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Abstract—In this paper, we propose a drone-based wildfire
monitoring system for remote and hard-to-reach areas. This
system utilizes autonomous unmanned aerial vehicles (UAVs) with
the main advantage of providing on-demand monitoring service
faster than the current approaches of using satellite images,
manned aircraft and remotely controlled drones. Furthermore,
using autonomous drones facilitates minimizing human interven-
tion in risky wildfire zones. In particular, to develop a fully
autonomous system, we propose a distributed leader-follower
coalition formation model to cluster a set of drones into multiple
coalitions that collectively cover the designated monitoring field.
The coalition leader is a drone that employs observer drones
potentially with different sensing and imaging capabilities to
hover in circular paths and collect imagery information from the
impacted areas. The objectives of the proposed system include: i)
to cover the entire fire zone with a minimum number of drones,
and ii) to minimize the energy consumption and latency of the
available drones to fly to the fire zone. Simulation results confirm
that the performance of the proposed system- without the need for
inter-coalition communications- approaches that of a centrally-
optimized system.

I. INTRODUCTION

Wildfires are one of the costliest and deadliest natural dis-
asters across the world, especially in the US West region. The
immediate impacts include damage to millions of hectares of
forest resources, evacuation of thousands of people, burning of
homes and devastation of infrastructure, and most importantly,
threatening the lives of people [1]. Moreover, wildland fires
may also disrupt forestry operations, which produce wood
fiber and biomass fuels, and other forms of agriculture, by
spreading into farms and damaging ecosystems with negative
consequences on water quality and other ecosystem services
[2]. National institute of standards and technology (NIST) esti-
mates that the annual cost of wildfire management ranges from
$7.6 billion to $62.8 billion, while the annual losses caused by
wildfires are much higher, ranging from $63.5 billion to $285.0
billion [1]. In the US, wildfire suppression costs exceeded $2
billion in 2017, breaking the all-time record [3]. The recent fire
in California during November 2018 that has been the largest
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in the history of this state has killed 88 people, and burned
over 600,000 acres. The rapidly increasing risk of fire, due
to recent widespread extreme drought conditions and climate
change, calls for new national strategies to prevent and manage
wildfires, at a reasonably low cost.

Several technologies have been used for fire detection and
monitoring including ground sensors, remotely piloted vehicles
(RPV), or satellite imaging [4]. However, these methods are
not yet able to offer a fast and reliable solution for wildfire
detection and monitoring [5, 6]. Some drawbacks of the current
technologies include: i) delayed fire detection due to missing
small fires at early stages, ii) relatively long time lag for
satellites to overpass the field, and iii) infeasibility of deploying
sensors with limited sensing distance ranges (e.g., chemical-
based smoke detectors). For instance, smoke detectors are
efficient in detecting fires at early stages, but they suffer
from short distance ranges. Imagery systems in the visible
light spectrum can be used for remote sensing, but they
lack accuracy at nighttime, and cloudy and foggy weather
conditions. More importantly, current forest fire suppression
and management techniques involve ground-based personnel
and aircraft pilots that put them at risk and is costly to operate.

UAVs are presently banned from operations in wildfire
zones due to potential collisions with aircraft flying at low
altitudes [7]. However, drone-based wildfire monitoring can
provide a low cost, and rapid imaging solution specially in
low populated areas. UAVs have been recently tested in several
fire monitoring missions [4, 8,9]. However, in these examples,
a single remotely-controlled UAV is utilized in a line of sight
range of the human controller, which still highly involves
human intervention and may seriously endanger the lives of
controllers. Other disadvantages of using single monitoring
drone includes (i) low spatial and temporal resolution, and (ii)
limited flight time of a single UAV (often less that 45 minutes).

A European project named real-time coordination and con-
trol of multiple heterogeneous UAVs (COMETS) has focused
on utilizing a fleet of heterogeneous drones for forest surveil-
lance, and forest fire detection and observation with the goal of
reducing the operation cost using less costly small drones and
enhancing the imaging resolution [10-12]. However, in this
project, the drones are controlled by human controllers that
endangers the life of controllers and limits the use of system
in remote and hard-to-reach regions.



In this paper, we propose a practical framework for fire
monitoring using a set of heterogeneous autonomous drones
in inaccessible regions to enable rapid mission response when
human controllers are not available to initiate and guide the
mission. This method is based on a decentralized leader-
follower coalition formation to provide a full coverage of the
fire zone with a limited number of available UAVs.

II. REVIEW OF RELATED WORK

UAV-based remote sensing is an emerging technology that
has been utilized in a wide range of civilian and military
applications including environmental monitoring, and preci-
sion agriculture [13—16]. Similarly, UAV-enabled aerial small
cells have been explored to extend the capacity, coverage,
and energy efficiency of 5G heterogeneous cellular networks
featuring millimeter wave multi-band and multi-tier network
architectures [17,18]. Finally, [19,20] investigate UAV-IoT
data acquisition, networking, and path planning towards en-
abling next generation applications such as networked virtual
and augmented reality, where edge computing is integrated
[21], and effective allocation of the wireless bandwidth across
the multiple sensing locations needs to be carried out [22,23].

In addition to using drones with onboard sensing systems,
in a different class of UAV-based sensing systems, the drones
operate as a bridge between a terrestrial wireless sensor
network and a cloud based processing unit, such that a single
or multiple UAVs fly in pre-programmed paths and collect
information from a grid of stationary sensors [24]. Although
this method works efficiently for offline data aggregation and
processing, it is not well suited for agile reaction to life-
threatening events such as wildfire, and flood. In such natural
disasters with highly dynamic operation fields, a rapid response
is required. Also using drones with direct communications to
ground stations, specially when the disaster occurs in far-to-
reach areas, consumes a considerable portion of the UAVs’
energy. In these scenarios, using autonomous UAVs with the
capability of independent path planning or task completion
provides a more feasible and efficient solution. To overcome
the limited capabilities of a single UAV including limited
payload, short flight time and limited communications range,
a network of multiple UAVs can be utilized to cooperatively
perform compound tasks and cover wide and highly dynamic
operation fields. Several recent researches have been focused
on the problem of centralized or decentralized task allocation
in multi-agent systems that commonly rely on full knowledge
of the agents’ resources and positions, and hence require reli-
able communication systems among the agents to share such
information [25-28]. These methods cannot offer an urgent
response in dynamic situations, where the tasks take place at
unpredictable locations and times, and a full prior knowledge
of the operation field is not available. Therefore, they cannot
offer a practical and real-time task allocation mechanism for
UAV-based monitoring systems. A clear example of such
disasters is a forest widefire where the challenges include: 1)
the lack of a complete prior knowledge of the remote operation
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field, ii) high dynamicity and the large extent of the fields
(i.e. fire spread due to wind and weather conditions), iii) the
vulnerability of drones to malfunction and failure and iv) the
limited sensing, computation and communication capability of
a single UAV. These challenges urge to develop an efficient
system to deploy a network of autonomous drones to timely
complete the designated monitoring task at a reasonable cost
in such dynamic conditions. One important challenge in such
systems is the task coordination between the deployed UAVs.

Several coalition formation approaches have been developed
for task allocation in UAV networks [29-33]. A new approach
is developing game-theoretic coalition formation approaches
in a distributed manner, where the solution is obtained by
considering the individual benefits of the agents as well as
the social benefit of the entire network [29,31,33]. In [30],
a quantum-inspired genetic algorithm is proposed for leader-
follower coalition formation that finds the optimum coalitions
of UAVs in a large-scale system by accounting for reliability
and probability of UAVs’ failure. However, these methods
require a considerable time to find the optimal set of coalitions,
which can limit their applications in real world applications.
Another common disadvantage of these coalition formation
methods is the computational complexity of forming stable
coalitions. In general, conventional coalition formation meth-
ods such as dynamic programming methods [34,35], graph
theoretic approaches [36,37], merge-and-split [29] are not
well suited to provide urgent responses in disaster monitoring
applications in dynamic networks. In this paper, we propose a
low-complexity fully distributed solution for this problem with
close-to-optimal performance.

III. LEADER-FOLLOWER COALITION FORMATION FOR
UAV-BASED WILDFIRE MONITORING

Fig. 1. An example of the proposed leader-follower UAV coalition formation
in monitoring of two forest fire zones.

In this work, we propose a leader-follower coalition forma-
tion approach to monitor an active fire, specially in remote
regions where deploying remotely controlled drones is chal-
lenging (see Figure 1). The main objective of the proposed
solution is forming optimal UAV coalitions in a distributed
manner to enable a full coverage of the fire field in a timely
manner, when the observer UAVs have limited communication



range and hence cannot directly send their collected informa-
tion to the fire-management ground station.

We consider a set of heterogeneous UAVs with different
sensing/imaging capabilities, payload size, battery type, and
flight time. We utilize two types of drones including fixed-
wing UAVs that can fly at higher attitudes and rapidly survey
a wide area and the rotary UAVs that hover at low altitudes
to collect high resolution data. The fixed-wing UAVs with
better flight capabilities and higher computation capabilities
serve as coalition leaders and are used for initial recognition
of fires to relay the accumulated information within a coalition
to the ground station. The rotary UAVs serve as coalition
members (or followers) and perform the actual sensing and
video recording tasks, hence called observer UAVs in this work.

Depending on the incidence rate and severity of wildfires in
a region, we can consider scenarios with different requirements
in terms of the number and the type of UAVs. The UAVs
can be situated in stand-by mode in lookout tower stations or
on weather-resistant charging pads located across the forest.
In the proposed event-triggered fire monitoring system, we
assume that the UAVs’ mission is initiated based on primary
information about a fire provided by a human observer or a
ground sensor grid. Then, the high-speed fixed-wing UAVs
fly towards the impacted area to confirm the existence of
fire and provide an initial fire map. After the preliminary
evaluation of the fire region, the fixed-wing UAVs provide
an approximate fire profile including an estimated thermal
mapping of the fire, spread rate, flame length, fire intensity, and
the estimated number and type of UAVs required to provide a
full imaging/video coverage of the impacted region. Then, the
following coalition formation process is initiated.

Fig. 2 illustrates the operation of the proposed algorithm.
The fire-zone area is shown by a dashed line. In the first stage,
the leader UAVs take greedy displacement actions to relocate
themselves to achieve two objectives of: i) creating at least
80 percent intersection among the respective coalition zones
and the fire-zone, and ii) maintaining maximal separation
between the coalition centers. These two conditions facilitate
monitoring the active fire with more emphasis on the fire front
line. Fig. 2 shows an example of the proposed leader-follower
coalition formation system with three leaders that form three
coalitions (C' = 3) denoted by C;, Cs, and Cs.

Once this phase is completed, the leader UAVs initiate
the coalition formation process to recruit appropriate follower
(observer) UAVs. Here, we use a sectorized approach, in
which the coverage region of each leader UAV is divided to a
predefined number of sectors, denoted by S. Each sector of a
coverage region is covered by one observer drone (equipped
with a high-resolution camera). The number of sectors is an
application-dependent parameter and depends on the coalition
coverage area, the communication range of observer UAVs, the
UAVs’ point of view, and the desired resolution and frequency
of the captured images and videos. Here, we arbitrarily use
S = 3. The observer drones are maximally separated, therefore
each sector represents an arc with a central angle of 27/.S. The
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drones hover with a constant speed in circular clockwise paths
to collect video while avoiding potential collisions.
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Fig. 2. An illustrative example of optimal coalition formation for maximal
coverage. The leader UAV employs the member drones based on their flight
time to the designated locations as well as their remaining batteries. The drones
hover in a circular path to collect imagery information.

The coalition formation is performed by a bid-response
negotiation between the leaders and followers in a close
proximity of one another. We should note that each coalition is
formed independently by a leader, hence no communication is
required among the leaders that can be located far apart from
each other in different fire regions. Therefore, this coalition
formation mechanism does not impose any signaling load to
the leaders to coordinate their coalition formation.

More formally, we consider a set of N available fol-
lower UAVs, denoted by U = {U,Us,...,Un}, where
each follower UAV U, is described with an identification
vector, I;. This vector includes the information related to
the UAV’s available sensing and actuation features based on
onboard sensor and actuator types, its consumable resources
(e.g. remaining battery) and flying capabilities (maximum and
minimum speed, allowable fli Aght altltude) More specifically,
we define I; = i,pi,.._.,pl Porhr2,. ..,rlN |, where p, =
[p%, pf,..., p; ’] with p! > 0 represents the characteristic
vector of user ¢ (e.g., maximum flight altitude, collision
avoidance feature, and maximum tolerable temperature), and
r; = [r},r2,...,rN"] with 7/ > 0 represents the available re-
sources at UAV U;. Notations N, and [V, denote the maximum
number of characteristics and resources, required to describe
UAV ¢, respectively. The resources can be consumable such as
remaining battery or non-consumable such as onboard sensor
types. If U; does not have any of resource j, then r7 =0 and
if resource j is non-consumable, then rf» = 0.

Each leader UAV, denoted by Ly, identifies (or assigned
with) a set of spatially distributed tasks in its coverage region,
presented by T {T, T2, ..., T;F}, where i) is the
number of identified tasks in that region. Each task T} requires
a set of resources R} as well as properties P}. Therefore, a
coalition C has a requirement vector [Py, R;] with P, =



max{P}, PZ,... , Pi*} (with element-wise maximization) and
Ry = Z;‘Zl Rj.. If the leader UAV does not have sufficient
resources to perform all these tasks in the required time
frame, or if it cannot provide a full sensing/imaging coverage
of the entire region, it calls for a coalition formation. Each
coalition member (i.e. follower UAV) should have the required
properties Pj, and the coalition members collectively should
provide the required resources. More formally, if the coalition
CY, is formed by {Uk,, Uk,, ..., Uk, } then, we should have:

Pj ZPkH forj:khk??"'akSa
ks
subject to: Z r; > Ry. @)
j=k1

In the proposed coalition formation model, first the leader of
each region broadcasts a proposal to the potential follower
UAVs in its close proximity to form a coalition. This proposal
includes information regarding the types of sensors or cameras
that are needed, the approximate duration of the mission,
as well as the coordinates of the fire region that it covers.
Then, the UAVs which possess the required properties that
the leader asked for respond to the request by reporting their
properties (e.g., their flight capabilities), available resources
(e.g. remained battery), and their current position. During
the formation process, the coalition leader evaluates all the
responses by assessing the resources offered by the volunteer
UAVs, their remained battery, and their current location. From
the leader’ perspective, the recruited followers need to have the
required properties to perform the detected tasks in the region,
reach the fire region with minimal latency, and also collectively
carry all the required resources for the encountered tasks in the
region. Moreover, since in agile remote sensing applications
such as disaster monitoring and forest fire monitoring, the
number of available UAVs, and in particular the number of
costly and high-capability UAVs is limited, the leader UAVs
need to account for a balanced distribution of the UAVs and
their resources in the entire region. Meaning that coalition
formation by the leader should be based on assuring that all the
required resources for a region are provided by the followers
while the resources do not considerably surpass the required
resources for that region. Therefore, the objective of leaders in
forming coalitions is to select the coalition members in such
a way to: i) guarantee providing the required resources and
capabilities to complete the tasks while not exceeding those,
ii) guarantee the timely completion of the tasks, iii) choose the
UAVs that are in closer distances to the region of interest, iv)
select the ones with longer lifetime. In a simple scenario, this
member selection for leader k£ can be modeled as follows:

Select the best follower UAVs to maximize:
N, ks
o(Cr) = (D rh)/R}), 2)
I=1 j=k
Pj > Pk, forj :kl,k‘Q,...,k‘S,
djr < D.

subject to:
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where v(Ci) denotes the value of coalition Cj. The second
constraint is to ensure that the distance of U; to the center of
coalition Cj, denoted by d;j, is below a predefined threshold
D to ensure that the coalition formation time is not delayed
longer than a desired time. The function + is designed to ensure
that all the required resources for this region are provided
by coalition members while over-spending is penalized. For
example, the function can be defined as

() :{ —L, ifz<1,

—x, ifzx>1,

where L — oo is a large number to harshly penalize coalitions
with insufficient resources.

When the leader UAVs select an optimal set of their desired
follower UAVs, they send a request to these UAVs to join
the coalition. This request is called a bid. Each follower
UAV can receive multiple bids from different leaders. The
potential followers will consider several factors to select the
most appropriate offer from leader such as priority of regions,
and its distance to the operation regions of the leaders. Then,
the follower UAVs respond to the leaders’ bids with a ’yes’
or 'no’ answer. If the leaders receive a ’yes’ response from all
the followers they originally selected, the coalition formation
is completed. Otherwise, they will recruit the ones who sent a
positive response and perform the member selection optimiza-
tion process again to select additional required followers. Once
a coalition is formed, the leader assigns the selected members
into .S sectors, such that the sum of the UAVs’ flight time to
their designated locations is minimized among all possible S'
permutations. Then, the leader instructs the UAVs to fly to the
corresponding sectors and the task performance is initiated.
During the lifetime of a mission, if a UAV collapses for any
reasons (e.g., battery exhaustion or communication system
failure), the coalition will recruit another follower to fill its
position. If the leader UAV of a region becomes out of order,
another UAV in the coalition will replace it (e.g., the follower
with longest battery life).

3

IV. SIMULATION RESULTS

In this section, we present simulation results to evaluate
the performance of the proposed algorithm in accommodating
maximal coverage through forming coalitions of drones. In
the simulations we set parameters as N=20 drones, C' = 3
coalitions and S = 3 sectors. We also use a randomly
generated fire zone in a rectangular service area with side
L = 10km. The drones’ affordable flight time based on
their batteries are uniformly distributed between 10 min and
20 man, while the mission time is considered as 15 min,
therefore the drones that their remaining battery after flying to
the designated destinations is sufficient to perform the task are
included in the coalition formation (this condition is imposed
by djr < D in (2)).

In order to illustrate the operation of the proposed algo-
rithm, we compared the resulting coalitions with a centralized
optimized method. In Fig. 3, the top figure is the formed
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Fig. 3. Optimal coalition formation for maximal coverage. top: the coalition
formation using central method; bottom: the coalition formation using the
proposed distributed leader-follower method; The drones whose property
vectors satisfy condition p; > Py in (1) are shown with green circles, and
the rest of drones are marked with red stars.

coalitions using a centralized method, where the leaders are
allowed to convene and develop optimal coalitions after shar-
ing their information. In other words, the leaders examine the
performance of all possible assignments of N = 24 UAVs and
C = 3 x 3 =9 positions, namely the N!/(C x S)!. Then, a
mapping ¥ : N — C x S that maximizes the summation
of coalition values Y ._, v(C.) is selected, where v(C,.) is
defined in (2). The central optimization requires inter-coalition
communications that may not be practical in real situations.
The bottom figure in Fig. 3 illustrates the coalitions formed
by the proposed fully distributed algorithm, where the leaders
form their coalitions independently after negotiating to nearby
observer UAVs. This figure shows that the final coalitions
are very close to the solution of centralized algorithm. The
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only exception is the position of drones U, and U, that their
positioned sectors S1; and Si3 are swapped between the two
methods. An intuitive justification is that in the proposed
distributed method, the leader of coalition C; selects U; for
position Sy; first, and then the leader of coalition Cy has no
option better than U, for position Ss3, where as the central
one selects a better assignment of U, — S1; and U, — Sos.
To further investigate the performance of the system, we
execute 100 scenarios with randomly generated fields and
parameters L = 10*, N = 15,C = 3, and S = 2. We use
remaining battery as the only resource and hence the maxi-
mization in (2) is equal to minimizing the distance between the
selected coalition members with their designated locations. The
results in Fig. 4 illustrate that the central algorithm performs
consistently better than the distributed algorithm across all
sector positions as expected. But, the difference between the
average distances for the two methods is as low as 15%.

g g b Q o & b
6 2 — 0 < N © E N g = m =
N 5 M - Q@ @ =) AN Q =)}
5 =t $ N < 3 < . S <
< <
4
3
2
1
0
S11 S12
M Central M Distributed

Fig. 4. The average distance between coalition members’ initial positions to
their target sectors for both centralized and distributed methods. The average
is taken over 100 runs of the algorithm with random initialization.

V. CONCLUSION

We developed a practical model for disaster monitoring in
remote regions using multiple autonomous UAVs. It is assumed
that several UAVs with different flight and sensing capabilities
are situated in lookout tower stations or charging in an stand-
by mode. When a fire incident is reported by smoke sensors or
human observers, the autonomous UAVs initiate a monitoring
mission without human intervention. This monitoring mission
is performed using a leader-follower coalition formation ap-
proach, in which the UAVs with longer flight time, higher
communication ranges, and more computation powers serve as
the leaders to form a set of coalitions that can monitor the fire
zone with an expected quality and for the required duration.
The simulation results show among hundreds of scenarios
confirm that the proposed fully distributed algorithm performs
close to a central method, while enabling a full autonomy
and eliminating the need for inter-leader communication and
coordination. As such, the system is scalable to scenarios with
vast coverage areas, including forest fires.
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