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Abstract—Dynamic network topology can pose important chal-
lenges to communication and control protocols in networks of
autonomous vehicles. For instance, maintaining connectivity is
a key challenge in unmanned aerial vehicle (UAV) networks.
However, tracking and computational resources of the observer
module might not be sufficient for constant monitoring of all sur-
rounding nodes in large-scale networks. In this paper, we propose
an optimal measurement policy for network topology monitoring
under constrained resources. To this end, We formulate the
localization of multiple objects in terms of linear networked
systems and solve it using Kalman filtering with intermittent
observation. The proposed policy includes two sequential steps.
We first find optimal measurement attempt probabilities for
each target using numerical optimization methods to assign
the limited number of resources among targets. The optimal
resource allocation follows a waterfall-like solution to assign more
resources to targets with lower measurement success probability.
This provides a 10% to 60% gain in prediction accuracy. The
second step is finding optimal on-off patterns for measurement
attempts for each target over time. We show that a regular
measurement pattern that evenly distributed resources over time
outperforms the two extreme cases of using all measurement
resources either in the beginning or at the end of the measure-
ment cycle. Our proof is based on characterizing the fixed-point
solution of the error covariance matrix for regular patterns.
Extensive simulation results confirm the optimality of the most
alternating pattern with up to 10-fold prediction improvement for
different scenarios. These two guidelines define a general policy
for target tracking under constrained resources with applications
to network topology prediction of autonomous systems.1

Index Terms—Kalman filtering, target tracking, mobility pre-
diction, linear measurement systems, UAV networks, topology
control.

I. INTRODUCTION

Network topology plays an essential role in developing
efficient communication, control, and task coordination al-
gorithms for networks of autonomous nodes. For instance,
consider a vehicular ad-hoc network (VANET) that relies on
vehicle-to-vehicle (V2V) communication for traffic control.
When driving in a sparsely populated remote urban area
without roadside infrastructure, connectivity loss becomes an
issue for vehicles with limited communication ranges [1]. Note
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that for example, the range of IEEE 802.11p used in the
wireless access in vehicular environments (WAVE) platform
designed to support intelligent transportation systems (ITS) is
about 1 km [2]. This range for reliable communication through
the LTE-V2V system is slightly higher but not more than a
few kilometers [3]. For these scenarios, connectivity-aware
networking protocols can significantly improve the reliability
of information exchange [4].

The impact of dynamic topology on communication per-
formance becomes even more critical in the emerging un-
manned aerial vehicle (UAV) networks due to several reasons
[5], [6]. Firstly, the autonomous drones can fly at higher
speeds than ground vehicles making more dynamic network
topologies. Secondly, the motion trajectories of UAVs are 3D
and more probabilistic compared to the 2D trajectories of
ground vehicles that are influenced by the man-made and
natural patterns (e.g., roads and rivers). Thirdly, the tracking
systems of UAVs are more constrained due to the limited
payload size, power supply and computational capacity of
UAVs. Therefore, developing optimal methods for predicting
future locations of network nodes can be more challenging
in flying ad-hoc networks (FANET). This problem has great
practical importance due to the unprecedented recent growth
in using UAV systems for different applications [7]-[11].

An accurate estimation of current network topology can
significantly boost the performance of networking and control
protocols in autonomous systems. For instance, communica-
tion between drones with limited communication ranges can
undergo frequent link failures and loss of connectivity if the
network topology is not properly incorporated into the routing
protocol [12], [13]. To address this issue, several routing
protocols with enhanced performance are recently proposed
to accommodate the time-variant network topology [14]. How-
ever, most existing algorithms do not provide guaranteed QoS
since they make decisions solely based on the current network
status ignoring the predictability of future network topology.
Recently, a few research projects are focused on developing
predictive algorithms that incorporate the predicted network
topology into decision-making strategies at different layers of
communication protocols [15]-[17].

A. Review of Mobility Prediction

A key requirement to facilitate predictive networking is
developing an efficient method to monitor and predict the
network topology [18]. Network topology prediction can be
realized by predicting the upcoming locations of network
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nodes N = {ny,ny,...,ny}, as it enables developing the time-
varying contact graph based on the nodes’ communication
ranges. For instance, if the communication range of nodes for
a reliable communication is R and the location of node n; at
time ¢ is represented by /;(¢), then the contact graph would be
G(t) = {V,E(t)}, where V = N is the set of nodes and E(¢) is
the set of edges with elements E;;(f) = 1 for d(l;(¢),1;(t)) < R
and E;;(t) = 0 otherwise.

Mobility prediction can be categorized into two mainstream
trends of data-driven and model-based methods. In data-
driven methods, frequent motion patterns are exploited by
analyzing large datasets. This information can be used to
implement more efficient terrestrial wireless networks to ac-
commodate traffic mobility [19]. Similar data-driven methods
are proposed to model the motion patterns of pedestrians
[20], vehicles [21], and animals [22]. The second approach
is using model-based methods to predict the future location
of an object by processing the history of its motion trajectory.
The drawback of model-based methods is their reliance on
models customized for specific object types with different
mobility models such as random walk [23], random waypoints
[24], and Gaussian Morkov mobility model (GMMM) [25].
Consequently, they are not typically applicable to a network
of heterogeneous nodes.

A more general framework for target tracking is using the
linear measurement system framework, where the kinematic
equations are presented in terms of state transition equations
[26]. In this formulation, Kalman filtering is proven to be
the optimal way of state estimation. Also, Kalman filtering
with intermittent observation can be used to predict the future
locations of the target by applying state update equations
when the measurement is absent [27]. Therefore, it performs
both estimation and prediction tasks. The only drawback of
this method is that the motion dynamics of the target is not
included in the prediction phase, which ignores the utility of
the object-specific motion properties in the prediction process.
Recently, a unified mobility prediction model is proposed
based on Kalman filtering with intermittent observations,
where the state-transition equations provide the flexibility of
predicting node locations based on the history of motion
trajectory, whereas a generative model for the probabilistic
input captures the class-specific mobility patterns [18].

Several works have been proposed to evaluate the perfor-
mance of Kalman filtering under different scenarios. However,
the majority of these methods overlook the power of using
optimized measurement policies in achieving higher prediction
accuracy. Indeed, most performance analysis works take an
unrealistic assumption of making measurements at all time
slots (e.g., [28], [29]). Therefore these approaches do not apply
to practical UAV networks with extremely constrained tracking
resources and limited processing power. Some other works
consider intermittent observation, but presume that the lack of
observation is only due to measurement failures (e.g., [30]-
[32]), and not based on developing an optimized measurement
policy that is addressed in our paper.

Mobility prediction relies on locating network nodes using
an arbitrary tracking technology such as ultrasound [33], video
[34], acoustic [35], laser [36], radar and Lidar systems [37],

[38], imagery [39], [40], infrared [41], and hybrid methods
[17]. An important challenge that naturally arises in practical
systems is the lack of sufficient tracking resources for constant
monitoring of all surrounding nodes. For instance, the Reigel
VZ-400 laser scanning system that is commonly used in
tracking systems (e.g., [42]), provides an accuracy of 5 mm
within 600 meters with the vertical scan speed of 3 to 120 lines
per second and horizontal scan speed of 0° to 60° per second.
Therefore, completing full 3D scanning can take a very long
time and exhaust computational resources. Similar constraints
apply to image-based [43], TDOA-based Radar [44], RSS-
based [45], and hybrid localization methods [17]. Moreover,
the measurement success rate depends on the objects’ material,
size, shape, speed, and distance from the observer that should
be taken into account when assigning measurement resources.
We show in this paper that developing optimized tracking
attempt patterns for each target can significantly improve the
overall performance of the localization system.

This paper aims at solving this problem for a scenario,
where an observer (a network node or a separate identity)
intends to monitor surrounding nodes using Kalman filtering
with intermittent observation under conditions (e.g., maximum
number of parallel targets, measurement time, measurement
success rate, motion turbulence, and measurement noise) that
are imposed by the utilized tracking system. This problem
is solved in two sequential steps. We first find the optimal
probability of measurement attempt for each target, denoted
by «;. Next, we find the optimal way of splitting ;7 measure-
ment resources that are allocated for target n; over consecutive
T time slots. The core idea is to characterize the impact of
measurement patterns on the evolution of estimation/prediction
error for fault-tolerant tracking systems. The obtained policy
is general and applicable to topology prediction of dynamic
networks with mobile users of any type. The rest of this
paper is organized as follows. Section II elaborates the details
of the utilized mobility model. Section III offers an optimal
measurement policy through two sequential steps. Simulation
results are provided in section IV, followed by concluding
remarks in section V.

II. MOBILITY MODEL

We suppose that an observer intends to predict the locations
of N drones during T consecutive time slots, as depicted in Fig.
1. For instance, in a battlefield between two adversary UAV
networks, a central tracking system can monitor all nodes of
the adversary network and share that information with self
network members. Likewise, in a network of autonomous
drones, each drone may need to predict other nodes’ upcoming
locations to select a proper relay node. Before proceeding
with the details of formulation, let us provide a summary of
notations in Table I.

The motion of a flying object n; can be modeled using Du-
bin’s curve in terms of the second order differential equations.
For instance, for a one-dimensional motion, we have

x(t + dt) = x(t) + v(t)dt

(1)
v(t +dt) = v(t) + a(t)dt
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Table I: Summary of Notations.

Parameter Definition
N Number of targets (network nodes)
M Number of tracking resources
T Number of measurement time slots
A,B,C State transition matrices
s;i (k) State vector for target n; at time k
u;(k),yi(k) Input and observation vectors
w;(k),vi(k) | System and observation noise vectors
Q;(k), R;(k) | System and observation noise covariance matrices
P; (k) Error covariance matrix for target target n; at time k
vilk] Observation success indicator for target n; at time k
Ai Observation success probability: P(y;[k] =1) = A;
Bik Observation attempt indicator for target n; at time k
a; Observation attempt probability: P(B;x = 1) = a;

Equivalently, in a discrete-time model, after converting x(z) =
x(kdt) — x(k), we have

x(k + 1) = x(k) + v(k)dt

2
v(k + 1) = v(k) + a(k)dt

After extending these equations into 3D space, we obtain the
following state transition equations:

Si[k + 1]
yilk]

= As;[k] + Bu;[k] + w;[k],

©)
= y;i[k]Cs;[k] + v;[k],

with
silk] = [xi[k] yilk] zilk] vailk] vyilk] voi[k]]", (state vector)
lli[k

—_—

= |axilk] ayi[k] azi[k]]T, (input vector)

Yilk] = [yxilk] yyilK] yzi[k]]T, (observation vector)
| drl T

Abx6 = [03X3 I 3X3] Boxs = 033 dilzg]
3%x3 3x3

Caxs = [z 03],

vilk] ~ N(03x1,R;),  wi[k] ~ N(06x1,Q)), “4)
where, s;[k] is the 6 X 1 state vector of node n; at discrete time
k that represents its location (x,y,z) and velocities (vy, vy, V;)
in 3D space, and y[k] is the 3 x 1 observation vector including
the observation values of the tracking system. Here, u[k]
is a 3x 1 input vector that represents the accelerations (or
equivalently the exerted forces) along the three coordinate
axes, and can be used to capture the class-specific mobility
features of an object [18]. Also, Wex; and v3x; are zero mean
Gaussian random vectors with covariance matrices Qgxg and
Rix3 that represent the model turbulence and observations

noise 2.
The measurements success is modeled as a
sequence of Bernoulli distributed random variables

(yilk] € {0,1},Pr(y;[k] = 1) = A;) [48]. It is known that an
optimal estimation of the state vectors (in MMSE sense) can
be obtained using Kalman filtering with the following steps

2Note that the state vector can equivalently be represented in polar coor-
dinate system by conversion r = x2 +y2,0 = tan”\(y/x),v, =, w = 6,
and the rest of the equations follow [18], [46]. Alternative formulations for
rotatory and fixed-wing drones are also possible [47].

Figure 1: An observer UAV tracks the mobility of N sur-
rounding drones, where (3; is a binary value representing the
measurement attempt and 0 < 4; < 1 represents the probability
of successful measurement completion.

(hereafter, we omit the subscript i representing the node index
for notation convenience, unless it is necessary):

§[k] = A8[k — 1]+ Bu[k — 1]
P[k] = AP[k - 1]AT +Q
K[k] = P[k]CT(CP[K]CT + R)™!
S[k] = 8[k] + K[k](y[k] — C8[k]),
P[k] = (I - K[k]C)P[k]

(time update eqs),

(measurement eqs),

&)

where the measurement update equations are performed only
for y[k] = 1 and we set §[k] = §[k],P[k] = P[k] for
v[k] = 0 [48]. Under some mild convergence conditions on
matrices A, B, C, and Q, namely the observability of (A,C),
the controllability of (A, B), the stabilizability of (A,Q'/?)
and the bounded system and measurement noise covariances)
the sequential error covariance matrices P[k] for any initial
value converge to a unique limit, which is the solution of
the following modified discrete-time algebraic Riccati equation
(MARE) [27]:

M(P; L, R,Q) = APAT + 0 — AAPCT(CPCT + R)"'CcPAT,
P=M(P; LR Q). (6)

The solution of (6) is not known in general, but it is known
that the convergence of P[k] is ensured if the observation
availability occurs with probability 4 > A., where A, is a
critical value with known upper and lower bounds [49]. In
most studies, the presumption of taking measurements at all
time slots is used, where y[k] models the measurement failure.
However, it is impractical to track all targets at all time slots
in large-scale networks. In the next section, we formulate
the problem of optimally assigning available measurement
resources to monitor target nodes.

III. MEASUREMENT POLICY DESIGN

Suppose that an observer intends to predict the locations
of N targets during T time slots. We consider a constrained
measurement resource scenario, where a total of M = pN
measurement resources are available per time slot, where
p (0 < p < 1) is the ratio of the number of tracking resources
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to the number of targets. Note that if p > 1, then the following
optimization is irrelevant and each observer can track all
targets in parallel. We are addressing the case that the number
of resources M is smaller than the number of targets N.

The goal is to optimally assign the available L = pNT
resources among N targets across T time slots, so that the
overall prediction error in terms of the expected summation
of the trace of covariance matrices (i.e. Zfi , thl E[tr(P;(1)])
is minimized. We use expected value of the covariance matrix,
since it is a random matrix for intermittent observation (o # 1)
[49]. Let us define the measurement attempt strategy in terms
of a binary matrix 8 = [B;;|nxr, Where B;; = 1 represents a
measurement attempt for target i at time ¢. Therefore, the goal
is to find an optimal matrix 8* such that the overall prediction
accuracy is maximized under the constraint Zf\; | Bir < pN for
t=12,...,T.

Note that the maximum number of traceable targets in
parallel (M) is defined by the utilized tracking system. T is
the number of measurement time-slots in each optimization
interval. T should be selected large enough to let the Kalman
filtering converge, which is > 100 for our scenario. On
the other hand, T should be selected small enough to have
relatively constant system conditions (R;,Q;, 4;) during one
optimization interval noting the average speed of targets.

This problem can be broken down into two sequential sub-
problems. Firstly, we allocate the total measurement resources
among N targets. To this end, we define attempt probabilities
a1,as,. . .,y to make measurements of objects ni,ny,. . .,nN,
under the constrained resources, i.e., Zl.]\i 1@ < pN. The
impact of @; is that we should replace the measurement success
probability A; in (6) with the product of this probability
with attempt probability a;4;. Therefore, the evolution of P;
depends on the choice of a; (section III-A). The next step is to
assign the ;T allocated tracking resources for target n;, over
consecutive time slots so that Zthl Bir < ;T fori=12,....T
(section III-B).

A. Optimal Measurement Attempt Strategy

The vector @ = (@, ay,...,ay), is the vector of measure-
ment attempt probabilities. In order to find the optimal mea-
surement probabilities, we consider minimizing the expected
value of the accumulated squared errors over consecutive T
time slots as follows:

N T
(af,a3,...,y) = argmin Z Z E[tr(ﬁi[k])]

i=1 k=1

subject to: 0 < a; < 1, fori=1,2,...,N,
aid; > A,
aj+ax+...an < pN, 7

where /lf.c) is the critical value for measurement success
probability to have a bounded expected error covariance.
In this case, it has been shown that the covariance matrix
converges to the solution of the modified discrete-time al-
gebraic Riccati equation (MARE), defined in Eq. (6) [27].
However, this problem is not tractable because the covariance
matrices follow a stochastic process, due to the probabilistic

measurement success rate, and also it depends on the initial
value P;[0]. If the trace of error covariance matrix converges
to a limit (under the stability conditions), we can solve the
following equation:

N
(@, .. k) = argminz lim E[tr(P:[k])]
P k—o0

subject to: 0 < @; < 1,
aidi = A%,

ar+ary+...any < p, (8)

fori=1,2,...,N,

that approximates (7) for sufficiently large 7.

This problem can be solved using numerical methods. The
idea is to characterize E[tr(P;[k])] based on «; and then
find the optimal ;. The solution of this problem determines
the measurement attempt probability for each target to have
an optimal total prediction accuracy. However, it does not
admit a closed-form solution. In [50], we proposed an online
optimization algorithm based on particle swarm optimization
(PSO) to solve this problem under dynamic situations. In this
paper, we used three additional numerical optimization meth-
ods including genetic algorithm (GA), simulated annealing
(SA), and gradient descent (GD) to show that the results
are not sensitive to the choice of optimization method. The
complexity of PSO scales linearly with the number of targets
and hence is applicable to large-scale systems.

The constraint @;y; > yic) implies a waterfall-like solution
for this problem, since the lower measurement success prob-
ability y; for an object is compensated by a higher attempt
probability a; to exceed the critical value of the successful
measurement completion yfc). For instance, in practical sce-
narios, objects in further distances with poorer measurement
quality must be tracked more frequently.

B. Optimal Measurement Pattern Design

The second step is to develop actual measurement patterns
to assign the ;7 measurement resources for target n; over
T time slots for optimized performance. We represent the
measurement patterns by a binary matrix, 8. To draw guide-
lines of this method, we start with a single target scenario,
which is equivalent to specifying a row of B, denoted by
,B; = (Bi1,Bi2s---,Bik) for a bounded Hamming weight.
Again, for simplicity, we drop the node index i and simply
use Br = (B1,B2,...,Br) for an arbitrary row of B. We
denote the desired performance metric (e.g., the trace of the
estimation/prediction error covariance matrix) at time k with
x. Obviously {xk}]{:l forms a stochastic time-series, where
transition from x; to xx4 is governed by the success of taking
measurement at time k as follows:

fx)
g(xx)

In order to find the asymptotic solution for this problem,
we consider T — oo. First, we note that f(x) > g(x), since
otherwise the measurements are irrelevant. The goal is to find
an optimal sequence By = (B1,...,Br) under the constrain
Si_1 Bk < aT such that 1/T ¥[_, xx is minimized. This

if Bx = 0 (measurement absent)
X+l = .
if B = 1 (measurement present)
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problem is computationally expensive and involves examining
all possible patterns of ;. A reasonable approximation is to
consider the asymptotic solution for the steady-state conditions
after x; converges to a limit. Under these conditions we
can use 1/T ZLI xx =~ xr for T — oo. Hereafter, we
take this approach and consider only regular patterns, since
irregular patterns are irrelevant for 7 — oo. In this case, after
some transitional periods, xx approaches a value which is the
solution of the corresponding fixed point equation. Here, we
consider that @ = 1/2 and we plan to find an optimal order
for the sequence of 7/2 ones and T/2 zeros for B, such
that the resulting steady-state error for the selected sequence
is asymptotically optimal. As an illustrative example, consider
the following three patterns:

' =1[101010 ... 10101010],
BY) =[111...111000...000],
S———— —

most alternating pattern.

T /2 ones T /2 zeros
gf) =[000...000111...111] measurements at the end
———————
T /2 zeros T /2 ones

) = [001011 ... ] random pattern.

(10)

For the two extreme patterns (ﬂg’ ) and ,B;f)), we have
two different sections for xi, each of which approaches the
solutions of two fixed point equations, namely x = f(x)
and x = g(x), after some initial transitions. Under the most
alternating pattern ,B(Ta ), the odd and even terms (x»,_; and x»x)
converge to the fixed point solutions of x = g o f(x) = h(x)
and x = fog(x) = [(x), respectively. Lets denote the solutions
of the fixed point equations by xr, xg, x5 and x; as follows:

x; = 1(xp).
1D
These points for an exemplary functions for one dimensional
state transition equations are depicted in Fig. 2. To show that
the asymptotic error for the most alternating pattern (a pattern
with most transitions between 0 and 1 for Bx and 1) is
lower than that of the first two extreme cases, we need to
show the following inequality:

xp=f(xp),  xg=g(xg),  xn = h(xp),

(12)

To this end, we prove this inequality for a wider range of
functions with given conditions and then verify the conditions
for our scenario.

X|+Xp < Xf + Xg.

Theorem IIL.1. Consider that x¢, xg, X, X; are the solutions
of fixed point equations defined in (11). Then we have x;+xp <
Xr + Xgq, if the following conditions are held:
1) 0<g(x)< f(x)forall x>0
2) f(x) and g(x) are monotonic increasing and we have
0<g'(x)< f'(x)<1forall x>0
3) f(0)=¢g(0)>0
4) f"(x) = 0 and g"(x) < O (affinity and concavity
conditions)
We first state a set of lemmas that are direct implications

of the conditions 1-4. Then, we provide the proof of theorem
in Appendix.

measurements at beginning,
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Figure 2: Fixed point equations for prediction error evolution,
where f(x) and g(x) represent the error variance transition
from one time slot to the next, respectively, in the absence
and presence of a successful measurement attempt.

Lemma IIL.1. The affinity and concavity of f(x) and h(x)
along with their monotonic increasing property imply the
concavity and monotonic increasing properties for h(x) =

g o f(x)=g(f(x)) and I(x) = f o g(x) = f(g(x)).
Proof. We have [51]

x> x = f(x) > flx) = g(f(x1)) > g(f(x2)) = h(x1) > h(xz)

f is concave — f(ax + a@y) > af(x) + af(y)

g(flax +ay)) > glaf(x) +af(y))

g is monotonic increasing

g is concave _ _
g(flax +ay)) > ag(f(x) +ag(f(y)
— h(ax + ay) > ah(x) + ah(y) (13)
which holds for /(x) as well. Here, we have @ = 1 — «. m]

Lemma IIL2. Conditions 2, 3 and 4 imply that f(x), g(x)
have fixed point solutions for x = f(x) and g = g(x).

Proof. The proof is by contradiction. Lets assume that g(x)
has no fixed point solution for x = g(x). This implies that
g(x) > x for any x. In other words, the curve g(x) stays over
the identity curve i(x) = x, and hence g(x) > x for all x, due
to the continuity of g(x). Now set x > g(0)/(1 — g’(0)). We
have:

g(x) < g(0) + xg’(0) = x(g(0)/x + g'(0))
=x(1-g"(0)+¢’(0)) = x,

= g(x) < x, (14)

that contradicts the assumption g(x) > x. Note that the
inequality g(x) < g(0) + xg’(0) is due to the concavity of
g(x). Therefore, there always exists a solution for f(x) = x.
The same argument applies to f(x). O
Lemma IIL.3. Assumptions 3 and 1 imply that 1(0) > h(0).

Proof. 1(0) = f 0 g(0) = f o f(0) > g o f(0) = h(0). o
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Lemma II1.4. The function h(x) = g o f(x) has a fixed point
solution xp = h(xy) that satisfies xg < Xp < Xj.

Proof. See Appendix. O

Lemma IIL5. The function I(x) = f o g(x) has a fixed point
solution x; = I(x;) that satisfies x; < x; < Xf.

Proof. The proof is similar to Lemma IIL.4. O

C. Guidelines to design optimal measurement patterns.

Suppose that conditions 1 to 4 of theorem III.1 hold for
transformations Ty : x — f(x) for § =0 and Tg : x — g(x)
for B = 1. If By = [B1,...,Br] represent the measurement
pattern for a target with tracking attempt probability a; = 1/2,
we have |Br|i = T/2. Then, theorem III.1 implies that
the most alternating pattern ﬂ;.a) = [0101010...] in (10),
asymptotically outperforms the two extreme cases of taking
all measurements in the beginning ,Bg’ ) or at the end ,B(Te ), as
verified by the simulation results in section IV. Through apply-
ing the above-mentioned approach to newly defined functions
fh=fofand g = fog, itis straightforward to show that
the symmetric pattern of taking two consecutive measurements
and holding the following two time slot (according to pattern
[001100110011]) outperforms the extreme case of taking all
measurements in a row, but not as good as the most alternating
method. We note that the stable points of f, and g, are
equivalent to those of f and g, used for the extreme cases.
With similar arguments and using the proof by induction,
we can show that all other symmetric patterns of taking m
consecutive measurements and holding the following m time-
slots outperform the extreme cases as well. Also, intensive
numerical results in section IV show that the most alternating
pattern (most transitions between “0”s and “1”’s) determines
the optimal measurement policy. The intuition behind this fact
is that, it is more beneficial to take a measurement right after
time slots without measurements to eliminate the prediction
error whereas taking multiple measurements in a row is not
much beneficial. Note that the gain of the most alternating pat-
tern ,3(751 ) over the most extreme patterns ﬂgf’ ) and ﬂ(Te ) is higher
than the improvement gain with respect to random patterns
,B({ ). Also, note that choosing the right pattern does not impose
any additional computational complexity to the system, and
can be adopted independent of the computationally intensive
step proposed in section III-A.

A sample measurement pattern based on the above guide-
lines is presented in Fig. 3, for a scenario with N = 5 target
nodes and M = 2 measurement resources per time slot, based
on the optimal measurement probabilities @) = 1/2, a = 1/4,
a3 = 1/8, ay = 3/8, as = 3/4. Developing measurement
policies based on the above guideline for an arbitrary set of
measurement probabilities can be realized with simple iterative
algorithms (such as initialize, try patterns and re-permute).

D. Utility of the results in UAV location prediction

The following theorem proves that the prediction error
variance of the Kalman filtering framework defined in (3)
satisfies the conditions of theorem III.1. Therefore, the derived

guidelines for optimal measurement patterns in section III-C
apply to tracking multiple flying objects under constrained
resource measurements.

Theorem IIL2. If x; represent the estimation error variance
of equations in (3) using Kalman filtering framework, and
we define f(x) and g(x) in (9), then f(x) and g(x) satisfy
conditions (1-4) of theorem III.1.

Proof. See Appendix. O

IV. SIMULATION RESULTS

In this section, we present simulation results to assess
the utility of the proposed measurement policy for accurate
prediction of the locations of flying objects. The proposed
policy is based on the optimality of measurement attempt
probabilities in (8), and using the most alternating pattern
discussed in section III-B.

A. Optimal Measurement Attempt Probability: Results

We first show that the solution of Kalman filtering with
intermittent observation provided in (5) can be used to predict
the position of an object based on processing the history of
motion trajectory when the measurement result is absent.

Fig. 4 represents the localization of a single UAV hovering
at a fixed altitude (a 2-D plane) under different measurement
success rates (MSR). When the measurement success rate is
close to 1, the main task of Kalman filtering is to estimate the
current location based on the measurement results by elimi-
nating the plant and observation noises. On the other hand,
it provides an accurate prediction of the target location using
state transition equations, in the absence of measurements. The
prediction is more accurate for higher MSR values as expected.

Fig. 5, represents the results of PSO-based optimization
applied to (8). Here, the goal is to obtain the optimal mea-
surement attempt probabilities (1, ...,ay) for N = 5 targets
when there is only M = 1 measurement resource available at
each time slot. Each particle represents a measurement attempt
probability vector a&p ),aép ),...,a/g\’;) for the given system
conditions in terms of Q;,R;),4;. The algorithm randomly
initializes the particles and iterates until all particles converge
to the best solution, which provides the optimal measurement
probabilities. The assessment of particles are based on the
fix-point solution of the MARE equation in (6). We uses 100

Measurement

Probability

Figure 3: An exemplary pattern for N = 5 targets and M = 2
measurement resources for a; = 1/2, ap = 1/4, a3 = 1/8,
ay = 3/8, as = 3/4. We have Zle a@; = M and no more than
M = 2 resources are used at each time slot Zf\il Bir £ M,

while we exhaust the reserved measurement resources for each
T
target 35, Bir = o;T.
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particles, and a maximum of 100 iterations for this simulation.
Fig. 5(a) the measurement probabilities for three target drones,
determined by the best particle in 100 iterations. It is seen
that the algorithm converges after about 65 iterations. Fig. 5b
presents the average error variances in MSE sense for ran-
domly selected particles and the best particle. Apparently, the
best particle outperforms the other particles. Mild variations
of MSE after the convergence point in Fig. 5(b) is due to the
probabilistic nature of the error covariance series that depends
on the randomly generated initial error covariance and the
randomly generated measurement pattern. Similar results are
presented in Fig. 6 for 4 different scenarios. The waterfall-
like property of the optimal measurement policy is clearly
noticeable. The optimal solution assigns higher measurement
attempt probabilities (@;) for targets with lower measurement
success probabilities (4;).

One may suspect that the obtained optimal measurement
attempt probabilities (a;, . . ., an) in (8) may be sensitive to the
choice of numerical optimization method. In order to verify
the accuracy of the results based on the PSO optimization,
here we use three additional optimization methods includ-
ing genetic algorithm (GA), simulated annealing (SA), and
gradient descent (GD). We also include the equal attempt
probability (41; = A, = A3 = 1/3) that represents no
optimization (NOP). The results for mobility equations with
three different sets of success probabilities are shown in Table
Il. The rest of system parameters are N = 3,M = 1,dt =
0.0l,Q?l. = l,R?i = 10. The performance of each method is
calculated by averaging the trace of error covariance matrix
over R = 10 runs, N = 3 targets, and 7 = 1000 time slots (i.e.
R—IEJT Zle f\il Zthl tr(B;[t])]). The results show that most
optimization methods perform almost equally (with a standard
deviation between 1% to 4%) if the optimization parameters
are selected properly. For instance, we used PSO with 80
particles and the maximum number of 100 iterations. Also,
we used the initial temperature of 1 and the cooling factor of

6 T
— Actual position
n * Observation
MSR (@y) =1
= MSR () =0.4
2 ~-MSR (a) =0.1
o PPEC Rt B ]
>
2r 4
»
4+ 4
_6 = 4
8 \ \ \ \ \
-15 -10 -5 0 5 10 15

Figure 4: Kalman filtering is used to predict the location of a
moving target in 2D plane when the measurement is absent.
The measurement success rate (MSR) is denoted by avy.
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102 ‘ ‘ ‘

-©-Uniform, MSE:0.348

"""" Particle:30, MSE:0.535

- - Particle:17, MSE:0.404
--=-Particle:84, MSE:0.171
=¥-PSO (Best Particle), MSE:0.052

(b)

Figure 5: Finding optimal measurement attempt probabilities
for N = 5 targets using a PSO-based optimization frame-
work with 100 particles. Each particle represents a randomly
initialized probability vector @) = (a\”,a{”,...,a"); (a)
the evolution of attempt probabilities for three UAVs; (b) the
overall estimation accuracy in terms of mean squared errors
(MSE) under different attempt probabilities.

0.8 for the SA method. For the GD method, we used the step
value of da = 0.01 and averaged over 10 expectations to avoid
trapping in local optima. For the GA, we used the MATLAB
implementation with default parameters. The results confirm
the benefit of the optimized resource allocation over no-
optimization policy. For 1; = A, = A3 = 1/3, all methods con-
verge to @] = @y = a3 = 1/3, so no significant gain is achieved
(Table II: top part). However, for the heterogeneous cases, the
optimization methods consistently follow the aforementioned
waterfall regime by assigning higher measurement attempt
probabilities («;) for targets with lower measurement success
probabilities (A;). For case 2 (1 = (0.050.150.33), a gain of
10% to 15% is achieved using different optimization methods
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Figure 6: Waterfall-like property of the optimal measurement
policy. Higher measurement attempt probabilities (@;) are as-
signed to targets with lower measurement success probabilities
(4;). These results are for PSO with 80 particles and 100
iterations for different scenarios with (a): R;; = I,Zle A =1,
(b: Ry = 10,37, 4 =1, ©: Ry = LY, 4 =2, @)
R;i = 10,2?;1 A; = 2. The system noise power is Q;; = 1.

(Table II: middle part). This gain is 50% to 56% for case 3
(1 =(0.050.150.33)/2, highlighting that optimal measurement
policy is more beneficial to keep the error covariance bounded
when the measurement success probabilities are lower.

B. Optimal Measurement Attempt Pattern: Numerical Results

Figures 7 and 8 show that choosing the right measurement
pattern can significantly improve the measurement accuracy.
Fig. 7 compares the resulting error variance for a single
target using different measurement patterns including the
two extreme cases of taking all the measurements at the
beginning (ﬁgf’ )) and at the end (ﬂg.e )), as well as the most

Table II: Optimal Attempt Probability Using Different Opti-
mization Methods.

Method Success Prob. Attempt Prob. MSE
A A2 A3 aj a a3

NOP 0.33 033 033 | 0.333 0.333 0.333 | 263.6
GD 0.33 033 033 | 0.348 0.361 0.291 254.3
GA 0.33 033 033 | 0.325 0.330 0319 | 261.8
SA 0.33 033  0.33 | 0.306 0.297 0.397 | 257.0
PSO 0.33 033 033 | 0.363 0.335 0.303 | 255.8
NOP 0.05 0.15 0.80 | 0.333 0.333 0333 | 351.7
GD 0.05 0.15 0.80 | 0.494 0.321 0.185 | 295.7
GA 0.05 0.15 0.80 | 0.505 0.315 0.165 | 321.7
SA 0.05 0.15 080 | 0.476 0.326 0.198 | 302.1
PSO 0.05 0.15 0.80 | 0.383 0.400 0.217 | 305.1
NOP 0.025 0.075 040 | 0.333 0.333 0.333 | 849.1
GD 0.025 0.075 040 | 04090 04390 0.1510 | 385.1
GA 0.025 0.075 040 | 04870 0.3380 0.1480 | 426.0
SA 0.025 0.075 040 | 04390 0.4420 0.1180 | 410.6
PSO 0.025 0.075 040 | 03970 0.3970 0.2060 | 373.2

meas. at beginning meas. at end

1
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Figure 7: Comparison of the evolution of estimation error
achieved by different measurement patterns including ﬂg’ ),
gf ), (T“ ), and ,B(; ) defined in (10). The results correspond to
a system with @ = 1/2 and y = 1. (a): results for 10 scenarios
with random initialization. (b): average over 10 scenarios.

alternating pattern ,B(Ta ) and a random pattern ﬂ<Tr ) in (10). The
most alternating pattern significantly outperforms the extreme
patterns in terms of the achieved average MSE, since the
prediction accuracy of Kalman filtering dramatically drops in
the absence of measurements (multiple consecutive zeros). It
also slightly outperforms the random measurement pattern,
where T /2 zeros and T'/2 ones are randomly shuffled. Figure 8
summarizes the result for different measurement patterns and
present the average prediction error versus the transition rate
of the pattern. The transition rate of each pattern is calculated
by counting the number of transitions from 0 to 1 and vice
versa. The achieve localization accuracy in terms of the mean
square error (MSE) can drop from 2.5 to 0.2 (a reduction by
a factor of 10) if the most alternative pattern is selected.
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The transition rate of pattern

Figure 8: The average prediction error variance for different
(and randomly selected) patterns including B(T“), ﬂ;f ) and Bgfl )
defined in (10). Dot points are the error variance for a
randomly initialized scenario (P;[0], Q;, R;) for different
measurement patterns Sr, and the curve is the average of
results over 100 scenarios with different initializations.

V. CONCLUSIONS

In this work, we considered the problem of network topol-
ogy prediction using a general framework based on Kalman
filtering with intermittent measurements for multiple targets
under constrained tracking resources. The prediction error
for each target follows a stochastic process that converges
to a solution of a fixed-point equation determined by the
modified discrete-time algebraic Riccati equation, provided
that the successful measurement completion rate a;A; exceeds
a critical value, denoted by /lgc) . We broke down this non-
convex problem into two subproblems. Firstly, we obtained
the optimal measurement attempt probability for each target
by minimizing the sum of the convergence limits of the
corresponding MARE equations through a numerical PSO-
based optimization method. The solution exhibits a waterfall-
like property by assigning higher attempt rates «; for targets
with poorer measurement conditions (lower /ll(.“) /Ai) such
that the resulting measurement completion rate exceeds the
target-specific critical value. Next, we proved that the «o;T
reserved measurement resources for target n; should be evenly
distributed over T time-slots, since the pattern [B;1, B2, - - - Bir ]
with a maximal transitions between measurement and silent
time-slots yields a minimal convergence value for the error
variance. These two guidelines can be used to develop opti-
mized measurement patterns for real-world applications.

Although, we proposed this policy for network topology
prediction of UAV networks to facilitate predictive communi-
cation and control algorithms, the proposed policy is general
and applicable to other measurement systems operated based
on Kalman filtering under constrained resources.

APPENDIX

Proof of lemma IIL.4: To prove the existence of x;, we
note that assumption 1 implies:

h(0) = g(f(0)) >0

Also, the concavity of g() implies that for all x > x,, we
have:

15)

(b) Xo
—g(xg) > fg(X)

c X,
Doy > ()

(d)

—g(x) < x, (16)

where in (a), we used the concavitiy of g(), namely g(ax; +
axy) > ag(xy) + ag(xy) after setting x; = x,x, = 0, =
2 >0,@=1-2 > 0; (b) is due to the positivity of @ by
assumption x > x, and the positivity of f(0) in assumption
3; (c) is due to x, being the fixed point solution, namely
Xg = 8(xg); and (d) follows immediately. Following a similar
argument, we can show that

f(x) < x, for x > xy. a7
Now, if we choose x > max(xs,x,), we have
g(f(x)) < f(x) < x, for x > max(xs, xg). (18)

Continuity of / along with equations (15) and (18) implies
that the fixed point equation x = h(x) has a unique solution
xp according to lemma II1.2.

Now, we verify x;, < xy by contradiction. Suppose x; > xr,
then we have the following set of rules:

Xp > Xf
2>h(xf) > (1 = x¢/xp)h(0) + xr [ xpnh(xp)
O h(xp) > (1= xp/x0)h(0) + x5
ohiay) > x5

Dnep) > flxyp)

g>h()6f) > g(xr)

Y, bxp) > xp

B > xp, (19)

which is an obvious contradiction. We used the concavity of
h() in (a), namely A(ax; + @xy) > ah(x) + ah(x;) by setting
x1 =0,y = xp,a@ = 1 = x¢/xp; (b) is due to x; being the fixed
point solution, namely h(xy) = xp,; (c) is due to the positivity
of f(0) in condition 3 which implies ~(0) = g(f(0)) > 0;
(d) is due to xy being the fixed point solution; (e) is due to
f(x) > g(x) in condition 1; (f) is due to monotonicity of
increasing function g(); and finally (g) is due to x being the
fixed point solution.
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Likewise, we can show that x;, > x, by contradiction. Sup-
pose x, < xg, we have the following sequence of equations:

Xp < Xg
(g + (1= 290) > P h(xy) + (1= 2L )n(0)
Xg Xg Xg Xg

b
O ) > P h(xy)
X

8

> ()
Xg

d
D, g > hixy)
©
_>g(xg) > h(xg)
)
Drxe > flxe)

&) o (xg) > flxe). 20)

which is in contradiction with f(x) > g(x) in condition
1. In (20), we used the concavity of 4() in (a) by setting
X1 = Xg, X2 = 0,@ = xp,/xg; (b) is due the positivity of f(0) in
3; (d) is due to to x; being the fixed point solution, namely
h(xp) = xp; (d) is due to the positivity of xg; (e) is due to
xg being the fixed point solution; (f) is due to monotonicity
of increasing function g(); and finally (g) is due to x, being
the fixed point solution. Therefore, x; exists and we have
Xg < Xp < Xf.

Proof of theorem IIL.1. In order to prove xj, +x; < X7 +Xg,
we note that the concavity of h(x) = g o f(x) implies:

xp = h(xp) < h(xp) + (xp = xp)h'(x5)
xn < glxp) + (o = x0)f (ep)g’ ()
®) 8(xr) = xp f'(xr)g" (xr)
1= f7(xr)g’ (xf)
where in (a) we used the chain rule of derivatives h’(x) =

J'(x)g’(f(x)) and the identity h(xs) = g(f(xf)) = g(xf), and
(b) follows immediately. In a similar way, we have

2y

x1 = 1(xg) < Uxg) + (x1 = xg)l' (xg)

) < flxg) + (1 = xg) f (x)g ()

@) f(xg) - ng/(xg)gl(xg)
1- f’(xg)g/(xg)
Combining (21) and (22) yields:

(22)

g(xr) — xpf'(xp)g (xr)  fxx) — xgf'(xg)g  (xg)
1= f(xr)g’ (xf) 1= f'(xg)g’ (xg)
_8(xp) = xp +xp —xp f'(xp)g  (xf)
- 1= f7(xr)g’"(xr)
f(xg) —Xg t+Xg — ng,(xg)g,(xg)
1= f'(xg)g’ (xg)
_ 8 -y . f(xg) — xg i
L= f(epg' () T T= fr(xg)8/ (xg) g'(

xp +x1 <

+

23)

10

In order to prove xj, + x; < xf + xg (12), considering (23) it
is sufficient to show that

g(xr) = xf J(xg) — xg
0, 24
= e | T= g (vg) &4
which can be re-written as
f(xg) — Xg 1- f,(xg)g,(xg) (25)

Xy —gGy) ~ 1- (g (xy)

Now, we use the assumption of f(x) being an affine function
such that f(x) = cx+x9 = x¢ = x0/(1 —¢). consequently, the
left hand side of the inequality in (25) is bounded as follows:

LHS = Jlxg) = xg _ J(¥g) = Xg Xy~ Xg
xp—g(xp)  xp—xg xp—glxy)
(@) Xf — Xg
Y-8
xp — g(xr)
(b) Xp - Xg
1 -
< TRl + (o — xp)g ()
) 1-c¢
s 26
= ¢'(xg) (26)

where we used f(x,) = cxg + xo and x¢ = xo/(1 — ¢) in (a),
the concavity of g(x) in (b) and g(xg) = x4 in (c). Similarly,
we have
prs = L2008 050 1= e/

1= f'(xp)g"(xp) 1 —cg’(xp)

(a)
> 1 -cg'(xg)

©®) , /
> 1—cg'(xg) —c+g'(xg)

= (1 - o)1 +g'(xg))
© 1l-c
1 - g’(xg)
where we used 0 < g’(xg)c < 1in (a), g'(xg) < f'(xg) = c in
(b) and the identity ﬁ ~ 1 +x for small x in (c). Combining
(27) and (26) yields the results in (25), that completes the
proof.

27)

Proof of theorem III.2 For the scalar case (one dimensional
motions), we have:

at = f(xx) = A’xi + Q, Yk =0,

g() = A% + Q = (ACPx)/(CPxi + R), yi = 1.

(28)

Apparently, f(x) is a monotonically increasing affine func-

tion and we have f(0) = g(0) > 0, since the system error

variance is a positive value (Q > 0). Also, the positivity

of the measurement noise variance (R > 0) implies that

f(x) > g(x) > 0 for x > 0. Now, we need to show that

g(x) is a monotonically increasing concave function of x as
follows:

A2C%x? A%Rx
=Ax+ Q- ——— =0+ ——
8(x) x+0 C2x +R C2x+R
A2R2
=g’ = —
8= G re
. _A2R2c2
=g"(x) = iR (29)
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which implies that 0 < g’(x) < f’(x) = A% and g”(x) < 0.
Therefore, conditions (1-4) hold for the scalar case.

For the general case of multi-dimensional scenario, consider
the following relations, based on the concept of functors.

F(X),G(X)
Xy —— Xin
tr(Xe) 1 l tr(Xgs1)
f(x),8(x)
— X4l

where we have

F(Xi) = AXk AT +Q, (B =0),

G(Xx) = AX AT + Q - AX, CT(CXiCT + R)"'CX AT (else),
(30)

and f() and g() represent the evolution of error variance
(the trace of error covariance matrix) under transitions F()
and G(). We use the concept of functors only to translate the
transitions between covariance matrices (in Kalman filtering)
into the transitions between desired estimation errors in terms
of the trace of covariance matrices.

Conditions (1-3) are immediate results of the error covari-
ance matrices being positive definite. To verify condition (4),
consider that X; = x; X, where x; is an arbitrarily distributed
random variable to represent the trace of matrix X; and X
is a random PSD matrix with an arbitrary distribution and
tr(X) = 1, and independent of x;. We have

Xie1 = AXR AT + Q0 = ;e AXAT +Q
=xke1 = () = 0(Xesr) = tr(x AXAT + Q)

= x tr(AT AX) + tr(Q) = Kixx + Ko>. (31)
N———— N——
K, K>

Therefore, f(x) = Kjx + K is obviously a monotonic in-
creasing affine function. We proceed with inspecting g(x) as

follows:
Xir1 = 5 AXAT + Q - x]AXCT (x,CXCT + R)~'CXAT
tr(Xes1) = xx tr(AT AX) + tr(Q)
- x r(AXCT (i, CXCT + R)™'CXAT)
= xi tr(AT AX) + tr(Q)
—x r(AXCTR ' (x CXCTR™ + 7' X AT)
@)

= x tr(AT AX) + tr(Q)

— 22 (ARCTR™! ( Z(—xchcTR—l)")cXAT)
n=0
xx tr(AT AX) + tr(Q)

-7 tr( Z AXCTR—I(—xchCTR—‘)"Cf(AT)
n=0

xi tr(AT AX) + tr(Q)
- Z(—Xk)n+2 tl"(CXATAXCTR_l(CXCTR—I)n)’
n=0 )

where we used the Neumann series (A + B)! =
Yo A"Y(=BA™Y)" for |B|; < |A|, in (a). Under stability
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conditions required for the convergence of the Neumann series,
we have tr(x;CXCT) = tr(CXCT) < tr(R) that implies
@ = tr(CXCTR™") < 1. Now note that

(o )™+? tr(CXATA)ZCTR*‘(CXCTR*I)")

- tr(CXATAXCTR‘l(CXCTR_l )")

IA

tr(CXXCTR" (CXCTR™! )")

IN

tr(X) tr((CXCTR‘l yrtl )

tr(X)a" !
tr(X)a".

IA

IA

(33)

Therefore, the power series in (32) decay with n and the
dominant term is —xlf, and hence x4 = g(xx) is convex in x,
which verifies the conditions of theorem III.1 for the proposed
measurement mechanism.
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