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Abstract—This paper presents a novel mission-oriented path
planning algorithm for a team of Unmanned Aerial Vehicles
(UAVs). In the proposed algorithm, each UAV takes autonomous
decisions to find its flight path towards a designated mission
area while avoiding collisions to stationary and mobile obstacles.
The main distinction with similar algorithms is that the target
destination for each UAV is not apriori fixed and the UAVs locate
themselves such that they collectively cover a potentially time-
varying mission area. One potential application for this algorithm
is deploying a team of autonomous drones to collectively cover an
evolving forest wildfire and provide virtual reality for fire fighters.
We formulated the algorithm based on Reinforcement Learning
(RL) with a new method to accommodate continuous state space
for adjacent locations. To consider more realistic scenario, we
assess the impact of localization errors on the performance of
the proposed algorithm. Simulation results show that success
probability for this algorithm is about 80% when the observation
error variance is as high as 100 (SNR:-6dB).

Index Terms—UAV networks, Reinforcement Learning, Virtual
Reality, Wildfire Monitoring.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) in various
applications has been growing in recent years. This growth is
mainly due to the technological advances in developing high
capability drones with robust control and task management [1],
predictive communication protocols [2]–[5], efficient spectrum
utilization [6], optimal tracking [7], auto landing [8], [9],
path planning and collision avoidance [10], [11] as well as
low operation and maintenance costs [12] that make drone
technology a suitable solution for many applications including
habitat monitoring [13], [14], traffic control [15], remote sens-
ing [16], border patrolling [17], smart agriculture [18], disaster
management [19], and providing backhaul connectivity for
wireless networks [20], [21] to name a few.

In recent years, incidence of wildfire throughout the USA
has been increasing at an alarming rate due to climate change
and human factors [22]. The recent California camp fire
is accounted for the death of at least 85 people and 296
missing individuals [23]. It destroyed more than 14,000 res-
idences [23], becoming both California’s deadliest and most
destructive wildfire on record. According to the statistics of
National Interagency Fire Center (NIFC) [24], on average
63235 incidents of wildfires per year has been reported within
2008 to 2017 in the US. Various methods have been used
for monitoring wildfires. The authors of [25]–[28] proposed
UAV based methods for detecting and tracking the wildfires.
However, in most UAV-based systems, a single remotely-
controlled drone is deployed to perform the designated task,
which requires human intervention in a short distance and may
seriously endanger the controller’s life. Further drawbacks of

using single drone for wildfire monitoring include low spatial
and temporal resolutions, and limited flight time [29]–[32].
Recently, several efforts have been devoted to deploy a fleet
of drones for forest surveillance and fire detection at lower
operational costs [26], [27], [33], [34].

This paper aims at developing a path planning algorithm
for fire detection when the target field (e.g. the wildfire)
is time-varying and the flight area includes stationary and
mobile obstacles. In order to accomplish a task like wildfire
monitoring, drones have to deal with the dynamic behaviour of
the environment through taking autonomous decisions. Use of
different model-free learning-based path planning methods can
assist achieving higher levels of autonomy in taking decisions.
Learning-based methods such as Reinforcement Learning (RL)
gain knowledge about the environment through exploring
the actions and investigating the rewards to develop optimal
policies without the need for prior mathematical models or
knowledge about the environment.

In [35], a PID+Q-learning algorithm is used to navigate
a UAV to its target destination. In [36], the authors used
multi-agent reinforcement learning algorithm for providing
coverage of a field. In this case, the UAVs are allowed to
learn cooperatively. However, none of these methods consider
mobile obstacles and time-varying targets, which is the focus
of this paper. In particular, we developed a collision-free path
planning algorithm, where the UAVs adjust their actions with
the change in environment. In this algorithm, we assumed that
the UAVs could not share information with one another.

The rest of this paper is organized as follows. Section
II describes the system model and also states the problem
formulation. Section III briefly describes the path planning
algorithm and section IV presents the simulation results.
Finally, section V concludes the paper with offering potential
future directions.

II. SYSTEM MODEL

We assume that N drones denoted by n1, n2, . . . , nN are
located in initial positions p1(0),p2(0), .......,pN (0), where
pi(t) =

(
xi(t), yi(t)

)
is the position of drone ni at time t.

We also assume that there is an active fire represented by
a continuous region, D = {(x, y)}. The fire front line of
the fire is determined as {(x, y)|(x, y) ⊂ D,Nε(x, y) �⊂ D},

where Nε(x, y) = {(u, v)|√(x− u)2 + (y − v)2 ≤ ε} is the
ε-neighbourhood of the fire front line. We also assume that
there are M point obstacles o1, . . . , oM in the coverage area
(e.g. trees or other drones), and the drones are supposed to
keep a minimum distance Ro from these obstacles to avoid
collision. Likewise, the desired location of drones should be
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within a safety zone surrounding the fire front line, which
is defined by Rs. The goal is to develop a path planning
algorithm to guide the drones towards the surrounding area
(safety zone) of the fire front line by avoiding stationary and
mobile obstacles at lowest possible time. We desire a fully
distributed algorithm, where each drone makes independent
navigation steps. The drones are not allowed to convene by
exchanging information to find their paths. We assume that
the drones can estimate the location of obstacles, other drones,
and the fire front line on the fly using a proper target tracking
system with a Gaussian measurement error w ∼ N (0, σ2

n).

Fig. 1. System Model: The target fire map is shown with blue shape. The red
and blue circles, respectively, present the observer drones and the obstacles.

In Fig. 1, blue circles represent the point obstacles, and red
dots represent the agents (observer drones). The blue shape
represents the fire front line. The position of point obstacles
and the shape of the target region can be static or time-varying.
We considered both situations in our analysis. For the sake of
simplicity, we consider a 2D path planning where drones hover
in a given altitude, but the extension to 3D path planning is
straightforward.

III. ALGORITHM

We develop our method based on the RL framework to
direct the drones to their destinations. We formulate the
algorithm for continuous state space to make it more realistic.
We use a new method for solving RL problems in continuous
space instead of using conventional function approximation
methods. In our method, we use Bellman equation as the
action-value function while eliminating the need of exploring
Q-value for each state. The underlying assumption of this ap-
proach is that the Q-values for adjacent locations are correlated
and hence slowly change over time during the exploration
phase and we can update the current Q-value based on the
accumulated rewards during the recent local exploration. This
property makes the algorithm fast and suitable for using in
continuous state space problems.

In the algorithm, each UAVs is considered as an indepen-
dent agent. For simplicity, We consider a 2-D random-walk
mobility with constant steps denoted by r, so the actions of

drones are restricted to 5 possibilities (no movement, moving
east, west, north, and south). This action set is denoted by
A = {◦,−→,←−, ↑ , ↓ }. Often, one of the 4 motion steps are
selected as the optimal action, due to the definition of the
reward function as follows next.

The set of states is defined as {S}, which represents the
location of the agent in a 2-D space considering the location of
mobile obstacles and the current fire map. For convenience, we
map this set of continuous space into a finite set developed by
splitting the region into square tiles with side r. As mentioned
earlier, we assume that the adjacent states have similar action-
reward mappings, so we keep only one Q-function for the
current local region.

A. Location based reward function
The reward function for an agent, when taking action a at

state s is defined as

si(t) : pi(t)
a−→ si(t+ 1) : pi(t+ 1), (1)

R(s, a) = α1[f1(pi(t+ 1))− f1(pi(t))]

− α2[f2(pi(t+ 1))− f2(pi(t))]

− α3[f3(pi(t+ 1))− f3(pi(t))], (2)

which includes three sub-functions f1(), f2(), f3() evaluated
based on the agent locations. Eq (1) represents the location
change due to taking action a at state s, and Eq (2) quantifies
the reward. The reward function is designed to offer incentive
for flying towards the fire map (by changes incurred to f1()
due to location change), and penalize flying towards the
obstacles (by f2()) and other agents (by f3()). The parameters
α1, α2, α3 are used to balance between different objectives,
and we use α1 = α2 = α3 = 1.

To be more specific, f1 is the negative of the distance from
the agent’s location pi(t) (equivalently its state si(t) in the RL
framework) to the nearest point in the safety zone surrounding
the fire front line D(t) at time t. Therefore, we have

f1(pi(t)) = − min
x(t)∈D

d(pi(t)− x(t)), (3)

where d(�q, �r) is an arbitrary distance metric between position
vectors d(�q and �r). An intuitive choice is using Euclidean
distance defined as d(�q, �r) = |�q − �r|2.

Similarly, f2 is a function to enforce collision avoidance
with obstacles along the path. It is defined as

f2(pi(t)) =
1

M

M∑
j=1

e−d(oj(t),pi(t))+dc , (4)

where oj(t) represents the location of object oi at time t.
Parameter M denotes the number of visible obstacles from a
certain state at time t. The tunable parameter dc is used to
enforce a clearance distance around the obstacles, and we set
it to dc = Ro.

Finally, f3 is a function used to enforce maximal separation
among the flying drones to provide a better coverage of the
target field. It also decreases the chance of collision among
the drones. This function is defined as

f3(pi(t)) =
2

(N − 1)π

N∑
j=1,j �=i

acot
(
d(pj(t),pi(t))/rc

)
, (5)



where we penalize the distance with the N − 1 agents in the
system. In this function, we use arccot function to reflect
higher sensitivity around zero. The tunanble parameter rc
controls the rate of the penalization and in this paper we
arbitrarily set dc = Ro. Also, the coefficient 2/(N − 1)π
is used to limit the penalization term into range [0, 1]. Here,
we consider the current locations of other drones as surrogate
for their next locations when evaluating f3(pi(t + 1)), since
information exchange among the drones is not allowed.

We consider two idealistic and realistic scenarios while
calculating the reward functions for each state. In case-I, the
drones are aware of the current locations of all stationary
and mobile obstacles (i.e. a tracking system with unlimited
observation range). However, in a more realistic case-II, the
drones can locate obstacles only within a specific range.
Therefore, only the objects within a specific range around
an agent contribute to functions f2 and f3. In the simulation
results in section IV, we set the value of this specific region
equal to dc, meaning that the obstacles are recognized only
when the agent enters their collision range. We take this
assumption inspired by the collision-avoidance feature through
igniting collision alarms implemented in some commercial
drones.

B. Q-learning

We use the well-known Bellman equation to update Q-
functions as follows:

Qt+1(s, a) = (1− α)Qt(s, a)

+ α[R(s, a) + γ max
a′

(Q(s′, a′)], (6)

where Qt(s, a) is the Q-value of taking action at at state
st, α is the learning rate and γ is the discount factor to
account for future rewards. In our implementations, we set the
discount factor γ = 0, due to the fact that the agents receive
immediate rewards for their actions based on the developed
reward functions. In other words, the future impact of actions
are already captured through the reward functions. Further, this
simplifying approach eliminates the requirement of storing Q-
values for distinct states and enables us to approximate all
surrounding states by the current local state. Therefore, the
updated action-value function is defined as

Qt+1(s, a) = (1− α)Qt(s, a) + αR(s, a) (7)

C. Exploitation and exploration phases

The algorithm consists of two alteranating phases of explo-
ration and exploitation. The purpose of the exploration phase
(denoted by S1) is to develop and fine tune the action-reward
mapping using (7) in order to use it to steer drones’ motions
in the exploitation phase (S2). In the exploration phase, an
agent explores the four possible actions in the current state to
update the Q-values. We can use a probabilistic (e.g. random
exploration) or a sequential exploration method to cover all
states at each exploration phase. In this paper we use the
sequential exploration method to cover all actions equally.

In the exploitation phase, each agent takes action based on
their experience gained in the exploration phase. They also
assume that the property of most adjacent states are similar,

and so they take the same action for consecutive states in the
exploitation phase.

There is a trade-off between the frequency of exploitation
and exploration phase. Using more often exploration phases
increases the overhead of the system (in terms of energy
consumption and execution time) by taking exploration steps.
On the other hand, more frequent exploration phases provide
higher agility in recognizing the changes of Q-values due to
the dynamic topology of the network and the agent’s mobility.
In order to implement the transition between the two modes,
here we use a Markov model where the initial state probabil-
ities are defined as P (S1) = 20% and P (S2) = 80%. Let
us denote the transition probabilities as P11 = 1 − P12 = p0
and P22 = 1− P21 = p1, and choose p0 and p1 such that the
resulting steady-state state probabilities are P (S1) = 20% and
P (S2) = 80%. We use the following method to update the
transition probabilities. As, we take actions in the exploitation
phase, we keep track of the changes in the Q-values as follows:

ΔQ(a) = Q(si+1, a)−Q(si, a) (8)

If the change in Q-values is above a predefined positive
threshold T1 > 0, the system is stable and we decrease
the probability of exploration phase by decreasing p0 with
a constant step (e.g. δp). However, if ΔQ(a) is negative
and below a predefined threshold T2, it is very likely that
the optimal state has been changed due to severe topology
changes, so we increase p0 (or equivalently decrease p1) to
increase the probability of exploration phase. Otherwise, we
keep the probabilities unchanged. Here is the summary of this
step:⎧⎪⎨
⎪⎩
p0 = min(0%,max(100%, p0 − δp%)) if ΔQ(a) ≥ T1

p0 = min(0%,max(100%, p0 + δp%)) if ΔQ(a) ≤ T2

p0 = p0 if T1 ≤ ΔQ(a) ≤ T2

(9)

Note that we reset to original probabilities after completing
a successful exploration phase. This process is repeated until
the agents reach the desired position on the neighbourhood of
the fire line. A summary of this algorithm is presented below.

IV. NUMERICAL RESULTS

We simulated the algorithm on MATLAB Environment. We
considered stationary (Fig. 2-4) and mobile obstacles (Fig.
7,8) obstacles in simulation. In fig. 8 we considered time
varying target as well. For stationary obstacles we calculated
reward by using case-I and II but for mobile obstacles we
calculated rewards by using case-II for reward function. We
also calculated the effect of localization errors in simulation.
In Figs 2-4, red (UAV-1) and yellow (UAV-2) lines show the
paths for two UAVs. The blue ’o’ represents the stationary
point obstacles and the area encircled by the solid blue line
represents the safety zone surrounding the fire front-line. Fire
lines can generally be of random shape. The shape of the
safety zone would be congruent with the shape of the fire line.
The bold red ’x’ (Fig. 3 and 4) represents the position of the
misinterpreted obstacles due to measurement errors. The UAVs
observe rewards based on these misplaced obstacles rather than
considering the original position of the obstacles.



Algorithm 1 UAV Path Planning for Collective Monitoring

0: Initialization:
0: set the locations for the target, agents, and obstacles
0: set probabilities for exploration and exploitation phases

P (S1) = 20% and P (S2) = 80% and (p0 and p1
accordingly)

0: state=initial position of the UAV
0: Exploration:
0: for UAV i=1 to N do
0: Explore the four possible state, calculate reward func-

tions using (1-5), and update Q-values using (7)
0: Goto exploitation phase with probability P12 = 1− p0.
0: Loop
0: Exploitation:
0: for UAV i=1 to N do
0: Take optimal action a based on Q-function
0: Calculate reward functions using (1-5), and update

Q-values using (7)
0: Update ΔQ using (8)
0: Update transition probabilities using (9)
0: Goto exploration phase with probability P21 = 1−

p1.
0: Loop

In fig-2, the UAVs avoid the stationary obstacles keeping a
minimum clearance distance from the obstacles. The value of
this clearance distance can be controlled by the parameter dc.
The UAVs also maintain a constant distance between them.
For covering the maximum region in a certain area the UAVs
should keep a distance of their coverage capacity between
them. In fig-3, Gaussian noise (μ = 0, σ2 = 2) is added
with the tracking systems of the UAVs. The red ’x’ shows the
displaced position of the obstacles due to the measurement
error. The UAVs calculate the path based on these pseudo
obstacles (red ’x’) rather than the original ones (represented
in blue ’o’). As the measurement error is small, the UAVs
could avoid the obstacles instead of the error in distance
measurement but the path for each UAV is different from fig.
2.

Fig. 2. Simulation of the algorithm without localization errors (case-I for
reward).

Fig. 3. Simulation of the algorithm with localization error (μ = 0, σ2 = 2)
in tracking system (case-I for reward).

Fig. 4. Simulation of the algorithm with localization error (μ = 0, σ2 = 50)
in tracking system (case-I for reward).

In Fig-4, we increased the variance of the localization error
to 50 while keeping the other parameters same as Fig. 2. As
the amount of measurement error is very large compared to
the minimum clearance (dc), the UAV-1 collides with one of
the obstacles and UAV-2 also collides with other obstacle.
This figure depicts the effect of measurement error more
significantly.
Fig-5 and fig-6 show the curve of average number of collisions
(out of 100 iterations) between the UAV (UAV-1 and UAV-2)
and the obstacles, and also the collision between the UAVs
for the different variance level of measurement errors. The
variance level is selected from zero to hundred with a step
size of two. At each level we iterated the process for 10 times
and calculated the average collision number (out of 100). The
blue ’o’ represents the average number of collision for UAV-1.
The red ’x’ represents the average collision for UAV-2. The
value of error for each UAV is independent of the other UAV
at each level. In case-I of the reward function the highest
number of collision occurred for UAV-1 is 21 and for UAV-
2 is 19. From the Fig. 5 it is also observed that the UAV-
1 is more prone to collision than the UAV-2. Though both



Fig. 5. Variance Vs Avg. number of collision for UAV-1 and UAV-2 (case-I
for reward).

number collides at same value in some cases. But the curves
show that about 80% of cases each of the UAVs succeeds to
reach their destination, without any collision, irrespective of
the level of error variance. In Fig. 6 we considered that, from a
specific state, the tracking system could track obstacles within
a specific range (case-II for reward). In this case the number
of collision is slightly higher than the previous case. Here the
success rate for the UAVs in reaching the destination, without
collision, is about 77% which is lower than the previous one.

Fig. 6. Variance Vs Avg. number of collision for UAV-1 and UAV-2 (case-II
for reward).

In Fig. 7 and Fig. 8, we simulated the algorithm with mobile
obstacles and calculated rewards by using the case-II of the
reward function. The step size of these mobile obstacles is as
equal as the step size of the UAVs. The bold blue ’o’ represents
the initial positions of the obstacles and the bold green ’o’
represents the final positions of the obstacles. The thin ’x’
represents the positions of obstacles at different times. At
any specific time instance, the mobile obstacles can randomly
move any of the four directions or stay in their own positions.
From simulation we observed that the UAVs could avoid

Fig. 7. Simulation of the algorithm with mobile obstacles.

Fig. 8. Simulation of the algorithm with time varying target

collisions with these mobile obstacles at different time steps
in the path, and also reach at the desired locations in the target
zone. In figure 8, we observed the effect of time-varying target.
The thin blue line denotes the initial position of the target
region and the bold blue line represents the final position of
the target region. The bold red ’o’ represents the positions of
UAVs in target zone. UAVs calculated reward for a state by
using the initial target position as the target. We assumed that
after reaching the initial target position, UAVs could detect
the new location of the target zone by their tracking system,
and also the position of the target zone can only move to
the adjacent locations. The simulation results show that UAVs
could relocate themselves according to the change in position
of the target zone, and also avoid collisions with mobile
obstacles at any particular time in the path.

V. CONCLUSION

A distributed path planning algorithm for a team of UAVs
is presented in the paper. Using the algorithm, UAVs can
avoid collisions with obstacles (stationary and mobile) and
with other UAVs in the path without exchanging information
among the UAVs. The algorithm also allows UAVs in finding



the optimal location on the border line of the monitoring region
and avoid overlaps in monitoring zone with other UAVs. UAVs
can also relocate themselves with the change in position of
target region. This algorithm can be applied in wildfire moni-
toring, disaster management, and other dynamic environments.
The algorithm uses a new method for mapping adjacent states
into correlated states in continuous state space. In future, our
research would focus on predicting the shape of the dynamic
wildfire zone with respect to time and synchronizing the speed
of the UAVs with the spread rate of wildfire. We would
also conduct research on providing virtual reality models for
the fire fighters in the system. This inclusions would enrich
the system and enable us to utilize its robustness in diverse
applications.
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