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The interaction between quantum two-level systems is typically short range in free space and in most
photonic environments. We show that diminishing momentum isosurfaces with equal frequencies can
create a significantly extended range of interaction between distant quantum systems. The extended range
is robust and does not rely on a specific location or orientation of the transition dipoles. A general relation
between the interaction range and properties of the isosurface is described for structured photonic media.
It provides a new way to mediate long-range quantum behavior.
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The resonant dipole-dipole interaction between two
quantum two-level systems (TLSs) is typically short range.
There has been strong interest in realizing long-range
interactions to exploit collective physics such as super-
radiance [1,2], collective frequency shift [3], Förster
resonance energy transfer [4,5], and quantum entanglement
[6–12]. The ability to modulate the distance dependence of
these processes could have potential applications in quan-
tum information processing [8,13] and energy conversion
[14]. Two components contribute to the interaction: the
evanescent near fields and the propagating far fields
[Figs. 1(a) and 1(b)]. To enable long-range interaction
from the evanescent fields, one could use evanescent fields
with a long tail, such as defect modes in the photonic band
gap [15–17]. However, it is less obvious how to engineer
propagating far fields to enable long-range interaction. It is
the goal of this Letter to provide a new perspective to
understand the general physical mechanism that is respon-
sible for long-range interaction induced by propagating far
fields, and to identify photonic structures that are capable of
extending the interaction range.
In free space, the range of far-field interaction is limited

to the wavelength scale. When the wavelength is long,
such as in index-near-zero materials [18–22], the inter-
action range can increase proportionally. However, there
are a few intriguing examples where the interaction range
extends beyond the effective wavelength. These include
low-dimensional spaces, such as photonic crystal wave-
guides and fibers [2,23–30], or hyperbolic materials in
selected directions [31,32]. These interesting but isolated
examples rely heavily on very specific configurations.
Thus, it is difficult to generalize the theoretical treatments
to identify the underlying physics, which unfortunately
remains elusive. In this Letter, we show the deep con-
nection between the interaction range and the size and

shape of the isofrequency surface in momentum space. It
can be generalized to a broad range of physical systems
and can reveal new systems capable of realizing long-
range interactions.
We begin by examining the interaction between two

TLSs over a long distance. The TLSs are embedded
in a photonic environment that can be described by a
dispersion relation ω ¼ ωðkÞ. For example, in free space,
ω ¼ cjkj ¼ ck, where c is the speed of light. Other
dispersion relations can be seen in metamaterials, photonic
crystals, or waveguides. In general, the Hamiltonian of the
TLSs and the photonic modes is given by [33]

H ¼
X
i¼1;2

ω0σ̂
†
i σ̂i þ

X
k

ωkâ
†
kâk

þ i
X
i¼1;2

X
k

½igkðriÞðσ̂†i − σ̂iÞâ†ke−ik·ri þH.c.�; ð1Þ

where ω0 is the resonant transition frequency of the TLSs.
σ̂†i ðσ̂iÞ is the raising (lowering) operator of the ith TLS.
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FIG. 1. Schematics of interactions between two TLSs mediated
by (a) evanescent near-field modes and (b) propagating far-field
modes. (c) The momentum isosurface SωðkÞ¼ω0

with equal
frequencies ω0 and dSk is a small surface element.
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ωk and â†kðâkÞ are the frequency and creation (annihila-
tion) operator of the photons, respectively. gkðriÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk=2ε0V

p
μi · ϵk is the coupling between the ith TLS

and the photonic mode k, where μi is the transition dipole
moment of the ith TLS and ϵk is the polarization direction
of the photonic mode k. One can derive the radiative
interaction Γ ¼ ΓRe þ iΓIm between two TLSs based on the
above Hamiltonian. The real and imaginary parts describe
the cooperative decay rate and the cooperative energy shift,
respectively. The focus of this Letter will be the cooperative
decay rate. Similar conclusions can be drawn for the
cooperative energy shift.
We first provide a graphic illustration of why the

interaction between TLSs is short range in free space.
Unlike most theoretical treatments used in the literature
[32], we do not use the Green’s function method to describe
the radiative environment. Instead, we try to keep all
radiative modes in their explicit forms in order to gain a
more intuitive picture. As shown in Sec. I of the
Supplemental Material (SM) [34], the real part of the
radiative interaction between the TLSs can be expressed in
the following form:

ΓRe ¼
Z Z

Sω0ðkÞ
ρkeik·RdSk: ð2Þ

The integration is performed on an isosurface in
momentum space, i.e., all wave vectors k that satisfy
ωðkÞ ¼ ω0. The integrand includes two terms. The first
term is simply a polarization factor ρk ¼ ½ω0=16ε0π2vgðkÞ�
ðμ1 · ϵkÞðμ2 · ϵkÞ�, which describes the relative orientation
of the transition dipole μ and the polarization of the electric
field ϵ. Here vgðkÞ is the group velocity of mode k. For
degenerate polarization states, the integration should also
include all polarizations. Since the polarization factor ρk is
independent of the inter-TLS distance, it does not affect the
interaction range. It is the second term, eik·R, that plays the
critical role in the physics of the interaction range. Here
R ¼ r2 − r1 is the distance vector between the two TLSs.
The integrand ρkeik·R is a fast-oscillating function, which
generally results in cancellation of the integration when the
inter-TLS distance R is large. Therefore, the interaction is
always short range. We can see this effect in Fig. 2(a). Here
we consider two TLSs in free space. The spherical isosur-
face has a radius of k ¼ jkj ¼ ω0=c. The real part of
ρkeik·R is plotted on the isosurface. When R ¼ 10λ, there
are rapid oscillations as k varies on the isosurface. The
resulting value of the integral is small, and therefore the
interaction is weak at this long distance. When the inter-
TLS distance is small, for example R ¼ 0.3λ, the oscil-
lation is slow [Fig. 2(c)], leading to a sizable value of the
integral and thus a strong interaction. The interaction
decays as the distance R grows [Fig. 2(d)].

The graphic illustration also indicates that the interaction
range is inversely proportional to the size of the isosurface
in momentum space. A large inter-TLS distance R on a
large isosurface leads to a fast-oscillating integrand on the
isosurface that results in a small value of the integral. One
way to counteract this effect is to substantially reduce the
isosurface size. Small isosurfaces can save the integral from
cancellation even for a fast-oscillating function. Figure 2(c)
shows the real part of the integrand ρkeik·R with a long
inter-TLS distance R ¼ 10λ on an isosurface that has a
radius that is 0.03 times that of the free-space isosurface.
While the oscillation is still fast, the small isosurface cannot
accommodate many oscillations, yielding a sizable value of
the integral. Figure 2(e) shows that this strong interaction is
sustained over a long distance if the isosurface is small.
Specifically, for an isosurface with a radius of q, the real
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FIG. 2. (a) Two dipolar TLSs spaced by a distance R ¼ 10λ in
free space, where λ ¼ 2πc=ω. (Right panel) Isosurface for the
transition frequency in momentum space. The real part of ρkeik·R

is plotted on the isosurface. Red and blue colors indicate positive
and negative maxima, respectively. (b) Similar to (a) but with a
shorter distance R ¼ 0.3λ and thus slow oscillation on the isosur-
face. (c) Two TLSs are placed in a specific photonic environment,
such as a Weyl photonic crystal, where the isosurface radius,
q ¼ jk − kcj, can be very small. Here R ¼ 10λ. R̂ in (a)–(c) is
fixed as ð1; 0; 1Þ= ffiffiffi

2
p

. (d),(e) The real part of radiative interaction,
normalized by ΓReðR ¼ 0Þ, as a function of distance between two
TLSs in free space and theWeyl photonic crystal, respectively. Red
dots correspond to the cases in (a)–(c), respectively.
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part of interaction ΓRe scales as sin ðqRÞ=qR. As the
isosurface radius approaches zero, q → 0, the range
becomes infinite. Here we use a polarization factor ρk
based on plane waves which, although a simplification, is
sufficient for estimating the scaling.
The size of isosurface is fixed in free space. But there are

many structured photonic environments that offer smaller
isosurfaces. Here we use Weyl photonic crystals as an
example to demonstrate the inverse relationship between
the interaction range and the isosurface. Weyl photonic
crystals [36,38] exhibit a conic dispersion relation in 3D
space, similar to Dirac dispersion relations in 2D space.
The isosurface gradually reduces to a point around the apex
of the conic dispersion, i.e., the Weyl point. Observation
of this small isosurface suggests that we could expect
long-range interactions around isolated Weyl points.
Specifically, we consider a double-gyroid structure with
four air spherical defects [Fig. 3(a)] to break parity
symmetry, yielding two pairs of Weyl points at identical
frequencies [39]. The dispersion relation on the plane of
kz ¼ 0 is shown in Fig. 3(b) with two pairs of Weyl points
at the frequency ωwp ¼ 0.550 96½2πc=a�. The isosurface
becomes infinitesimally small at the Weyl point.
Using these isosurfaces, we numerically calculate the

interaction between two TLSs placed inside the Weyl
crystal. The photonic modes are simulated using the
MPB software package [37]. The details of the calculation
are shown in the SM [34]. Figure 3(c) shows the interaction
as a function of the inter-TLS distance for three different
transition frequencies, which are also labeled by white lines
in Fig. 3(b). The isosurfaces have four lobes because there
are four Weyl points, as shown in Figs. 3(c)(i)–3(c)(iii).

As the TLS transition frequency approaches theWeyl point,
the isosurface size decreases, causing the interaction to
extend to a significantly greater range. When the transition
frequency is 0.000 24½2πc=a� away from the Weyl point
[Fig. 3(c)(iii)], the interaction shows a negligible decay
even at 180 wavelengths [Fig. 3(c), bottom panel].

The decaying and oscillating patterns in these curves are
attributed to a few different origins. At the largest scale,
the envelope scales as sin ðq̄RÞ=q̄R, where we use q̄ to
roughly characterize the size of the subsurface (we will
discuss the impact of the shape of the isosurface later). The
medium-range oscillation is due to the interplay of four
Weyl points at the same frequency. The fastest oscillation
is due to the modulation of the nonuniform field within a
unit cell of the photonic crystal. The long-range inter-
action observed here is robust in that it does not rely on the
orientation of the dipole direction or the spatial placement
of the TLSs (see the SM for more discussion [34]).
We can quantitatively characterize the interaction range

by numerically fitting the envelope. These envelopes are
shown with the dashed line in Fig. 3(c). We further define a
range lD as the distance when the envelope drops to half
of its maximum value. We calculate this range for TLSs
at different transition frequencies near the Weyl points,
corresponding to different isosurface sizes. The results are
shown in Fig. 3(d). A clear linear relationship is demon-
strated between lD and the inverse of the isosurface
size 1=q̄. Because the isosurfaces are not spherical, we
use q̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Sω=4π
p

to define the isosurface size, where Sω is
the surface area of the isosurfaces.
Thus far, we have shown that the size of the isosurface

plays a critical role in the interaction range. Next, we will

FIG. 3. (a) Structure of the Weyl photonic crystal. A double-gyroid dielectric unit cell with four air spherical defects is the same as in
Ref. [39]. (b) Dispersion relation on the plane of kz ¼ 0. kx;y are normalized by 2π=a, where a is the lattice constant. (c) The real part of
the radiative interaction ΓRe [normalized by ΓReðR ¼ 0Þ] as a function of distance for TLS transition frequencies (upper panel)
ω ¼ 0.5545, (middle panel) 0.5520, and (lower panel) 0.5512½2πc=a�, which are marked with white contours (i), (ii), and (iii) in (b),
respectively. The inter-TLS direction is R̂ ¼ ð−1; 1; 1Þ= ffiffiffi

3
p

. The dipole orientations are μ̂1;2 ¼ ð−1; 1; 1Þ= ffiffiffi
3

p
, and μ1 is fixed at a

central point of the unit cell. Green dashed curves are the envelopes of the solid curves. Insets (i)–(iii) are the isosurfaces in momentum
space. (d) The linear relationship between the decay length lD “and the inverse of the isosurface size 1=q̄.
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discuss the role of the shape of the isosurface. A spherical
isosurface leads to an isotropic interaction range. On the
other hand, a nonspherical isosurface generally creates an
anisotropic interaction range: the interaction range depends
on the direction of the inter-TLS distance vector R̂. There is
a general reciprocal relationship between the interaction
range and the size of the isosurface when projected
along R̂.
Let us take the example of an ellipsoidal isosurface in an

anisotropic medium. The interaction range is longer when
the two TLSs are placed along the direction of the short axis
of the ellipsoid ŝ than when they are along the long axis l̂.
We can easily see this effect by observing the oscillation
pattern of ρkeik·R on an ellipsoidal isosurface as shown in
Fig. 4(a). When R̂ is parallel to the long axis l̂, we have
many oscillations and strong cancellation of the integration.
On the other hand, when R̂ is parallel to the short axis ŝ,
we have fewer oscillations and weaker cancellation.
To demonstrate this effect in Weyl photonic crystals, we

plot the isosurface at frequency ω¼ωwpþ0.00404½2πc=a�,
where the isosurface has a flat edge-softened rectangular
geometry [Fig. 4(b)].We plot the real part of the integrand in
Eq. (2) on the isosurface for three different R. Here the
magnitude of R is fixed, but its direction R̂ varies from the
short axis ŝ to the long axis l̂. The cancellation effect is
weaker when R is aligned with the short axis and stronger
along the long axis. We also calculate the interaction as a

function of the distance for the three directions shown in
Fig. 4(b). The range is conspicuously longer for TLSs placed
along the short axis of the isosurface than along the long
axis, as shown in Fig. 4(c). In the case shown in Fig. 4, the
frequency is greatly detuned from the Weyl point, and thus
the interaction range is not as long as those shown in Fig. 3.
The extended range of the dipole-dipole interaction

extends beyond quantum systems. In the microwave
regime, where Weyl photonic crystals have been exper-
imentally realized on a printed circuit board [38], the
resonant dipole-dipole interaction range can also be
extended. The range will also be limited by the propagation
length of the waves inside such systems due to finite
absorption by the metallic materials.
We also emphasize that the relation between the inter-

action range and the isosurface is not unique to Weyl
photonic crystals. It is generally applicable to periodically
structured media. For example, in 2D space, the scaling of
the interaction range follows J0ðkRÞ, where J0 is the Bessel
function of the first kind. For a 2D photonic crystal, a
spherical isosurface with a radius of q creates a different
scaling law that follows J0ðqRÞ. More examples are
discussed in Sec. II of the SM [34].
We have discussed the interaction range. Another

important aspect is the strength of the interaction. We
choose the linear dispersion near the Weyl points because it
makes it easy to separate the effect of the isosurface from
other effects such as group velocity and density of states.
However, the shrinking isosurface combined with a finite
group velocity also decreases the interaction strength. At
the Weyl point, the interaction strength is zero. The linear
dispersion near a Weyl point results in a trade-off between
the interaction range and strength. Such a trade-off can be
alleviated in 2D crystals and with a high order dispersion
relation. We discuss the scaling of the interaction strength
in Sec. II in the SM [34].
Visual inspection of the isosurface provides a convenient

tool for understanding a broad class of long-range inter-
action phenomena. We now comment on the connection
between our approach and the existing literature. The
behavior of index-near-zero materials [18] was explained
by a long effective wavelength. Alternatively, it can also
be conveniently explained by our method: the index-
near-zero material also has an ultrasmall isosurface. In
addition to these examples, we can envision that Dirac
points in 2D photonic crystals also provide small “iso-
surfaces” (isofrequency contours) for a long-range inter-
action. Reference [16] shows that inside the photonic band
gap, long tails of evanescent fields can induce a long-range
interaction. Here we can also see that outside the photonic
band gap but near the band edge, the propagating far fields
have small isosurfaces, offering a different mechanism
for long-range interaction. A hyperbolic material, where
long-range interactions were allowed along specific direc-
tions, was treated using the Green’s function method [32].
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FIG. 4. (a) Real part of the integrand in Eq. (2) on an elliptical
isosurface with (left panel) R̂ ¼ ð0; 1; 0Þ, (middle panel)
R̂ ¼ ð0; 1; 1Þ= ffiffiffi

2
p

, and (right panel) R̂ ¼ ð0; 0; 1Þ. Unit vectors
ŝ and l̂ represent the short and long axes of the anisotropic
isosurface. The dipole orientation is fixed as μ̂1;2 ¼ ð0; 0; 1Þ.
(b) The same as (a), except that the isosurface is in the Weyl
photonic crystal in Fig. 3(a) at frequency ω ¼ 0.555½2πc=a� and
the dipole orientation is fixed at μ̂1;2 ¼ ð0; 1; 0Þ. (c) The absolute
value of ΓRe as a function of distance R. Light green, blue, and red
curves, respectively, correspond to R̂ in the left, middle, and right
cases of (b).
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Using our graphic interpretation allows one to intuitively
see that only special directions allow long-range inter-
actions (see the visualization in the SM [34]).
To conclude, we show in this Letter the deep connection

between the interaction range and the isosurface in
momentum space. Both the size and the shape of the
isosurface affect the interaction range. The method intro-
duced here provides an intuitive understanding of under-
lying physics that is somewhat buried in traditional
treatments, and we are able to use our method to help
us understand several photonic systems in the existing
literature. Our method also provides a general recipe to
search for new photonic systems that support long-range
interactions.
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