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ABSTRACT: Anthracyclines are archetypal representa-
tives of the tetracyclic type II polyketide natural products
that are widely used in cancer chemotherapy. Although
the synthesis of this class of compounds has been a subject
of several investigations, all known approaches are based
on annulations, relying on the union of properly
prefunctionalized building blocks. Herein, we describe a
conceptually different approach using a polynuclear arene
as a starting template, ideally requiring only functional
decorations to reach the desired target molecule.
Specifically, tetracene was converted to (+)-idarubici-
none, the aglycone of the FDA approved anthracycline
idarubicin, through the judicious orchestration of Co- and
Ru-catalyzed arene oxidation and arenophile-mediated
dearomative hydroboration. Such a global functionaliza-
tion strategy, the combination of site-selective arene and
dearomative functionalization, provided the key anthracy-
cline framework in five operations and enabled rapid and
controlled access to (+)-idarubicinone.

T he Streptomyces-produced t;pe II polyketides doxorubicin
(1)" and daunorubicin (2)” are among the most effective
and most often used chemotherapeutics owin% to their broad-
spectrum of anticancer activity (Figure 1).” For example,
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Figure 1. Structures of doxorubicin (1), daunorubicin (2), and
idarubicin (3).

doxorubicin (1) is used for the treatment of breast and bladder
cancers, childhood solid tumors, soft tissue sarcomas, and
aggressive lymphomas.’ Similarly, daunorubicin (2) is
primarily used as an antileukemic drug for multiple myeloma,
acute myeloid leukemia, acute lymphocytic leukemia, and
Kaposi’s sarcoma.” Although extremely effective, anthracy-
clines threaten patients with cumulative dose-dependent
cardiotoxicity, severely limiting their long-term application as
well as their use in patients with pre-existing cardiovascular
risk.® Therefore, significant research efforts have been devoted
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to the identification of derivatives with improved pharmaco-
logical properties.” The successful result of one such medicinal
chemistry campaign is idarubicin (3),° an FDA approved
anticancer agent with superior therapeutic efficacy and reduced
cardiotoxicity relative to daunorubicin (2).”

The need for tailored analogs has made anthracyclines the
subject of rigorous investigation within the synthetic
community.'” Thus, many innovative pathways to the aglycon
anthracyclines (anthracyclinones) have been established, all of
which rely upon annulation to forge one of the rings (see
Figure 2a). The most commonly employed unifying dis-
connection is C-ring annulation, achieved through cyclo-
additions, cationic cyclizations, or anionic processes (Figure
2a, left inset)."" Moreover, cycloadditions were also explored
to forge other rings of the tetracyclic core of these molecules
(Figure 2a, right insets).'> Herein, we report a conceptually
different, nonannulative approach to anthracyclinones, starting
from a simple aromatic hydrocarbon via a global functionaliza-
tion strategy (Figure 2b). Specifically, (+)-idarubicinone (4)
was synthesized from tetracene (S), an ideal aromatic
precursor containing the essential tetracyclic framework,
through a manifold of arene functionalizations and a site-
selective dearomative elaboration.

Following this global functionalization strategy, we com-
menced our studies by exploring functionalization reactions of
tetracene (S), which would establish the proper oxidation
states of the internal rings B and C within idarubicinone (4)
(Figure 3). Thus, inspired by a similar transformation reported
on anthracene, we achieved the first oxidation of § with
catalytic amounts of cobalt(II) tetraphenylporphyrin (CoTPP,
5 mol %) and phenyliodine(IIl) sulfate as an oxidant,"
delivering S,12-tetracenequinone (6) in 77% yield. Although
this transformation proceeded readily, the second oxidation to
the corresponding 6,11-dihydroxy-S,12-tetracenequinone de-
rivative 7 proved more challenging. Several oxidants known for
direct arene oxidation, such as CAN, Frémy’s salt, hypervalent
iodine reagents, or oxidizing metal complexes,14 were found to
be unsuitable for this transformation. This setback was not
surprising, as this type of peri-oxidation remains a largely
unsolved synthetic challenge owing to the high oxidation
potential of quinones. Therefore, we decided to evaluate C—H
activation, anticipating that the quinone carbonyl groups
would serve as weakly coordinating directing groups for the
peri-(C-6) and (C-11) positions.'> After examining several
carbonyl-directed hydroxylation protocols, we developed a
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Figure 2. (a) Selected annulation-based strategies to anthracycli-
nones. (b) This work: synthesis of (+)-idarubicinone (4) from
tetracene (S) using a nonannulative approach.

one-pot procedure involving a modification of Ru-catalyzed sp*
C—H oxygenation pioneered by Ackermann ([Ru(cymene)-
Cl,], and PIFA),' followed by sequential one-pot hydrolysis
and methylation to give desired product 7. Control experi-
ments revealed that this functionalization likely proceeds
through the peri-selective formation of ruthenacycle inter-
mediate I-1, delivering phenol derivative, which underwent
further oxidation to the hydroquinone stage in the presence of
excess PIFA."

With arene oxidation completed, which set the required
oxidation state of the B and C rings, we turned our attention to
the dearomative functionalization of the terminal ring A. We
have recently reported a series of dearomatization strategies
that employ visible-light-promoted para-cycloaddition between
arenes and the arenophile N-methyl-1,2,4-triazoline-3,5-dione
(MTAD, 8) and subsequent in situ manipulation of the
resulting cycloadducts."® With polynuclear arenes, we con-
sistently observed highly site-selective cycloadditions onto the
terminal rings. Because tetracenequinone derivative 7 contains
two such regions, rings A and D, amenable to cycloaddition
with MTAD, another level of complexity to this process was
introduced. However, based on previous studies, we know that
the relevant mechanistic feature of this process is a
photoinduced charge- and electron-transfer from the arene to
the arenophile;19 therefore, the HOMO of the arene should

dictate the site-selectivity in polynuclear aromatic settings.
Accordingly, computational studies (at the B3LYP/def2-
TZVPPD level of theory) of 7 predicted a strong bias for
the A ring, which has profoundly larger HOMO orbital
coefficients, (see Figure 3, bottom inset for the corresponding
HOMO surface). Indeed, this prediction correlated well with
experiment, as we observed exclusive cycloaddition onto the A-
ring to provide intermediate 9. With this site-selective
dearomatization, we explored several strategies to introduce
the remaining two carbon atoms needed to complete the
idarubicinone framework. We found that the arenophile-based
cycloaddition in combination with in situ Rh-catalyzed alkene
hydroboration (7 — [9] — 10) installed the boron moiety as a
suitable handle for the introduction of the requisite acetyl
group. Several hydroboration procedures were evaluated, but
ultimately the cationic rhodium complex [Rh(cod),BF,] with
1,4-bis(diphenylphosphino)butane (dppb) and catecholborane
provided the best outcome (for optimization details, see Table
S1 in Supporting Information).”® Although catecholborane was
essential for the hydroboration step, the inherent instability of
the resulting alkyl catechol boronic ester required immediate
transesterification of catechol to pinacol to enable product
isolation in higher yields.21 Importantly, following this
protocol, we were able to prepare multigram quantities of
boronic ester 10 in a single pass in 55% yield and an endo/exo
3:1 dr (see Figure 3, bottom inset for an X-ray diffraction
structure of 10).

Elaboration of organoborate 10 to the full skeleton of
idarubicinone required installation of a two-carbon fragment
through a seemingly straightforward B-alkyl Suzuki coupling
reaction. However, since several standard Pd- and Ni-catalyzed
reaction conditions failed,”> we decided to explore the C—C
bond forming strategies involving the rich chemistry of boron
1,2-metalate rearrangements. Particularly, we were keen to
explore Zweifel olefination with lithiated ethoxyvinyl ether,*®
which would provide rapid access to the C-9 acetyl group.
Nevertheless, a major pitfall of this design was the presence of
the quinone and its general incompatibility with organolithium
reagents. Indeed, prospecting experiments involving boronic
ester 10 and 1-ethoxyvinyllithium resulted in the addition of
organolithium species to quinone, delivering a mixture of
products without any traces of the desired olefinated product.
To address this chemoselectivity issue, we developed a one-pot
process that involved in situ masking of the quinone. Thus, a
tetrahydrofuran (THF) solution of boronic ester 10 was
sonicated with Zn powder in the presence of trimethylsilyl
chloride (TMSCI), resultin§ in the formation of a fully
protected bis-hydroquinone.”” This intermediate was exposed
to a freshly prepared 1-lithioethyl vinyl ether to form the
boronate complex I-2, which was immediately subjected to
Zweifel olefination by addition of iodine and base.”
Concurrently with olefination, the excess iodine also oxidized
the labile silylated hydroquinone back to the quinone, and
workup of the reaction mixture with an aqueous HCI solution
hydrolyzed the newly introduced vinyl ether to the
corresponding methyl ketone 11. Remarkably, this one-pot
operation involved several distinct transformations and was
performed on a multigram scale in 72% yield.*®

Although the arenophile-mediated dearomative hydrobora-
tion and subsequent Zweifel olefination introduced the desired
methyl ketone, this sequence also installed a bridging urazole
moiety, which had to be strategically transmuted to reveal the
fully decorated A ring of idarubicinone (4). This task was
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Figure 3. Synthesis of (+)-idarubicinone (4) from tetracene (5). Reagents and conditions: 1. CoTPP (S mol %), (PhIO);SO;, CH,Cl,, 25 °C, 2 h,
77%; 2. [Ru(p-cymene)Cl, ], (2.5 mol %), PIFA, DCE, 100 °C, 12 h; then H,0, 100 °C, 12 h; then Me,SO,, K,CO;, (CH;),CO, 74 °C, 24 h,

42%; 3. MTAD (8), CH,Cl,, —50 °C, 36 h; then [Rh(cod),]BF, (10 mol %), dppb (10 mol %), HBcat, THF, —30 °C, 12 h; then pinacol,
25 °C, 12 h, 55% (3:1 dr); 4. Zn°, TMSCI, THF, ultrasonication, 40 °C, 30 min; then CH,C(Li)OEt,

—78 to
—78 to =25 °C, 30 min; then I,, —78 to —25

°C, 30 min; then NaOMe, —78 to 25 °C, 4 h; then 1 M HCI, 25 °C, 2 h, 72%; 5. KOt-Bu, THF, —78 °C, 20 min; then Me,SO,, —78 to 0 °C, 1.5 h,
79%; 6. Mn(dpm); (10 mol %), PhSiH,(Oi-Pr), O,, i-PrOH/DCE 1:1, 0 to 25 °C, 2 h, 70%; 7. BCly, CH,Cl,, =78 °C, 1 h, 98%; 8. Na,S,0,,
H,0/THF/MeOH 1:1:1, —20 °C, 20 min; then NaOH, —20 °C, 60 s; then O,, —20 °C, 5 min, 31% of 4 and 57% of 18.

partially accomplished by treatment of ketone 11 with base
followed by Me,SO,, initiating f-elimination of urazole at
position C-10 with subsequent methylation of the urazole
hydrazyl nitrogen, furnishing a,f-unsaturated ketone 12 in
79% vyield. The N-alkylation of the urazole motif proved
necessary to prevent undesired side reactions during
subsequent manipulations (for details, see Table S2 in
Supporting Information). Finally, subjecting olefin 12 to
Mukaiyama hydration conditions” selectively introduced the
tertiary alcohol at position C-9, as a-ketol product 13 was
obtained in 70% yield as a single diastereoisomer. Notably, the
use of recently reported silane, PhSiH,(Oi-Pr),” was beneficial
for high conversions of this hydrogen-atom transfer process.
This hydration achieved the proper oxidation state of the A-
ring, and the only difference between intermediate 13 and
idarubicinone (4) at this stage resided in two hydroquinone
protecting groups and the urazole moiety instead of a hydroxy

group at the C-7 position. Although deprotection of methyl
ethers to hydroquinone proceeded without any difficulties
using BCl; (13 — 14, 98% yield), the removal of the urazole
proved to be an arduous task. Eventually, the inspiration for
the direct urazole-to-hydroxy exchange was found in the
Moore hypothesis for the biological mode of reactivity known
as bioreductive alkylation.”” Thus, it was proposed that
anthracyclines undergo in vivo quinone reduction and
subsequent C-7 amino sugar elimination, producing a reactive
species in the form of a phenylogous quinone methide.
Moreover, this concept was demonstrated in solution with
several anthracyclines, which formed the corresponding
semiquinone intermediates upon subjection to specific
reducing agents.’” The direct translation of these findings to
our system, for example the addition of sodium dithionite to
precursor 14, did not eliminate the urazole; however, after the
addition of base (NaOH) we observed elimination and
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exclusive formation of 7-deoxyidarubicinone (15) under
anaerobic conditions. This result was in accordance with the
literature, since deoxygenated anthracyclinones were com-
monly observed upon reduction of anthracyclines.”’ Mecha-
nistically, the reduction of quinone 14 to hydroquinone,
followed by base-induced elimination of the urazole, likely
formed the semiquinone methide I-3, which after protonation
gave the deaminated product 15. However, we noticed that in
the presence of oxygen, this reactive intermediate underwent
competitive oxidation,”” delivering idarubicinone (I-3 — 4).
Accordingly, short exposure of 14 to an aqueous solution of
sodium dithionite and NaOH, followed by rapid saturation of
reaction mixture with oxygen, provided (+)-idarubicinone (4)
and (+)-7-deoxyidarubicinone (15) in 31% and 57% vyield.
Although extensive optimization of this protocol did not result
in a higher ratio of desired anthracyclinone 4 to 15 (for details,
see Table S3 in Supporting Information), this deoxygenated
side-product could be readily converted to aglycone 4 in one
or two steps using known protocols.”

In summary, we have described a functionalization-based
approach to (+)-idarubicinone (4) from tetracene (5). The
salient feature of this strategy is a judicious orchestration of
two arene functionalizations and dearomatization, introducing
the functionality of the A, B, and C rings of the
anthracyclinone skeleton. Specifically, Co- and Ru-catalyzed
arene oxidations, site-selective arenophile-mediated dearoma-
tive hydroboration, and subsequent Zweifel olefination
provided the fully decorated anthracyclinone framework.
Moreover, adjustment of the A ring, including a formally
redox neutral urazole-to-hydroxy exchange delivered (+)-idar-
ubicinone (4) in 8 operations and 2% overall yield from
tetracene (S).

Importantly, by employing a simple polynuclear hydro-
carbon aromatic starting material, the described work also
presents a notable departure from previously reported
syntheses of anthracyclinones in which annulations were
critical to the overall synthetic design. In fact, polynuclear
arenes are not commonly considered in synthetic planning for
construction of stereochemically complex scaffolds. However,
through the development and application of new methods, the
present study provides a compelling case in which tetracene
serves as an ideal template for imprinting of desired
functionality. Thus, the range of available polynuclear arenes,
as well as numerous functionalization opportunities, can be
combined to render this global functionalization approach an
appealing and complementary entry for the preparation of
other type II polyketide-like compounds.
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