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Abstract—Managing energy consumption for computation and
communication is a key requirement for flying ad hoc networks
(FANET) to prolong the network lifetime. In many applications,
the main role of drones is to collect imagery information and
relay them to a ground station for further processing and decision
making. In this paper, we present a predictive compression policy
to maximize the end-to-end image quality penalized by the
communication and computation costs. The idea is to predict
the number of remaining links to the destination for a given
routing algorithm and use it to re-compress image frames at
intermediate nodes such that the overall energy consumption is
minimized. Numerical results confirm that the performance of
this method is within 4% of the global optima and higher than
the current fixed-rate policies with a significant margin.

I. INTRODUCTION

In flying ad hoc networks (FANET), the limited payload and
battery size of drones imposes tight restrictions on the total
power consumption. In drone-based imagery systems, the final
image quality depends on the image resolution influenced by
the compression rate. The communication energy cost is di-
rectly proportional to the volume of exchanged image frames,
whereas the computation cost is proportional to the input
file size and the number of re-compression stages. Indeed,
there exists an intrinsic trade-off between the energy used for
communication and computation [1]. An important challenge
in solving this trade-off is that the number of communication
hops is not priorly known to the source node to adjust the
compression rate accordingly. In [2], we developed a greedy
distance-based routing algorithm for unammed aerial vehicle
(UAV) networks with dynamic topology and introduced upper
and lower bounds on the number of expected communication
hops for given network conditions. In this paper, we propose
a predictive compression policy that solves this trade-off by
adjusting the per-link compression rates based on the expected
number of remaining hops for a desired performance metric.

II. SYSTEM MODEL

We consider a network consisting of 𝑁 nodes 𝒩 =
{𝑛1, 𝑛2, . . . , 𝑛𝑁} distributed uniformly in a 𝐿×𝐿 rectangular
area, as displayed in Fig. 1. The communication range of
each UAV is represented by a circular area of radius 𝑅.
Consequently, the set of neighbors for node 𝑛𝑖 at time 𝑡 is
defined as 𝒩𝑖(𝑡) = {𝑛𝑗 ∈ 𝒩 , 𝑑𝑖𝑗(𝑡) ≤ 𝑅}, where 𝑑𝑖𝑗(𝑡) is the
Euclidean distance between nodes 𝑛𝑖 and 𝑛𝑗 at time 𝑡.

To simulate drone motion trajectories, we use the Paparazzi
mobility model (PPRZM) proposed in [3], which uses Markov
Process to combine several common mobility patterns such as
linear way points, circular, oval, and eight-like rotations and
parallel sweeping with random initial locations and motion
parameters.

In this work, we use our previously proposed distance-based
greedy routing algorithm [2], where the routing protocol oper-
ates as a geographic forwarding approach. More specifically,

Fig. 1: UAV network with 𝑁 nodes in a 𝐿 × 𝐿 area. The communication
range is represented by a circle of radius 𝑅. The red dashed line represents
the optimal path based on the utilized distance-based greedy algorithm.

at step 𝑖, the packet is passed by the current node 𝑛𝑖 to a
neighbor node 𝑛𝑗 ∈ 𝒩𝑖, which is closest to the destination
𝑡. Also, the packet transmission is constrained by 𝑑𝑗𝑡 < 𝑑𝑖𝑡,
which means that we always make a progress, to ensure a
loop-free path. The algorithm is initialized with current node
as source: 𝑛1 = 𝑠, and terminates when the destination node
is visited, i.e. 𝑛𝑗 = 𝑡. The red dashed line in Fig. 1 represents
an example of the selected path using this algorithm.

Although we implement the proposed compression method
on top of the greedy routing in [2], it is general and can be
integrated with any routing algorithm, if the expected number
of remaining hops is known at each step.

III. PREDICTIVE COMPRESSION POLICY

Here, we present a compression optimization policy to
maximize the quality of the image file at destination while min-
imizing the computation and communication costs. Through
investigating different perceptual image quality metrics includ-
ing [4], [5], we conclude that a sigmoid-like function can
best model the impact of compression on degrading the image

quality. Here, we use 𝑄𝐴(𝑟) =

(
1−𝑒−𝑟/𝐴

1−𝑒−1/𝐴

)
, where 𝑟 is the

compression rate and 𝐴 controls the shape of the function. The
denominator is the scaling factor to ensure 0 ≤ 𝑄𝐴(𝑟) ≤ 1
for 0 ≤ 𝑟 ≤ 1. We set 0.1 < 𝐴 < 0.5 to best comply with the
results from the above-mentioned papers.

Suppose that the end to end ℎ-hop path is represented by
𝒫ℎ = {𝑛1, 𝑛2, . . . , 𝑛ℎ}. For a constant transmission power
per bit per link, the total energy to send an image of size 𝐹 is∑ℎ

𝑗=1 𝑘𝑐𝑟𝑗𝐹 , where ℎ is the number of links through the path,
𝑟𝑗 is the compression rate at node 𝑛𝑗 , and 𝑘𝑐 is a constant.

Likewise, the total on-board processing cost to perform
compression can be modeled as

∑ℎ
𝑗=1 𝑘𝑝𝐼(𝑟𝑗 ∕= 𝑟𝑗−1) +∑ℎ

𝑗=1 𝑘𝑞𝑟𝑗−1𝐹𝐼(𝑟𝑗 ∕= 𝑟𝑗−1), where 𝐼(𝑟𝑗 ∕= 𝑟𝑗−1) indicates
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a re-compression process at node 𝑛𝑗 . The compression cost
at node 𝑛𝑗 includes a constant part 𝑘𝑝 and a part 𝑘𝑞𝑟𝑗−1𝐹
proportional to the input file size 𝑟𝑗−1𝐹 . Consequently, the
goal is to maximize the following objective function:

𝑓(𝒫ℎ) = 𝛼𝑄𝐴(𝑟ℎ)− 𝛽

ℎ∑
𝑗=1

𝑘𝑐𝑟𝑗𝐹

− 𝛾

ℎ∑
𝑗=1

𝐼(𝑟𝑗 ∕= 𝑟𝑗−1)(𝑘𝑝 + 𝑘𝑞𝑟𝑗−1𝐹 ), (1)

where parameters 𝛼, 𝛽, and 𝛾 are used to balance the im-
portance between the quality and cost terms. When a node
optimizes this objective function, it makes a simplifying as-
sumption that the adjusted compression rate will not be altered
by the subsequent nodes. Therefore, it solves the following
problem using the expected number of remaining hops:

maximize 𝑔𝐴(𝑟) = 𝛼𝑄𝐴(𝑟)− 𝛽𝔼[ℎ𝑖]𝑘𝑐𝑟𝐹

− 𝛾𝐼(𝑟 ∕= 𝑟𝑖−1)(𝑘𝑝 + 𝑘𝑞𝑟𝑖−1𝐹 )

subject to 𝑟 ≤ 𝑟𝑖−1 (2)

This is a convex optimization problem, which admits the fol-
lowing closed form solution, considering the KKT conditions:

𝑟★(𝑖) = −𝐴 ln

(
𝐴𝛽𝔼[ℎ𝑖]𝑘𝑐𝐹 (1− 𝑒−1/𝐴)

𝛼

)

𝑟𝑖 =

{
𝑟★(𝑖) 𝑔𝐴

(
𝑟★(𝑖)

)
> 𝑔𝐴(𝑟𝑖−1),

𝑟𝑖−1 otherwise.
(3)

Due to the dynamicity of the network as well as the uncer-
tainty of 𝔼[ℎ𝑖], we allow the subsequent nodes to recalculate
the compression rate as needed.

IV. SIMULATION RESULTS

To perform simulation results, the network topology is
randomly generated using PPRZM model and parameters
𝑁 = 100, 𝐿 = 10 𝑘𝑚 and 𝑅 = 2.5 𝑘𝑚. We use linear and
circular motions, where the speed and radii of each pattern are
exponentially distributed and the initial directions and phases
are uniformly distributed. Other parameters include 𝛼 = 5
𝛽 = 1 and 𝛾 = 1, 𝑘𝑝 = 𝑘𝑞 = 0.5, 𝑘𝑐 = 1, 𝐹 = 1, 𝐴 = 0.3.

Table 1 compares the achieved end-to-end utility as well as
the selected compression rate for the proposed predictive com-
pression policy using 5 randomly generated network topologies
against the optimal compression rate, and a set of fixed rates
with 𝑟 = (0.1, 0.2, . . . , 1). Here, the optimal compression rate
is corresponding to the global maximum of (1), when the exact
locations of nodes, and the number of hops ℎ are known to
the source node ahead of time. It can be seen that the optimal
and predicted compression rates are equal for some cases,
meaning that the expected number of hops matches the actual
number of hops. The improvement in the achieved utility 7.14
is significant and ranges from 13.5% (for 6.29 for constant rate
𝐶𝑅 = 0.4) to 18-fold increase (for 𝐶𝑅 = 0.1). The objective
function for the proposed policy (7.14) is only 3.4% less than
(7.39) for the optimal policy.

To highlight the importance of the re-compression policy
(method A), we compare it against a similar policy, where
the designated compression rate by the source node remains
unchanged (method B in Fig. 3). It is shown that the proposed

Table I. Comparison of achieved utility for the proposed predictive policy vs
optimal policy and fixed-rate policies.

method (A) outperforms method B consistently among all
average node velocities. The improvement is more significant
(about 75%) for higher node velocities, as expected.

Fig. 3: Objective function for the optimal, the re-compression policy (method
A) and optimized but fixed compression policy (method B) .

V. CONCLUSION

The results show that the current fixed rate policies are
extremely inefficient. One may optimize the accumulated
communication and compression cost only by predicting the
remaining number of hopes per transmission. The improve-
ment depends on the network dynamicity and average node
velocities and can be as high as 18-fold increase.
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