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Abstract—In this paper, we develop a distributed mechanism
for spectrum sharing among a network of unmanned aerial
vehicles (UAV) and licensed terrestrial networks. This method
can provide a practical solution for situations where the UAV
network may need external spectrum when dealing with con-
gested spectrum or need to change its operational frequency due
to security threats. Here we study a scenario where the UAV
network performs a remote sensing mission. In this model, the
UAVs are categorized to two clusters of relaying and sensing
UAVs. The relay UAVs provide a relaying service for a licensed
network to obtain spectrum access for the rest of UAVs that
perform the sensing task. We develop a distributed mechanism
in which the UAVs locally decide whether they need to participate
in relaying or sensing considering the fact that communications
among UAVs may not be feasible or reliable. The UAVs learn
the optimal task allocation using a distributed reinforcement
learning algorithm. Convergence of the algorithm is discussed
and simulation results are presented for different scenarios to
verify the convergence1.

Index Terms—Spectrum Sharing, multi-Agent Learning, UAV
Networks, reinforcement learning.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been recently used
in many civilian, commercial and military applications [1]–
[6]. With recent advances in design and production of UAVs,
the global market revenue of UAVs is expected to reach $11.2
billion by 2020 [7].

Spectrum management is one of the key challenges in UAV
networks, since spectrum shortage can impede the operation
of these networks. In particular, in applications involving a
low-latency video streaming, the UAVs may require additional
spectrum to complete their mission. The conventional spec-
trum sharing mechanism such as spectrum sensing may not be
very practical in UAV systems noting the considerable required
energy for spectrum sensing or the fact that they cannot
guarantee a continuous spectrum access. The property-right
spectrum sharing techniques operate based on an agreement
between the licensed and unlicensed users where the spectrum
owners lease their spectrum to the unlicensed ones in exchange
for certain services such as cooperative relaying or energy
harvesting.

In this paper, we studied the problem of limited spectrum
in UAV networks and considered a relay-based cooperative
spectrum leasing scenario in which a group of UAVs in
the network cooperatively forward data packet for a ground

1This material is based upon the work supported by the National Science
Foundation under Grant No. 1755984.

primary user (PU) in exchange for spectrum access. The rest
of the UAVs in the network utilize the obtained spectrum for
transmission and completion of the remote sensing operation.
Thus, the main problem is to partition the UAV network into
two task groups in a distributed way.

It is worth noting that cooperative spectrum sharing has
been studied previously in the context of cognitive radio
networks [8]–[11]. The existing models are mostly centralized
and the set of relay nodes is typically chosen by the PU. Such
solutions, however, are not applicable to UAV networks, due to
their distributed infrastructure and autonomous functionality.

To tackle this problem, we utilize multi-agent reinforcement
learning [12]–[15], which is an effective tool for designing
algorithms in distributed systems, where the environment is
unknown and a reliable communication among agents is not
guaranteed. The main problems in distributed multi-agent rein-
forcement learning include dealing with state space complexity
and the lack of complete information about other agents. There
have been proposals in the literature to address these issues
through message passing or simplifying assumptions. For
instance, [12] assumes that the decision of an agent depends
only on a limited group of other agents, which decomposes the
state space and simplifies the problem. In another work [15],
a Bayesian setting is proposed where each agent has some
distributional knowledge about other agents’ decisions. Such
simplifications, however, are not applicable to the distributed
UAV network environment.

In this paper, we propose a distributed multi-agent rein-
forcement learning algorithm for task allocation among UAVs.
Each UAV either joins a relaying group to provide relaying
service for the PU or performs data transmission to the UAV
fusion center. In this approach, each UAV maintains a local
table about the respective rewards for its actions in different
states. The tables are updated locally based on a feedback from
PU receiver and the UAV fusion node. We define utilities for
both the PU and the UAV network, and the objective is to
maximize the total utility of the system (sum utility of the PU
and the UAV network). We discuss the convergence of our
learning algorithm and we present simulation results to verify
the convergence to the optimal solution.

The remainder of this paper is organized as follows. In Sec-
tion II, the system model and the assumptions of the proposed
model are described. In Section III, we propose a distributed
multi-agent learning algorithm to solve the spectrum sharing
problem. In Section IV, we present simulation results and
discuss the performance of our distributed learning algorithm.
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Fig. 1. System Model: A sample Scenario with 6 UAVs, where four UAVs
handle packets relaying between the Source and Fusion Center and two UAVs
relay packets for the Primary User.

Finally, we make concluding remarks in Section V.

II. SYSTEM MODEL

We consider a licensed primary user (PU) who is willing
to share a part of its spectrum with a network of UAVs, in
exchange for receiving a cooperative relaying service. The
UAV network consists of N UAVs which can be partitioned
into two sets depending on the task of the UAV. In fact, UAVs
either relay for the PU or utilize the spectrum to transmit
their own packets to the fusion center. Let K be the number
of nodes who perform the relaying task and N − K denote
the number of UAVs that transmit packets to their fusion
center. In this paper, we assume that both the PU’s transmitter
and receiver are terrestrial, while UAVs are operating in
high elevation. Also, we assume no reliable direct link exists
between the PU’s transmitter and receiver. Moreover, there is
zero chance for direct transmission between the UAVs’ source
and fusion, due to their distances from the fusion center. Fig.
1 illustrates a sample scenario with 6 total nodes, where the
nodes are partitioned into a set of 4 relay nodes for the fusion
center, and 2 other nodes relay information for the PU receiver
on the ground.

The PU’s transmitter intends to send its packet to a desig-
nated receiver, which is far away from its location. Hence,
a single or a number of UAVs are required to deliver its
information to the receiver. In addition, we assume that the
UAVs’ spectrum is congested or unreliable, therefore the UAVs
are required to lease additional spectrum from the PU to com-
municate with their fusion. By delivering the PU’s packet, the
UAVs gain spectrum access to send their own packets. All the
UAVs transmitters and receivers are assumed to be equipped
with a single antenna. Also, we assume that the channels
between UAVs, source, fusion, and PU transmitter and receiver
are slow Rayleigh fading with a constant coefficient over one
time slot. The channel coefficients are defined as follows: i)
hPT,Ui

refers to the channel parameters between the PU’s
transmitter and ith UAV; ii) hUi,PR denotes the parameters
between the ith UAV and the PU’s receiver; iii) hS,Ui and
hUi,F , respectively denote the channel coefficients between
the Source and the ith UAV, and between the ith UAV and the
fusion center. For the sake of simplicity, the instant Channel
State Information (CSI) are assumed to be available for all
UAVs following similar works in [16]–[20]

Fig. 2. Communication channels for a single relay

The source of the noise at the receivers is considered as a
symmetric normally distributed random variable, denoted by
z ∼ CN(0, σ2). Many works such as [20]–[22] optimized the
power consumption and nodes’ lifetime in this area. On the
other hand, power optimization is not the purpose of this work,
hence we assume constant powers during the transmissions.
However, the transmission power for the Source and the PU
transmitter is less than those of the UAVs. Half-duplex strategy
is utilized in this work. Without loss of generality, time-
division notations are characterized in order to ensure the half-
duplex operations. After these assumptions, the channel and
system model for a single relay is shown in Fig. 2. In this
model, all UAVs and terminals utilize a single antenna for
transmission.

In the first half of a transmission cycle, the source transmits
its packet and the relay UAVs receive the information. The
channel model for the first half is presented as follows:

yU [n] = hS,UxS [n] + zr[n], (1)

where xS is the source’s transmitted signal and yU is the
UAV’s received signal. Then, in the second half of the trans-
mission, the UAV sends the received packet in the previous
time slot. We can write the second half as another model for
the received signal as follow:

yF [n] = hU,FxU [n] + zF [n], (2)

where xU is the UAV’s transmitted signal and yF is the
destination’s received signal.

In equations (1) and (2), the CSI parameters hij rep-
resent the effects of the path loss and likewise zj repre-
sents the effect of noise and interference terms at the re-
ceiver, where i ∈ {Source,PU-Transmitter,UAV} and j ∈
{Fusion,PU-R,UAV}. In our scenario, hij is calculated by
the proper receiver.
Based on equations (1) and (2), the throughput capacity of
the non-degraded discrete memoryless broadcast channel is
expressed in (3) [23]:

CThroughput = max
w→x→yd

{I(w; yd)}, (3)

where d ∈ {Fusion,PU-Receiver}, w is the message word and
x is the codeword which has been assigned to each message
by the encoder. Preferably, equation (3) should be solved for
the optimal joint distribution of both w and x. However, as
discussed in [24], we can achieve the suboptimal throughput
rate in (4), with the aid of assumption x = w. Also, p(x)
denotes the probability mass function (pmf) for the codeword.

RThroughput = max
p(x)
{I(x; yd)} (4)
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In scenarios, where users can exploit the existence of UAVs,
different cooperation protocols such as Decode and Forward
(DF) and Amplify and Forward (AF) can be used [25]. The
idea behind the concept of cooperative relaying is that a set
of relay nodes decode, amplify and collectively “beam-form”
the signal received from the source node (potentially with
help of source node itself) towards a designated destination in
order to exploit transmission diversity and increase the overall
throughput of the system [26].
Considering an AF cooperation, each UAV first amplifies the
signals from the source and then cooperates with source to
send its information to the fusion center or to the PU-Receiver.
According to [27], the mutual information for i) the first set
of source, UAV, fusion and ii) the second set of PU-T, UAV,
PU-R can be written as equations (5) and (6), respectively. In
these equations, PS denotes the transmitter power from the
source of the UAV network and i specifies the index for the
UAV.

ISFAF
= log2(1 + PS |hSF |2 (5)

+
PS |hS,Ui |2 PUi |hUi,F |2

1 + PS |hS,Ui
|2 + PUi

|hUi,F |2
)

IPU(TR)AF
= log2(1 + PPT |hPT,PR|2 (6)

+
PPT |hPT,Ui

|2 PUi
|hUi,PR|2

1 + PPT |hPT,Ui |2 + PUi |hUi,PR|2
)

We denote the throughput rate for both primary users and
source-fusion users as (7) and (8), respectively.

RPU = IPU(TR)AF
(7)

RSF = ISFAF
(8)

It is noteworthy that these equations are valid only for coop-
eration with a single Relay or UAV. However, the objective of
this paper is dealing with Multi-UAV or Multi-Agent relays.
Fig. 3 demonstrates the distribution of N UAVs into two
groups including K UAVs facilitating the air source-to-fusion
communication and N −K UAVs providing relaying service
for a ground-based primary transmitter-receiver pair. Hence,
the equations for multi-UAV should be changed to (9) and
(10). In (9), i defines the lower bound for the first UAV in the
source-fusion pair and i+N −K denotes the upper bound.

RSF (Multi-UAV) = log2(1 + PS |hSF |2 (9)

+
i+N−K∑

j=i

PS |hS,Uj
|2 PUj

|hUj ,F |2

1 + PS |hS,Uj |2 + PUj |hUj ,F |2
)

Here, RSF (Multi-UAV) is the achievable rate for the fusion
center. This rate is achieved with the help of (N −K) UAVs.
PS and PUi are transmission powers for the source and the ith
UAV, respectively. Also, hSF denotes the channel coefficient
for the pair of source-fusion center, hS,Uj

stands for the
channel between the source and jth UAV, and finally hUj ,F

denotes CSI for the jth UAV and the fusion. In (10), m and
m+K define the lower and upper bound for the first and last
UAV in the source-fusion pair respectively.

RPU (Multi-UAV) = log2(1 + PPT |hPT,PR|2 (10)

+
m+K∑
l=m

PPT |hPT,Ul
|2 PUl

|hUl,PR|2

1 + PPT |hPT,Ul
|2 + PUl

|hUl,PR|2
)

Fig. 3. System Model: Dividing UAVs into K and N − K groups, for
cooperating in two sets of Source-Fusion and Primary Transmitter-Receiver.

In (10), RPU (Multi-UAV) is the achievable rate for the pri-
mary transmitter-receiver pair with the aid of K UAVs. PPT

and PUl
are transmission power for the primary user and the

ith UAV, respectively. Moreover, hPT,PR, denotes the channel
coefficients for primary transmitter and receiver. hPT,Ul

stands
for the primary transmitter and lth UAV. Finally hUl,PR is CSI
parameters for the lth UAV and the primary receiver. Based
on the assumption of long distance between the source and the
fusion center and also the long distance between the primary
transmitter and receiver, we can assume that hSF and hPT,PR

are negligible.
Time is slotted and at the end of each time slot, the fusion

center and the primary receiver send feedback to the UAVs
informing them about the achieved accumulated rates. This
information is used by each UAV to decide on joining a task
group. The goal is to find the optimal task allocation for UAVs
in a fully distributed way such that the total utility of the
system (i.e. sum utility of UAV network (9) and the PU (10))
is maximized. We assume that the UAVs decide locally with
no information exchange among themselves.

It is noteworthy that in some cases, the maximum through-
put is achieved when all UAVs join the same set and deliver
packets only for one set, which is not consistent with the
proposed model. If all UAVs are distributed in the set of
source-fusion, then the total throughput rate is zero because
there is no available spectrum for UAVs to utilize for their
transmission. Also, if all UAVs are partitioned in the primary
set, then the sum throughput rate is equal to the rate of the
primary user. In this case the proposed method handles this
issue by considering the Jain fairness index [28]. Based on the
fact that we only have two sets and based on the Jain index
definition, (11) describes the fairness for the proposed method
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in our system model.

J(x) =
1

n
×

(
∑

i xi)
2∑

i x
2
i

, (11)

Here, n is equal to 2 and i ∈ {0, 1} which indicates the set
of source-fusion or Primary Users. We assume that x0 and x1
are equal to the number of UAVs in the Fusion-Source set and
the Primary Users set, respectively. Therefore, we can define
the fairness as (12).

Fariness =
1

2
× (#UF + #UP )2

(#UF )2 + (#UP )2
(12)

Now, if all UAVs are distributed in one set, then the fairness
will be minimum (0.5), and if the UAVs are partitioned equally
among two sets, then the fairness will be maximum (1).

Based on these definitions, we define (13), as the gain
value for each time slot which indicates the efficiency and
performance for the distributed UAVs in two sets.

Gain = γ1 ×∆(RateFusion) (13)
+ γ2 ×∆(RatePrimary) + γ3 × (Fairness)

In (13), ∆(RateFusion) is the difference between the rate at
time t and the average of previous rates for the fusion center
and ∆(RatePrimary) is the difference between the rate at time t
and the average of previous rates for the primary user. Also,
γ1, γ2, and γ3 are defined to control the gain value. Then, we
use this gain in our proposed method as described in section
III.

III. THE DISTRIBUTED LEARNING ALGORITHM FOR TASK
ALLOCATION

The proposed method is a general form of the Q-learning
algorithm [29] for a distributed multi-agent environment.

Let ait denote the action chosen by UAV i at time t, and
let Ai denote the set of all possible actions for UAV i. We
consider two possible actions for a UAV that correspond
to either joining the relaying task group or the fusion task
partition. Therefore, the set of possible actions are identical
across UAVs. We denote the action vector of UAVs at time t by
ut = (a1t , a

2
t , · · · , aNt ), and we refer to the set of all possible

action vectors by U . There is a finite set of states S, where state
s ∈ S corresponds to the current task partition. A deterministic
transition rule δ governs the transition between states, i.e.
δ : S × U → S . The reward function r maps the current state
and action vector to a real value, that is r : S × U → R. At
the beginning of each time step, the UAVs observe the current
state (this information is obtained by the feedback from the
previous step). Then, each UAV independently decides on its
action (i.e. which task group to join) without knowing any
information about actions of the other agents. The rewards
associated with the UAVs’ actions are computed by the PU
receiver and the UAV fusion. The reward is basically the gain
obtained from the task partitioning, taking into account the
utilities of the PU and the UAV network. After the reward
is calculated, a feedback message from the PU receiver and
the UAV fusion is broadcasted to the UAVs. This feedback
message contains the reward and the current task partitions.

The feedback information is used to update and maintain
local Q-tables at each UAV. A Q-table basically represents
the quality of different actions for a given state. For instance,

qit(s, a) denotes the quality of action a at state s for UAV i
at time t. Individual Q-tables are updated as follows. At first,
the tables are initialized with qi0(s, a) = 0. Then, the following
equation is used to update the Q-tables:

qit+1(s, a) =



qit(s, a), if s 6= st or a 6= ait,

(1− α) qit(s, a)+

α ·
(
rt + β ·maxa′∈Ai qit(δ(st, ut), a

′)
)
,

otherwise,
(14)

where 0 ≤ α < 1 is the learning rate, rt is the reward or
the gain obtained at time t, as defined in the system model,
and 0 ≤ β < 1 is the discount factor to control the weight of
future rewards in the current decisions.

The main idea is that in our distributed environment, the
UAVs are unable to keep a global Q-table, corresponding to
the current action vectors, i.e. Q : S × U → R. Instead, each
UAV i keeps a local (and considerably smaller) Q-table which
cares about its own current action, i.e. qi : S × Ai → R.
This approach significantly reduces the complexity of the
algorithm and eliminates the need for coordination (or sharing
information) with other UAVs at the time of decision making.
However, we need a projection method that compresses the
information of the global Q-table into the local small tables.

The results in [13] prove that in a deterministic multi-
agent Markov decision process and for the same sequence of
states and actions, if every independent learner chooses locally
optimal actions, the result would be the same as choosing the
optimal action from a global table. We utilize this result and
consider an optimistic projection method that assumes each
UAV chooses the maximum quality action from its local table.
This reasonable assumption is a necessary condition for the
optimality of the learning algorithm. It is worth noting that
the existence of a unique optimal solution is the sufficient
condition for the optimality of this algorithm. It means that
there should be a unique task partition, which results in the
maximum total utility. If multiple task partitions yield the
maximum utility, it is possible that the UAVs act optimally
and choose the optimal actions in their local Q-tables, but
the combination of their actions may not be optimal. In this
case, message passing among UAVs is needed as they need to
coordinate decisions at every step.

It should also be noted that in learning algorithms we need
a balance between exploring new actions and exploiting the
previously learned quality of actions. Therefore, a greedy
strategy that always exploits the Q-table and chooses the
optimal action from the Q-table may not provide enough
exploration for the UAV to guarantee an optimal performance.
A very common approach is to add some randomness to the
policy [30]. We use ε-greedy with a decaying exploration, in
which a UAV chooses a random exploratory action at state s
with probability ε(s) = c/n(s), where 0 < c < 1 and n(s)
is the number of times the state s has been observed so far.
The UAV exploits greedily from its Q-table with probability
of 1 − ε(s). In this approach, the probability of exploration
decays over time as the UAVs learn more.

Similar to the original Q-learning for a single agent environ-
ments, the proposed learning algorithm converges if the state-
action pairs are observed infinitely many times. Also, the time
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Fig. 4. Topology for 2 UAVs in a 100 x 100 mission area.

Fig. 5. Sum Rate for 2 UAVs for 100 iterations

complexity of the algorithm is in the order of O(|S| × |Ai|),
where |S| is the size of the state space, and |Ai| is the size
of action space for UAV i. Since there are only two possible
actions in our application, the complexity can be expressed as
O(|S|). In terms of space complexity, each UAV i needs to
keep a table of size |S| × |Ai|.

IV. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the performance of the proposed method. We simulate our
system model for a ground-based primary transmitter-receiver
pair along with the pair of source and fusion for the UAV
network. The location of primary users, source and fusion are
fixed during the simulation. However, the UAVs are distributed
randomly in the environment. The channels between nodes i
and j are obtained from hi,j ∼ CN(0, d−2i,j ), where di,j is the
distance between nodes i and j. The duration of one time slot,
T , is assumed to be equal to 1. The values of γ1 , γ2 and γ3
are set to 2, 2 and 0.4, respectively.

Scenario I: 2 UAVs
In the first scenario, we consider two UAVs to be partitioned

into two task groups. The network topology for this scenario is
demonstrated in Fig. 4. Since in this scenario we only have 2
nodes, the possible states for task allocation is equal to 22 = 4.
Hence, the Q-tables will be learned after a few iterations. Fig.
5 illustrates the summation of the obtained throughput. The
convergence to the optimal task allocation occurs after the
35th iteration, since the number of states is relatively small.
The matrix below shows the final task allocation values for
these UAVs. [

0 1
]

Fig. 6. Topology for 6 UAVs in 100 x 100 simulation field

Fig. 7. Sum Rate for 6 UAVs for 1000 Iterations

In this notation, 0 corresponds to the set of source-fusion and
1 means the set of the primary users. UAV1 who has a lower
relative distance to the source-fusion, is allocated to the fusion
set, while UAV2 is allocated to the another set to relay for the
primary network.

Scenario II: 6 UAVs
In this scenario, we consider 6 UAVs to show that the

convergence of the proposed method is achieved after more
iterations compared to the case of 2 UAVs in the first scenario,
since the number of states with 6 nodes is equal to 26 = 64.
This means, at least 64 iterations are required for the algorithm
to just test all the states.

Fig. 6 demonstrates the network topology with these 6 UAVs
for the primary user and the fusion. As we can see in Fig. 7,
the convergence to the best task allocation occurred after 240
iterations. This implies that the more UAVs are added to the
model, the more iterations will be taken to the convergence
epoch. Moreover, Fig. 8 shows the number of UAVs switching
their actions (i.e. task partitions) in this scenario. After the
240th iteration, when the convergence happens, we see that
no UAV changes its task partition, and the number of switches
stays at zero.

Also, task matrix shown below denotes the final task allo-
cation for the 6 UAVs.[

1 0 1 0 0 1
]

Based on this matrix, UAVi; i ∈ {2, 4, 5} are considered for
the set of source-fusion and the rest of UAVs are assigned to
the relay task group for the primary network. This allocation
makes sense considering the location of UAVs and their
relative distances.
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Fig. 8. Number of Switching UAVs for 1000 iterations

V. CONCLUSION

In this paper, we studied the task allocation problem for
spectrum management in UAV networks. We considered a
cooperative relay system in which a group of UAVs provide
relaying service for a ground-based primary user in exchange
for spectrum access. The borrowed spectrum is not necessarily
used by the relay UAV, rather is used by other UAVs to
transmit their own information to a fusion center. This makes
a win-win situation for both networks. We defined utilities
for both the UAV network and the ground-based primary
network based on the achieved rates. Next, we proposed a
distributed learning algorithm by which the UAVs take proper
decisions by joining the relaying or fusion task groups without
the need for information exchange or knowledge about other
UAV’s decisions. The algorithm converges to the optimal task
partitioning that maximizes the total utility of the system.
Simulation results were presented in different scenarios to
verify the convergence of the proposed algorithm.
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