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Abstract: Although the palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl esters has
received significant attention, there is a lack of methods that utilize cheap and readily accessible
Pd-phosphane catalysts, and can be routinely carried out with high cross-coupling selectivity.
Herein, we report the first general method for the cross-coupling of pentafluorophenyl esters
(pentafluorophenyl = pfp) by selective C-O acyl cleavage. The reaction proceeds efficiently using
Pd(0)/phosphane catalyst systems. The unique characteristics of pentafluorophenyl esters are
reflected in the fully selective cross-coupling vs. phenolic esters. Of broad synthetic interest,
this report establishes pentafluorophenyl esters as new, highly reactive, bench-stable, economical,
ester-based, electrophilic acylative reagents via acyl-metal intermediates. Mechanistic studies strongly
support a unified reactivity scale of acyl electrophiles by C(O)-X (X = N, O) activation. The reactivity
of pfp esters can be correlated with barriers to isomerization around the C(acyl)-O bond.
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1. Introduction

The recent emergence of Suzuki-Miyaura cross-coupling of amide and ester electrophiles by
selective C(acyl)-X cleavage represents one of the most promising approaches to functionalization
of the traditionally inert amide and ester bonds in organic synthesis [1-3]. Although a broad range
of amide precursors have been explored [4-8], N.B. benefiting from amide twist [9-13], Pd-catalyzed
cross-coupling of esters has received significantly less attention. The seminal study by Newman in
2017 reported the [PA(NHC)(cin)Cl]-catalyzed cross-coupling of aryl esters at high temperature [14].
Subsequently, we have reported a general method for the cross-coupling of both esters and amides
at room temperature [15]. Further studies established that various Pd(II)-NHC precatalysts are
significantly more reactive after optimizing conditions [16,17]. Moreover, Hazari demonstrated the
cross-coupling of aryl esters at room temperature conditions using strong bases [18].

This strategy to develop cross-coupling reactions of aryl esters hinges upon ground-state
destabilization of the barrier to rotation around the C(acyl)-O bond [19]. In contrast to amides,
esters feature significant stabilization in the transition state. Given the established capacity of
pentafluorophenyl esters as acyl transfer reagents in nucleophilic addition reactions [20-22], we recently
questioned whether the ground-state-destabilization principle might enable facile cross-coupling of
pentafluorophenyl esters under chemoselective conditions that are inaccessible to the current-state-
of-the-art phenolic esters [1-3]. In this Special Issue on Amide Bond Activation, we report the
successful realization of this approach, and report the first general method for the cross-coupling of
pentafluorophenyl esters by selective C-O acyl cleavage. Notable features of our findings include: (1)
The first Pd-phosphane-catalyzed Suzuki cross-coupling of esters by C-O activation; (2) unprecedented
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findings suggest that Pd insertion may be the rate limiting step in this reaction.
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utility of pfp esters in nucleophilic addition reactions, we believe that these reagents will find
wide application in the cross-coupling chemistry. In particular, this study highlights the utility
of ground-state destabilization of acyl electrophiles to achieve chemoselective bond activation. Since
pentafluorophenyl esters are easily prepared, bench-stable solids, and highly reactive, these reagents
should be considered along phenolic esters in the future development of cross-coupling reactions by
acyl [1-3] and decarbonylative pathways [2,7,23,24].

4. Materials and Methods

4.1. General Information

General methods have been published [13].

4.2. General Procedure for Cross-Coupling of Pentafluorophenyl Esters

An oven-dried vial equipped with a stir bar was charged with an ester substrate (neat, 1.0 equiv),
boronic acid (typically, 3.0 equiv), sodium carbonate (typically, 4.5 equiv), Pdy(dba); (typically, 3 mol%),
and PCy3HBF; (typically, 12 mol%), placed under a positive pressure of argon, and subjected to three
evacuation/backfilling cycles under high vacuum. Dioxane (typically, 0.25 M) was added with vigorous
stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 120 °C, and
stirred for the indicated time at 120 °C. After the indicated time, the reaction mixture was cooled
down to room temperature, diluted with CH,Cl, (10 mL), filtered, and concentrated. The sample was
analyzed by 'H-NMR (CDCl3, 500 MHz) and GC-MS to obtain conversion, selectivity and yield using
internal standard and comparison with authentic samples. Purification by chromatography afforded
the pure product.

4.3. Representative Procedure for Cross-Coupling of Pentafluorophenyl Esters

An oven-dried vial equipped with a stir bar was charged with perfluorophenyl benzoate (neat,
288.2 mg, 1.0 mmol), p-tolylboronic acid (408.0 mg, 3.0 mmol, 3.0 equiv), Nay,COj3 (477.0 mg, 4.5 mmol,
4.5 equiv), Pdy(dba)s (27.5 mg, 0.03 mmol, 3 mol%), and PCysHBF, (44.2 mg, 0.12 mmol, 12 mol%)
placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under
high vacuum. Dioxane (0.25 M) was added with vigorous stirring at room temperature, the reaction
mixture was placed in a preheated oil bath at 120 °C, and stirred for 15 h at 120 °C. After the indicated
time, the reaction mixture was cooled down to room temperature, diluted with CH,Cl, (10 mL),
filtered, and concentrated. A sample was analyzed by 'H-NMR (CDCl3, 500 MHz) and GC-MS to
obtain conversion, yield and selectivity using internal standard and comparison with authentic samples.
Purification by chromatography on silica gel (hexanes/ethyl acetate) afforded the title product. Yield
86% (168.5 mg). White solid. Characterization data are included in the section below.

4.4. Characterization Data for Products 3a-3k (Figures 1 and 2)

Benzophenone (3a). White solid. TH-NMR (500 MHz, CDCl5) 5 7.83 (d, ] = 8.9 Hz, 4 H), 7.62 (t, | = 7.4 Hz,
2 H),7.51 (t, ] = 7.6 Hz, 4 H). 3C-NMR (125 MHz, CDCl3) § 196.75, 137.61, 132.42, 130.07, 128.28.

Phenyl(p-tolyl)methanone (3b). White solid. 'H-NMR (500 MHz, CDCl3) § 7.81 (d, ] = 7.7 Hz, 2 H), 7.75
(d,J=75Hz,2H),7.60(t,]=74Hz,1H),750(t, J=7.2Hz, 2H),7.31(d, ] =7.7 Hz, 2 H), 2.47 (s, 3 H).
13C-NMR (125 MHz, CDCl3) 5 196.49, 143.22, 137.98, 134.90, 132.14, 130.31, 129.93, 128.97, 128.20, 21.66.

(4-Methoxyphenyl)(phenyl)methanone (3c). White solid. 'H-NMR (500 MHz, CDCl3) & 7.86 (d, ] = 8.0 Hz,
2H),778(d,J=7.6Hz,2H),759 (t,]=7.3Hz,1H),7.50 (t,] =7.4 Hz,2 H), 6.99 (d,] =8.0 Hz, 2 H),
3.92 (s, 3 H). 3C-NMR (125 MHz, CDCl3) § 195.56, 163.23, 138.30, 132.57, 131.89, 130.17, 129.74, 128.19,
113.56, 55.51.

1-(4-Benzoylphenyl)ethan-1-one (3d). White solid. ITH-NMR (500 MHz, CDCl3) 5 8.09 (d, ] = 8.2 Hz, 2 H),
7.89(d,J]=82Hz2H),7.83(d,]=75Hz,2H),7.65(,]=74Hz 1H),753 (t, ] =7.7 Hz, 2 H), 2.70
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(s, 3 H). 3C-NMR (125 MHz, CDCl3) § 197.52, 195.96, 139.57, 136.92, 133.00, 130.11, 130.05, 128.49,
128.17,26.92.

Phenyl(o-tolyl)methanone (3e). White solid. H-NMR (500 MHz, CDCl3) § 7.83 (d, ] = 7.7 Hz, 2 H), 7.60
(d,J=69Hz,1H),749 (t, ] =7.6 Hz,2 H),7.42 (t,] = 7.5 Hz, 1 H), 7.37 -7.30 (m, 2 H), 7.30-7.27 (m,
1H), 2.36 (s, 3 H). 3C-NMR (125 MHz, CDCl3) § 198.64, 138.63, 137.75, 136.75, 133.14, 131.00, 130.24,
130.14, 128.52, 128.46, 125.20, 20.00.

Phenyl(4-(trifluoromethyl)phenyl)methanone (3f). White solid. 'H-NMR (500 MHz, CDCl3) § 7.93 (d, ] =
8.0Hz,2H),7.84(d,]=7.7Hz,2H),7.79(d,] =8.0 Hz,2 H), 7.66 (t, | = 74 Hz, 1 H), 7.54 (t, ] = 7.6 Hz,
2 H). BC-NMR (125 MHz, CDCl3) 5 195.53, 140.74, 136.74, 133.73 (JF = 32.5 Hz), 133.09, 130.14, 130.11,
128.54,125.36 (JF = 7.5 Hz), 123.70 (JF = 273.0 Hz). 1F-NMR (471 MHz, CDCl3) 5 63.41.

Phenyl(3-(trifluoromethyl)phenyl)methanone (3g). White solid. 'H-NMR (500 MHz, CDCl3) & 8.07 (s, 1 H),
798 (d,]=7.8Hz,1H),7.85(d,] =8.0Hz,1H),7.80 (d,] =7.7 Hz, 2 H), 7.63 (t, ] = 7.6 Hz, 2 H), 7.52 (t,
J =7.6 Hz, 2 H). 3C-NMR (125 MHz, CDCl3) § 195.32, 138.45, 136.92, 133.25, 133.14, 131.17 (JF =32.7
Hz), 130.16, 129.09, 128.97 (JF = 7.5 Hz), 128.71, 126.84 (JF = 8.8 Hz), 123.84 (J© = 272.9 Hz). YF-NMR
(471 MHz, CDCl3) 6 62.77.

(4-Fluorophenyl)(phenyl)methanone (3h). White solid. 'H-NMR (500 MHz, CDCl3) § 7.90-7.84 (m, 2 H),
7.79(d, ] =7.7Hz,2H),7.62 (t,] =69 Hz, 1 H), 7.51 (t, ] = 7.4 Hz, 2 H), 7.18 (t, ] = 8.2 Hz, 2 H).
13C-NMR (125 MHz, CDCl3) & 195.26, 165.39 (J© = 254.1 Hz), 137.51, 133.81 (JF = 2.5 Hz), 132.67 (JF =
8.8 Hz), 132.47, 129.88, 128.36, 115.45 (J© = 21.4 Hz). '’F-NMR (471 MHz, CDCl3) 5 105.98.

(3,5-Difluorophenyl)(phenyl)methanone (3i). White solid. 'H-NMR (500 MHz, CDCl3) & 7.35 (dt, ] = 40.7,
18.4 Hz, 4 H), 7.03-6.87 (m, 1 H), 6.40 (d, ] = 41.0 Hz, 2 H), 6.13 (d, ] = 40.9 Hz, 2 H). 13C-NMR (125
MHz, CDCl3) § 193.95, 162.74 (JF = 250.3 Hz), 162.65 (J& = 251.6 Hz), 136.40, 133.16, 129.98, 128.59,
112.96 (JF = 20.1 Hz), 107.73 (JF = 25.8 Hz). ’F-NMR (471 MHz, CDCl3) & 108.15.

Methyl 4-benzoylbenzoate (3j). White solid. 'H-NMR (500 MHz, CDCl3) § 8.17 (d, ] = 8.2 Hz, 2 H), 7.87
(d,J=82Hz, 2H),783(d,J]=75Hz 2H),7.64 (t,] =74 Hz,1H),753 (t,] =7.6 Hz, 2 H), 3.99 (s,
3 H). BC-NMR (125 MHz, CDCl3) § 196.03, 166.32, 141.33, 136.96, 133.22, 132.95, 130.11, 129.78, 129.50,
128.47, 52.48.

Cyclohexyl(phenyl)methanone (3k). White solid. ITH-NMR (500 MHz, CDCl3) § 7.98-7.96 (d, ] = 8.2 Hz,
2 H),7.58-7.56 (t,] =7.5 Hz, 1 H), 7.50-7.47 (t, ] = 7.7 Hz, 2 H), 3.31-3.27 (t, ] = 11.5 Hz, 1 H), 1.93-1.86
(m,4 H), 1.78-1.75(d, ] = 11.7 Hz, 1 H), 1.54-1.49 (t, ] = 13.4 Hz, 2 H), 1.46-1.39 (m, 2 H), 1.34-1.31 (d, ]
=12.5Hz, 1 H). 3C-NMR (125 MHz, CDCl3) § 203.92, 136.38, 132.73, 128.59, 128.27, 45.65, 29.44, 25.98,
25.88.

Supplementary Materials: Experimental procedures and characterization data are available online.
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