interference50,51—that is, old knowledge tends to be overwritten by 
new knowledge. This is particularly problematic in RL because data 
are inherently correlated and the agent modifies the data-sampling 
process through the choice of actions. Two main avenues exist to 
combat this problem: complementary learning and replay mecha-
nisms. With replay mechanisms, older experiences are presented 
to the network again51–54. With complementary learning, synapse-
specific learning rates change according to past task relevance12,55,56. 
In this case, a network mechanism estimates the importance of neu-
rons and synapses in a task and selectively stiffens their parameters. 
Both mechanisms were inspired by the brain.

Learning to learn and model-based RL
In addition to the model-free learning systems discussed above, 
mammalian systems can learn using more sophisticated model-
based inference strategies. As a side note, the term model-based 
originally referred specifically to RL learning problems in which 
state transition functions were known, which allows for Bellman 
updates57. However, the term has come to more generally mean 
any learning process that relies on knowledge of the statistics of the 
environment, and therefore uses a statistical—usually Bayesian—
model. Work in this area has borrowed extensively from concepts 
first developed to solve learning problems in artificial agents. There 
is substantial behavioural evidence for model-based inference strat-
egies58–61, but much less is currently known about the neural cir-
cuitry, relative to model-free learning59,62. The original theory of 
model-based RL for biological agents placed model-based learning 
in prefrontal cortex57. This was consistent with general ideas about 
cognitive planning processes being driven by the prefrontal cortex63. 
However, most subsequent work, and the original rat experiments 
on habit versus goal-directed systems that inspired the theory64, does 
not support this distinction. Several studies have shown that both 
model-based and model-free learning rely on striatal-dependent 
processes62,65, although some studies have suggested that prefron-
tal cortex underlies aspects of model-based learning60. Therefore, it 
is clear that biological systems can use model-based approaches to 
learn, but the neural systems that underlie this form of learning are 
not currently understood.

Behavioural evidence for model-based learning comes in at least 
three forms. First, mammals can learn to learn66. This means that 
the rate of learning on a new problem that is drawn from a class of 
problems with which one has experience improves as one is exposed 
to more examples from the class. Thus, the statistics of the underly-
ing inference process, or the model that is generating the data, is 
learned over time. For example, in reversal learning experiments, 
animals are given a choice between two options, which can be two 
objects whose locations are randomized62,67,68. Choice of one of the 
options leads to a reward, and choice of the other option leads to 
no reward. Once an animal has learned to choose the better option, 
the choice–outcome mapping is switched, such that the previ-
ously rewarded option is no longer rewarded, and the previously 

unrewarded option is rewarded. (In probabilistic versions of this 
problem, the choices differ in the frequency with which they are 
rewarded when chosen, and these frequencies switch at reversal.) 
When the animals are exposed to a series of these reversals, the rate 
at which they switch preferences improves with experience. Thus, 
it may take five or ten trials to switch preferences the first time the 
contingencies are reversed. However, with sufficient experience, the 
animals may reverse preferences in just one or two trials. This pro-
cess can be captured by a model that assumes a Bayesian prior over 
the probability of reversals occurring in the world68. The prior starts 
out low, since the animals have mostly been exposed to stable stim-
ulus-outcome mappings that do not reverse. Because the prior is 
low, the animals require substantial evidence before they infer that 
a reversal has taken place. When they fail to receive a reward for a 
previously rewarded choice, they believe it is noise in the reward 
delivery process, and not an actual reversal in choice–outcome 
mappings. However, with experience on the task, the prior on rever-
sals increases, and the animals require less evidence before inferring 
that a reversal has occurred, and therefore they reverse their choice 
preferences more rapidly.

In artificial agents, learning to learn has been put forward as a 
principled approach to transfer learning, as the ability to generalize 
across a class of related tasks implies that information used to solve 
one task has been transferred to another. This idea is fundamental to 
the recent meta-reinforcement learning approach69, where synaptic 
plasticity driven by dopamine sets up activity-based learning in the 
prefrontal cortex. Interestingly, successfully transferring knowledge 
among a class of related problems is equivalent to generalization in 
the statistical machine learning sense and implies a principled solu-
tion to the catastrophic forgetting problem discussed above.

Second, and related to the first form of model-based learning, 
animals can use probabilistic inference, or latent state inference, 
to solve learning problems, when they have had adequate experi-
ence with the statistics of the problem70,71. With sufficient experi-
ence, animals can learn that a particular statistical model is optimal 
for solving an experimental problem. These models can then solve 
learning problems more effectively than model-free learning 
approaches. Probabilistic inference is guaranteed to be optimal, if 
the mammalian system is capable of learning the correct model72. In 
stochastic reversal learning, after the animal has learned that rever-
sals occur, detecting a reversal statistically can be done efficiently 
using Bayesian inference. This is state inference, since the reward 
environment is in one of two states (that is, either choice one or 
choice two is more frequently rewarded). This process can be faster 
and more efficient than carrying out model-free value updates. To 
solve this problem with model-free value updates, the animal would 
have to update the value of the chosen option, using feedback, on 
each trial. In addition to the efficiency of Bayesian state inference, 
it has also been shown that animals can learn priors over reversal 
points, in tasks where reversals tend to happen at predictable points 
in time58. This is more sophisticated than the prior discussed above, 
which is a prior on the occurrence of reversals. Priors on the timing 
of reversals reflect knowledge that reversals tend to occur at partic-
ular points in time, and therefore implicitly assume that they occur. 
These priors play an important role when stochastic choice–out-
come mappings make inference difficult. For example, if the opti-
mal choice in a two-armed bandit task delivers rewards 60% of the 
time and the sub-optimal choice delivers rewards 40% of the time, 
reversals in the choice outcome mapping will be hard to detect based 
upon the received rewards and the priors can improve performance. 
It is not always straightforward, however, to dissociate fast model-
free learning from model-based learning, and therefore careful task 
design and model fitting is required to demonstrate model-based 
learning in biological systems. Much of the work on these infer-
ence processes has suggested that they occur in cortex70,71,73,74. This 
raises the question of whether these processes require plasticity, or 
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whether they rely on faster computational mechanisms, like attrac-
tor dynamics. It is possible, for example, that the inference process 
drives activity in cortical networks into an attractor basin, similar to 
the mechanism that may underlie working memory75,76.

A third and final form of faster learning is model-based, Bellman 
RL, which is known more accurately as dynamic programming. In 
this form of model-based learning, one has knowledge of the statis-
tics of the environment9,77. These statistics include the state action 
reward function, r s a( , )t , the state value function, u s( )t t , and the 
state-transition function, ∣p j s a( , )t . When these functions are 
known, one can use Bellman’s equation to arrive at rapid, but com-
putationally demanding, solutions to problems.















∑γ= + ∣
∈ ∈

+u s r s a p j s a u j( ) max ( , ) ( , ) ( )t t
a A

t
j S

t t 1
st

This equation shows that the value of the current state, st, is equal to 
the maximum over the possible actions Ast

, of the immediate reward 
for action a, r s a( , )t , plus the discounted maximum expected reward 
going forward from that state, which is an expected value over future 
states, j, from the set of reachable states S. In computational work, 
and correspondingly in biological systems, one rarely has access to 
all of the information necessary to solve Bellman’s equation, and 
therefore model-free approaches are often necessary to learn state or 
action value functions. However, biological systems can learn state-
transition functions, and these state-transition functions can make 
learning more efficient, under some conditions59,60,78,79. It is the case 
that model-free and model-based learning approaches will converge 
to the same result, however. Therefore, these solutions have been 
compared on problems that have intrinsic non-stationarities. The 
faster learning of the model-based system can then be revealed by 
its increased ability to track the non-stationarities.

Artificial connectionist RL agents
The recent successes of machine learning and RL techniques in 
artificial systems are spurring widespread interest in solving prac-
tical problems with artificial intelligence, such as natural language 
processing, speech generation, image recognition, autonomous 
driving and game playing. Much of this renewed interest is due to 
breakthroughs in deep neural networks and advances in the tech-
nologies that support them. In fact, in artificial agents, task-rel-
evant features of the environment (states) must be inferred from 
high-dimensional sensory data—for example, pixel intensity val-
ues from a camera. Human observers can immediately identify 
the objects and their relative locations in visual data, and assign 
meaning to these objects. Solving these problems in artificial 
systems and achieving state-of-the-art performance requires spe-
cialized structures and massive amounts of training data53. Early 
pattern recognition models used hand-created features or linear 
models to extract states from high-dimensional sensory stimuli80. 
These methods required domain-specific knowledge and learn-
ing was limited to the selected domain. Thanks to large datasets, 
and improved computing technologies, deep learning was sur-
prisingly successful in mapping high-dimensional sensory stim-
uli to task relevant output, or in the case of RL, in mapping from 
sensor data to chosen action values. Because these neural net-
works are general-purpose function approximators, they require 
few domain-specific assumptions to learn task-relevant repre-
sentations of the environment81. Early implementations were 
successful at solving complex tasks, such as backgammon82 and 
autonomous vehicle control83. With improved hardware and algo-
rithms that prevent learning instabilities, these early approaches 
matured into algorithms that can now match or exceed human 
capabilities in a wide variety of domains, such as in game playing 
and motor control53,84–86.

Can the success of deep networks and deep RL be leveraged to 
better understand biological agents? Interestingly, the mathematical 
framework of artificial recurrent neural networks can adequately 
describe the discrete-time approximations of simple models of 
biological neural networks (for example, leaky integrate-and-fire 
neurons). Indeed, biological neural networks are recurrent (that is, 
they are stateful and have recurrent connections), binary (that is, 
they communicate via action potentials) and operate in continuous-
time (a neuron can emit an action potential at any point in time)87, 
and such properties are commonly studied in artificial neural net-
works. One of the most constraining differences between biological 
and mainstream artificial learning systems is architectural: internal 
states such as neurotransmitter concentrations, synaptic states and 
membrane potentials are local. Broadly speaking, locality is charac-
terized by the set of variables available to the processing elements 
(for example, the neuron and the synapse). Many critical computa-
tions in machine learning require information that is non-local—for 
example, to solve the credit-assignment problem. Making non-local 
information available to the neural processes requires dedicated 
channels that communicate this information88. The dopamine path-
way is one such example. The information provided by the dopamine 
system is, however, only evaluative. Thus, an important challenge in 
bridging neuroscience and machine learning is to understand how 
plasticity processes can utilize this evaluative feedback efficiently 
for learning. Interestingly, an increasing body of work demonstrates 
that approximate forms of gradient backpropagation compatible 
with biological neural networks naturally incorporate such feed-
back, and models trained with them achieve near state-of-the-art 
results on classical classification benchmarks89–91. Synaptic plastic-
ity rules can be derived from gradient descent that lead to ‘three-
factor’ rules, consistent with an error-modulated Hebbian learning  
(Fig. 4). Furthermore, the normative derivation of the learning 
reveals plasticity dynamics that are matched to the neural and syn-
aptic time constants discussed earlier (roughly 1 ms to 100 ms), such 
that spatiotemporal patterns of spikes can be efficiently learned.

Although these results have not yet been extended to deep RL, 
this demonstrated equivalence between biological and artificial 
neural networks88 is suggestive of multiple, direct points of contact 
between machine learning algorithms and neuroscience. From this 
contact, two key challenges emerge. First, deep neural networks 
learning in real time require impractical amounts of experience 
to reach human-level classification accuracies (Fig. 1d), even on 
simple classical vision benchmarks and in control (the latter eas-
ily requiring millions of samples—for example, in game playing53 
or grasping with a robotic control92). Rapid learning is important 
because, behaviourally, an agent must adapt its internal representa-
tion at least as fast as the timescale of changes in the environment. 
The second challenge that emerges is that biological agents learn 
‘on-behaviour’, which implies non-iid sampling of the environment 
or dataset, as discussed earlier (see section ‘Multiple timescales  
of learning’).

The slowness of deep learning can be partly attributed to the 
gradient descent-based nature of the training algorithms, which 
require many updates in small increments to stably approach a local 
minimum. Consequently, there is a fundamental trade-off in speed 
of learning between the amount of domain-specific knowledge that 
is built into a model and the number of trials necessary to learn 
the underlying problem. This is the same reason that model-based 
RL is more data efficient than model-free RL. The more domain 
knowledge that is built into a system, the more data efficient it will 
be. By design, deep RL is initialized with little or no domain-specific 
knowledge, and so gradient descent cannot significantly improve a 
deep RL model based on a single experience. In contrast, model-
based RL, which incorporates problem-specific knowledge and 
other related methods that do not rely on gradient descent, such 
as tabular approaches and episodic control1,93,94, are generally data  
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efficient. The complementary features of model-free and model-
based RL suggest that successful artificial agents are likely to include 
both components (possibly in a hierarchical fashion). Meta-learning 
techniques that ‘pre-train’ a neural network on a class of related 
tasks95 (in the spirit of Bayesian priors discussed earlier), hierarchy 
(modularity) and efficient model learning96,97 are poised to play key 
roles in solving the data-efficiency problem.

The separate components of the RL problem are challenging in 
different ways, and therefore biological agents have evolved mul-
tiple systems optimized to the separate problems. For example, 
flexibly updating state values in changing environments requires 
solving problems that differ from state inference (for example, iden-
tification of objects and their locations)98. Object identification is 
challenging because the mapping between retinal output (in bio-
logical systems) or pixel values (in cameras) and object categories 
is highly nonlinear99. Flexibly updating state values is challeng-
ing because the information necessary to update values has to be 
remembered or stored over time100, and the reward outcomes have 
to be attributed to the appropriate preceding decisions, to solve the 
credit assignment problem101. Bayesian inference models are also 
complex. For example, they often require nonlinear interactions of 
variables across hierarchical levels102. Therefore, learning based on 
these models requires computations of high complexity. In addi-
tion to the separation of the RL problem into state inference, value 
updating and action selection problems, biological agents also use 
multiple neural systems that are optimized to learn under differ-
ent conditions. This division of labour leads to efficient solutions in 
biological wetware.

Hierarchical RL
Although most learning problems that have been studied in biologi-
cal systems have been simple, much of behaviour, particularly human 
behaviour, is complex and hierarchical103–109. For example, when we 

drive to the grocery store, we do not think of every specific muscle 
activation necessary to first walk to the table, then pick-up our car 
keys, go to the door and so on. Most of the low-level behaviour is 
automated and these lower-level components are then sequenced 
at a high level. Several of these ideas have been incorporated into 
recent hierarchical RL algorithms. Hierarchical reinforcement learn-
ing (HRL) strives to group sequences of related low-level actions into 
hierarchically organized sub-goals. When tasks are abstracted into 
sub-goals, they can be learned more efficiently110,111. This is another 
example of building knowledge into the learning algorithm to 
improve data efficiency and, correspondingly, learning rates. To fully 
exploit the abstraction, it is customary for each level of the hierarchy 
to operate independently of the other and the reward. The question 
is then shifted to defining meaningful sub-goals that each layer of 
the hierarchy should solve. Because meaningful sub-goals simplify 
the credit-assignment problem during learning, understanding how 
sub-goals are learned can provide insights into biological systems. 
Currently, work in artificial systems leads work in biological systems 
in this important area. Specifically, several models have been devel-
oped to train artificial systems using hierarchical approaches. But 
there is little work understanding how biological systems solve these 
problems. The models that have been developed to solve learning 
problems in artificial systems are likely to prove useful for under-
standing these problems in biological systems.

One of the first HRL algorithms, known as the options framework, 
was due to Sutton et al.111. An option is a hand-engineered building 
block of behaviour and therefore incorporates substantial domain spe-
cific knowledge. For example, in a robot, an option named ‘recharge’ 
might consist of a policy for searching for a charging station, navi-
gating towards it and initiating a docking sequence. The higher-level 
abstraction hides low-level actions, such as detailed navigation, and 
offers succinct building blocks for achieving goal-directed behav-
iour. In a related algorithm known as feudal RL, the system consists 
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Fig. 4 | A model of spike-based deep, continuous local learning (DCLL). In a feedforward network, each layer of spiking neurons feeds additionally into a 
local classifier (diamond shaped) through fixed, random connections. The local classifier is trained to produce auxiliary targets ŷ. In this learning scheme, 
errors in the local classifiers are propagated through the random connections to train weights coming in to the spiking layer, but no further (curvy, dashed 
line), thus the learning is local to the layer. The synaptic plasticity rule here is derived from gradient descent. The resulting rule is composed of a pre-
synaptic term (the pre-synaptic trace), a post-synaptic term (the derivative of the neural activation probability) and an error, and is consistent with a 
modulated Hebbian scheme. The left panel shows snapshots of the neural states during learning in the top layer, where u(t) is the membrane potential and 
ε is the postsynaptic potential response. In this example, the network is trained to produce three time-varying auxiliary targets (targets,ŷ; predictions, y). 
This learning architecture and dynamics achieves near state-of-the-art classification on spatiotemporal patterns. Adapted from ref. 89 (preprint).
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of managers that learn to set tasks for their sub-managers, and sub-
managers oversee those tasks while learning how to achieve them. 
This type of learning is interesting in distributed scenarios, as sub-
managers simply need to maximize rewards in their local context, 
using information at their assigned level of granularity110. Whereas 
the hierarchy was fixed in the options framework, other more recent 
models, including feudal networks and option critics, have focused 
on learning this hierarchical structure. These models aim to auto-
matically learn hierarchical task structure such as sub-policies or 
sub-goals87,112. A key challenge in HRL is to set the intermediate tar-
gets or sub-goals. One option is to use an intrinsic motivator, such as 
curiosity, which seeks novelty about the environment86, or auxiliary 
tasks such as predicting visual features113, to promote exploration and 
predict future states of the environment114. Another related approach 
is to provide a supervisory signal, such as in imitation learning115,116 
where an expert instruction is used when available.

While the study of the neural systems that underlie HRL in bio-
logical agents is just beginning, work has suggested that the same 
frontal networks that underlie model-free RL are relevant107,117. 
These studies have, for example, suggested that prefrontal cortex, 
particularly dorsal-lateral prefrontal cortex, contains a gradient, 
such that caudal areas implement low-level aspects of behaviours, 
and rostral areas implement abstracted aspects of behaviours, fur-
ther up the hierarchy103,117,118. A major outstanding question about 
hierarchical control in biological systems, as is the case with arti-
ficial agents, is how they learn to group behaviours into sub-goals. 
Little is known about this process beyond behavioural descrip-
tions119. However, the recent advances in artificial systems provide a 
conceptual framework for studying these problems more effectively 
in biological systems. For example, the auxiliary targets in deep, 
continuous local learning (DCLL) (Fig. 4) provide one such frame-
work that can incorporate intermediate targets and goals.

Neuromorphic approaches
Although machine learning and neural networks share a com-
mon history with brain science, much of the recent development 
has strayed from these roots. A key reason for this branching is 
that the computers we use are different than the brain in many 
aspects. When some of the constraints imposed by the modern 
von Neumann computer architectures are relaxed, inference and 
learning performance can improve. For example, introducing con-
tinuous-time and online, sample-by-sample parameter updates, 
similar to synaptic plasticity in the brain90, requires fewer basic 
operations compared to batch learning. However, on mainstream 
computers, neural network computations are generally carried out 
in batch fashion to exploit hardware parallelism, and parameter 
updates incur memory overhead, making near-continuous time 
updates suboptimal. Another example is capsule networks120, 
which are best implemented on massively parallel (brain-like) 
hardware. These observations suggest that methods that are com-
putationally prohibitive on conventional computers are tractable 
and sometimes even advantageous in massively parallel computing 
systems like the brain.

Neuromorphic engineering strives to bridge device phys-
ics and behaviour by taking inspiration from the brain’s building 
blocks, such as spiking neural networks. The recent development 
of neuromorphic hardware and accelerators with on-chip adap-
tive capabilities121–123 offers a platform for designing and evaluating 
brain-inspired processing and learning algorithms. Example sys-
tems were demonstrated as programmable, general-purpose senso-
rimotor processors124 and reinforcement learning125.

This hardware strives to emulate in digital or analogue technolo-
gies the dynamical and architectural properties of the brain. They 
consist of a large number of biologically plausible model neurons 
and are often equipped with synaptic plasticity to support online 
learning. These learning dynamics are compatible with modelling 

efforts in computational neuroscience, such as the three-factor 
learning rule sketched in Fig. 4.

While higher levels of implementation are possible to study and 
even implement reinforcement learning126, these do not directly 
address how the realities of the physical machine, such as device-to-
device variability, noise and non-locality, shape animals’ inference 
and learning strategies. The fact that neuromorphic computing is 
closely dictated by its physical substrate raises computational chal-
lenges that are typically overlooked when modelling with conven-
tional digital hardware. These challenges arise from the engineering 
and communication challenges of co-locating processing and mem-
ory, the energetic and hardware cost of such memory which leads 
to parameter and state quantization, and the unreliability of the 
substrate in the case of emerging devices or analogue technolo-
gies. While the spiking nature of neurons has a minor perfor-
mance impact provided the credit assignment problem is addressed  
(Fig. 4), the quantization of the synaptic weight parameters below 
8 bits of precision during learning starts to impact classification 
performance127,128 and remains an open challenge. These challenges 
are also present in the brain, and so computational modelling at 
the interface of artificial and biological agents plays a key role in 
addressing these issues.

Neuromorphic vision sensors that capture the features of biolog-
ical retinas129 are already changing the landscape of computer vision 
in industry and academia. While current neuromorphic devices as 
general-purpose or RL processors are still in research phases, the 
discovery of new memory devices and the looming end of Moore’s 
law is calling for such alternative computing strategies. Looking 
forward, with such hardware systems, the bridges between artificial 
and biological learning can directly translate into smart, adaptive 
technologies that can benefit medical treatments, transportation 
and embedded computing.

Conclusions
Artificial agents can be developed to carry out many tasks currently 
carried out by people. Self-driving cars are just one example cur-
rently under development. For these agents to be successful, they 
must be able to adapt to diverse conditions and learn continuously. 
Insights gained from the study of continuous learning in biological 
agents, including the use of multiple learning systems that operate 
in parallel, and that are optimized to learning in different environ-
ments, may be useful for developing more effective artificial agents. 
In addition, biological systems have decomposed the RL problem 
into sensory processing, value update and action output compo-
nents. This allows the brain to optimize processing to the timescales 
of plasticity necessary for each system.

Most of the work in biological systems is based on either simple 
Pavlovian conditioning paradigms, which do not require an overt 
behavioural response, or two-armed bandit tasks in which animals 
have to learn which action is most valuable and update those action 
values as they change over time. Although Pavlovian conditioning 
and bandit learning are fundamental to much of the learning by 
biological systems, real behaviour in natural environments is much 
more complex. These problems are being addressed in artificial sys-
tems using hierarchical reinforcement learning. Many of the algo-
rithms developed for studying these problems in artificial systems 
may be useful in biological systems. In addition, one of the difficult 
problems with HRL is learning how to decompose complex prob-
lems into sub-goals. At a behavioural level, biological systems do 
this routinely, and therefore insights from the study of behaviour in 
biological systems may translate to algorithms in artificial systems. 
Correspondingly, algorithms developed for artificial systems can 
help frame problems in biological experiments.

Understanding how the multiple neural systems in the brain can 
give rise to ongoing learning in diverse environments is already 
inspiring solutions for complex engineering problems, in the form 
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of novel algorithms and brain-inspired, neuromorphic hardware 
that can implement large spiking neural networks. Neuromorphic 
hardware operates on similar dynamical and architectural con-
straints as the brain, and thus provides an appealing platform for 
evaluating neuroscience-inspired solutions. Recently developed 
neuromorphic hardware tools are emerging as ideal candidates 
for real-world tasks on mobile platforms, thanks to their continu-
ous inference and learning, which occur on an extremely tight  
energy budget.

Most state-of-the-art algorithms for RL take a domain general, 
or generalized function approximation approach and require vast 
amounts of data and training time. Decomposing the problem into 
state inference, value updating and action selection components, as 
is done in the brain, may allow for more efficient learning and the 
ability to track changes in the environment on fast timescales, simi-
lar to biological systems. Ongoing work at the interface of biological 
and artificial agents capable of reinforcement learning will provide 
deeper insights into the brain, and more effective artificial agents 
for solving real-world problems.
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