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Abstract—Unmanned aerial vehicles (UAVs), commonly known
as drones, are becoming increasingly popular for various appli-
cations. Freely flying drones create highly dynamic environments,
where conventional routing algorithms which rely on stationary
network contact graphs fail to perform efficiently. Also, link es-
tablishment through exploring optimal paths using hello messages
(as is used in AODV algorithm) deems extremely inefficient and
costly for rapidly changing network topologies.

In this paper, we present a distance-based greedy routing
algorithm for UAV networks solely based on UAVs’ local ob-
servations of their surrounding subnetwork. Thereby, neither a
central decision maker nor a time consuming route setup and
maintenance mechanism is required. To evaluate the proposed
method, we derive an analytical bound for the expected number
of hops that a packet traverses. Also, we find the expected
end-to-end distance traveled by each packet as well as the
probability of successful delivery. The simulation results verify
the accuracy of the developed analytical expressions and show
considerable improvement compared to centralized shortest path
routing algorithms.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) have recently attracted
significant interest in many civilian, commercial and military
applications. The popularity of UAVs emanate from their low
cost, rapid deployment, and ability to fly above obstacles.
It is anticipated that the global market revenue of UAVs
reach $11.2 billion by 2020 [1]. Some applications require
deployment of a large number of UAVs to complete designated
tasks. A network of autonomous UAVs form a flying Ad-
hoc network (FANET), which provides more sensing and
actuation capabilities. However, it also poses many challenges
in designing networking protocols.

One of the main challenges in FANETs is the high degree of
mobility which causes frequent changes in network topology.
As such, conventional communication protocols face a consid-
erable performance degradation. In routing, for instance, link
breakage and frequent topology changes can lead to packet
loss, excessive re-transmissions and eventually increased delay.

For environments with low degrees of mobility or with
geographically confined movements, several routing protocols
have been proposed recently. For instance, in vehicular Ad-Hoc
networks (VANETs), a routing protocol based on the Dijkstra’s
algorithm [2] and an optimized multicast routing protocol
[3] have been developed. In [4], a stable routing protocol is
presented which finds the most stable path by considering
velocity, direction and the link expiration time using fuzzy
logic. In addition, learning-based routing protocols (e.g. Q-
routing) have been proposed to learn the link states based on
the current transmission experience [5]. Such algorithms rely
on the assumption of low speed vehicles moving in a confined
two dimensional space with limited and predefined movement
patterns dictated by obstacles and roads. These assumptions,
however, are not realistic in FANETs with UAVs moving freely
in space with potentially high speeds.

For dynamic UAV networks, however, there have been few
efforts on routing algorithm design. For instance, the authors

in [6], presented the RARP protocol which utilizes GPS
information to estimate the duration of a path. This algorithm
is based on AODV [7] and requires a route setup phase before
transmission. To avoid repeated route setups the algorithm
assumes that nodes keep their current movement patterns for
some period of time which is a typical assumption in mobile
Ad-Hoc networks (MANETs). This assumption is not valid for
network of autonomous UAVs. This protocol is also evaluated
using a mobility model primarily developed for low-speed
terrestrial nodes, hence not suited for freely flying drones.
Another recently proposed routing protocol for UAV networks
is the Predictive-OLSR [8] which utilizes GPS coordinates to
estimate the quality of a link. However, they adopt a restrictive
assumption that only the source node is mobile.

In this paper, we present a distance greedy routing algorithm
for dynamic UAV networks. This algorithm relies on local
forwarding decisions and does not require a route setup phase.
This low-complexity algorithm imposes no additional signaling
overhead to the system, hence well suited to dynamic UAV
networks. In order to analyze the performance of the greedy
routing, we derive analytical lower and upper bounds for the
expected number of hops that a packet traverses. Using this
result, we find the expected end-to-end distance that a packets
travels using the greedy algorithm, which can be a ground to
optimize distance-based performance metrics such as end-to-
end delay and transmission power consumption. We also derive
the probability of successful delivery which is the probability
that all intermediate nodes along the path can forward the
packet to a node closer to the destination. Finally, simulation
results verify the accuracy of the derived analytical results
and also indicate superior performance of the greedy routing
compared to the conventional shortest path routing based on
Dijkstra’s algorithm [9].

II. SYSTEM MODEL

We consider a FANET with N UAV nodes (n1, n2, . . . , nN ),
distributed uniformly in a L×L rectangular area. Let R denote
the radius of the circular communication range of a UAV node,
then the set of neighbors for node ni is defined as:

Si =
{
nj : dij =

√
(xi − xj)2 + (yi − yj)2 ≤ R

}
where dij denotes the Euclidean distance between nodes ni
and nj . Also, we use the popular mobility model for UAV
nodes which integrates linear and circular motions [10]. Transi-
tion between two mobility modes occur based on an underlying
Markov process with adjustable transition probabilities. The
mobility parameters include speed and direction of linear
motion, and initial phase, angular speed, and radius of circular
motion. Speed and radii are drawn from exponential distribu-
tions and the rest of parameters are uniformly distributed. The
parameters are initialized when transition occurs between the
two states and remain constant until the next transition.

UAV nodes do not keep track of entire network topology,
but each node needs to know the location of its neighbors.
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Fig. 1. The intermediate node, ni, forwards the packet to a neighbor which
is closer to the destination, t, than its other neighbors (ni+1 = a here). The
shaded area called progress area which is the valid locations for neighbors
that have lower distances to the destination than the current distance, Di.

We assume the anticipated locations of neighbors can be
predicted by a node, either through a model-based motion
trajectory prediction method [11] or exploiting online path-
planning information by UAVs [12]. Also, since the algorithm
works based on the remaining distance to the destination, the
source node needs to know the location of the destination.
This information can be embedded into the packet to inform
the intermediate nodes about the destination’s location.

III. THE DISTANCE GREEDY ROUTING ALGORITHM

Consider a source node s who wants to send a packet to a
destination node t which is located at distance D. The distance
greedy algorithm works based on a simple forwarding rule. At
each step, i, the packet is passed by the current node ni to
a neighbor node nj which is closest to the destination, i.e.
ni+1 = argmin

nj∈Si

dj,t. The packet is passed only if the next

node makes a progress, (i.e. if the next node is closer to
the destination than the current node: di+1,t < di,t). If such
a neighbor does not exist the current session fails and the
packet journey is re-initiated. This algorithm continues until
the packet is delivered to the destination. This constraint is
required to ensure a loop-free path towards the destination. In
this way, we guarantee a progress at each step provided that
there is at least one neighbor in the progress area.

Fig. 1, represents one iteration of this algorithm. The shaded
area represent the valid locations for the next node. This
progress area is the intersection of two circles centered at
ni and t with radii R and Di, respectively. Here, Di is the
remaining distance to the destination, once the packet reaches
node ni. The algorithm chooses a node which makes the
highest progress towards the destination (here ni+i = a).

IV. ANALYSIS OF THE GREEDY ROUTING ALGORITHM

In this section, we evaluate the performance of the greedy
routing algorithm through several steps. We first bound the
expected number of hops a packet travels from source to
destination. Next, using the results we find the expected end-to-
end distance traversed by the greedy algorithm. Finally, we find
the probability of successful delivery in terms of transmission
range, number of nodes and the size of the area through finding
the probability of having at least one node in the progress area
throughout the selected path.

A. Analysis of The Number of Hops
In order to bound the expected number of hops for sending a

packet from source to destination, we first find the probability
distribution of the progress made at each hop.

Let ADi
(R,Di) denote the area of the shaded region in

Fig. 1 which is the intersection of two circles with centers at
ni, t and with radii R and Di, respectively. Also, let Xi be
a random variable representing the remaining distance to the
destination at the ith hop. In fact, Xi represents the distance
from destination t to its closest node in the shaded area. The
probability of Xi being at least x equals the probability that
there are no nodes in the area ADi

(R, x) which is the overlap
of two circles with centers at ni and t, which are at distance
Di of each other, and with radii R and x, respectively. Since,
nodes are distributed uniformly, the number of nodes in any
region with area A follows a Binomial distribution with N
trials and success probability of A

L2 . Thus, we find

P [Xi ≥ x] =

(
1− ADi

(R, x)

L2

)N
, (1)

where Di − R ≤ x < Di and we can use geometric analysis
to find the area ADi(R, x) as

ADi
(R, x) = R2 cos−1

(D2
i +R2 − x2

2DiR

)
+ x2 cos−1

(D2
i + x2 −R2

2Dix

)
−1

2

√
(R−Di + x)(Di −R+ x)(Di +R− x)(Di +R+ x).

(2)

Now, we can find the probability distribution of the progress
made at each hop. Let Yi = Di −Xi denote the progress the
ith hop, we have:

P [Yi ≤ y] =


0 y < 0(

1− ADi
(R,D−y)
L2

)N
0 ≤ y ≤ R

1 y > R

(3)

The probability density function (PDF) of Yi can be computed
by taking the derivative of its distribution function in (3). Note
that there is a discontinuity point at Yi = 0, therefore we can
write the PDF as:

fYi(y) = P [Yi 6= 0]f cYi
(y|Yi 6= 0) + P [Yi = 0]δ(y), (4)

where f cYi
(y|Yi 6= 0) denotes the continuous part conditioned

on progress, which is the derivative of the distribution function
for Yi between 0 and R. Knowing the PDF, we can find the
expected progress at the ith hop as follows:

E[Yi] =

∫ R

0

y fYi(y|Yi 6= 0) dy.

Using integration by parts, we have:

E[Yi] = y
(

1− ADi(R,Di − y)

L2

)N]R
0

−
∫ R

0

(
1− ADi

(R,Di − y)

L2

)N
) dy

= R−
∫ R

0

(
1− ADi(R,Di − y)

L2

)N
) dy, (5)



where the first term equals R since ADi
(R,Di − R) = 0 as

there is no intersection between two circles with centers at ni,
t, which are at distance Di of each other, and with radii R
and Di −R, respectively.

Now that we have the average progress at each hop, we
find the number of hops that a packet traverses to reach a
destination located at distance D of the source node. The
number of hops is of this form; n = m + 1 where m is the
number of hops needed to reach the communication range of
the destination. That means, the first m hops takes the packet
to the destination’s communication range where there is only
one hop left to the destination node. We have:

m−1∑
i=1

Yi < D −R ≤
m∑
i=1

Yi. (6)

It should be noted that m is a stopping time step with respect
to the sequence Yi. That means, at time m we have enough
information to stop and we do not need any future information
to decide. For a special case of stopping times when the
sequence of random variables are independent and identically
distributed (i.i.d.), we can utilize the Wald’s equation [13] to
find the sum of random variables up to time m.

Lemma 1 (Wald’s Equation [13]): If τ is a stopping time
with respect to an i.i.d. sequence {Xi : i ≥ 1}, and if E[τ ] <
∞ and E[X] <∞, then

E
[ τ∑
i=1

Xi

]
= E[τ ] E[X].

In our case, however, the sequence Yi is not i.i.d., therefore,
we cannot directly use the Wald’s equation. For this reason,
we first find the number of hops using some i.i.d. random
variables Zi. Next, we replace Zi with i.i.d. random variables
that upper bound and lower bound Yi. Thereby, we conclude
about the bounds on the number of hops a packet travels. Using
Lemma 1 for i.i.d. random variables Zi, we have

E
[ m∑
i=1

Zi

]
= E[m] E[Z]. (7)

from the inequality in (6), we have:

E
[ m∑
i=1

Zi

]
≥ D −R. (8)

Combining (7) and (8) we get:

E[m] ≥ D −R
E[Z]

. (9)

To find an upper bound for E[m] we use the left inequality
in (6) and the fact that the progress at each hop is at most R,

m∑
i=1

Zi ≤
m−1∑
i=1

Zi +R < D.

taking expectation we have

E
[ m∑
i=1

Zi

]
< D.

using (7), we get:

E[m] <
D

E[Z]
(10)

Now, utilizing (10) and (9) the expected number of hops
E[n] = E[m] + 1 can be bounded as follows

D −R
E[Z]

+ 1 ≤ E[n] <
D

E[Z]
+ 1. (11)

As mentioned earlier the random variables Yi are not i.i.d.
and we need to bound them using i.i.d. random variables to
be able to use the result in (11).

For this purpose, let us define the progress at each hop as a
function of the remaining distance to the destination, as Y (D).
It is worth noting that the Y (D) is a non-decreasing function
of the remaining distance D. More precisely, for D ≥ D′ we
have P [Y (D) > y] ≥ P [Y (D′) > y]. Intuitively, if there is
more distance to the destination it is more likely that we make
more progress than the case of having less distance to the
destination. This can be shown formally using (3), as follows

P [Y (D) > y] = 1−
(

1− AD(R,D − y)

L2

)N
≥ (12)

1−
(

1− AD′(R,D
′ − y)

L2

)N
= P [Y (D′) > y],

where the inequality follows from the fact that if D ≥ D′ we
have AD(R,D − y) ≥ AD′(R,D′ − y).

Now, observe that at any of the m hops, the distance between
the intermediate node and the destination is between R and D.
Using (12), we get

P [Y (R) > y] ≤ P [Yi > y] ≤ P [Y (D) > y]. (13)
for i = 1, · · · ,m

Thus, in (11) we can replace Zi with i.i.d. random variables
Y (D) to find a lower bound for the number of hops. Similarly,
we can use i.i.d. random variables Y (R) to find an upper
bound.

(1{D≥R}) ·
D −R
E[Y (D)]

+ 1 ≤ E[n] <
D

E[Y (R)]
+ 1, (14)

where E[Y (D)] can be computed using (5) and 1{D≥R} is an
indicator to account for the case where source and destination
are immediate neighbors.

B. Analysis of The End-to-End Delay
In this section, we analyze the total distance a packet travels

from source to destination using the distance greedy routing.
Considering the delay is proportional to the distance, this will
give us the end-to-end delay metric.

Consider the forwarding scenario at the ith hop, depicted in
Fig. 2, where node b has been chosen by the intermediate node
a and we make a progress of Yi towards the destination. We
want to find the distance traveled at the ith hop (i.e. the length
of the line āb in Fig. 2), which we denote it by Wi. Given the
progress Yi, we know that node b should be on the arc cc′.
Considering the fact that nodes are uniformly distributed, node
b can be anywhere on the arc cc′ with equal probability. Also,
the distance of any node on the arc cc′ from the transmitting



Fig. 2. The length of line āb can range between Yi, the progress made at
the ith hop, and the transmission range R.

node a ranges between Yi and R. Therefore, we can roughly
estimate that the distance from node a to node b is uniformly
distributed between [Yi, R]. That is Wi ∼ U [Yi, R] for the ith
hop.

Now, we can find the expected end-to-end distance traveled
by a packet as

E
[ n∑
i=1

Wi

]
=

n∑
i=1

E[Wi] =
n∑
i=1

Yi +R

2
=

1

2
(D + E[n]R),

(15)
where n is the number of hops whose expectation is charac-
terized in (14). Also, we have used the fact that the progresses
at each hop sum up to the distance between source and
destination,

∑n
i=1 Yi = D.

C. Analysis of Network Density for Successful Delivery
In the greedy routing algorithm, we assume that there is al-

ways a neighbor to forward the packet towards the destination
and thereby we ignore the possibility of the packet reaching
an isolated node (more precisely, a node without any progress-
making neighbors). In fact, if the network is dense enough or
if the transmission range of nodes are large enough, such a
situation can be avoided.

In this section, we find the probability of successful deliv-
ery1. First, we find the probability of a node being isolated
which equals the probability of having no node in its progress
area. To simplify the analysis, we estimate the progress area
of a node by the half of its transmission region which faces
the destination. Then, we can write the probability of a node’s
isolation, Piso, as

Piso ≈
(

1−
πR2

2

L2

)N−1
(16)

we can now solve (16) for R and find the minimum transmis-
sion range such that the probability of node isolation is less
than ε

R >

√
2

π

√
L2 + L2(ε

1
N−1 ) (17)

The probability of success equals the probability of no node
along the path being isolated which is (1 − Piso)n, where n
denotes the number of hopes that is bounded in expectation
by (14)

Psuccess ≈

(
1−

(
1− πR2

2L2

)N−1)n
(18)

1It is worth noting that by successful delivery we mean the packet travels
from source to destination without facing an isolated node.

Fig. 3. Total travel distance from source to destination per packet vs the
number of nodes in the network (N ): simulation results are compared against
analytical lower and upper bounds.

V. SIMULATION RESULTS

To test simulations results and prove the efficacy of the
analysis work, random networks are generated using uniform
distributions for the initial real positions in a L× L grid. We
use the mobility model explained in Section II to generate
motion trajectories for N nodes. We use the actual positions
for all nodes when quantifying the performance metric, but
use the predicted positions when finding the optimal path.
The predicted locations are the actual locations mixed with
Normally distributed prediction noise of variance σ2

N = 10.
We use dynamic contact graph by making connections

between nodes with pairwise distances below R. The rest of
simulation parameters include number of nodes: N = 10, the
grid size: L = 10 km, communication range: R = 5 km,
average node velocities: v̄ = 50m/sec, and average waiting
time: w̄ = 20, unless specified otherwise. Also the transition
probability between the circular and linear motions is 20%.
Finally, we note that for all figures, we take average over 100
runs of the algorithm with different initializations.

We first, verify the accuracy of the derived upper and lower
bounds for two important performance metrics, namely the
end-to-end delay per packet and the probability of success.

In Fig.3, we present the expected end-to-end distance per
packet vs N . The upper and lower bounds are presented based
on 15, where the bounds on the expected number of hops, E[n]
is obtained from (14). We note that the lower bound is tighter,
which is due to the tightness of the lower bound in (14). The
fluctuation in the results is due to the average distance between
the source and destination (D), which is a probabilistic value.

Another important performance indicator of the proposed
algorithm is the probability of success, which means possibility
of progress at all intermediate nodes (having at least one node
in the current node’s progress area), as characterized in (18)
based on the average number of hops per packet in (14). Fig 4
suggests that as we increase the number of nodes, the network
density increases and therefore the probability of getting stuck
in an intermediate node with empty progress area diminishes.
Similar to Fig. 3, the obtained lower bound is more accurate.

Now, we compare the performance of the proposed greedy
algorithm with the conventional Dijkstra’s shortest path al-
gorithm in Fig. 5. We also evaluate the proposed algorithm
with and without including predictive location information
under different average node velocities. The results show that



Fig. 4. Probability of delivery success versus the number of nodes:
comparison between the simulation results and analytical lower and upper
bounds.

Fig. 5. Probability of delivery success for predictive greedy algorithm, static
greedy algorithm and conventional Dijkstra’s algorithm.

the probability of delivery success for the greedy method is
higher than that of the conventional shortest path algorithm
consistently for all average node velocities. Also, the predictive
greedy method outperforms the static greedy algorithm, which
shows including predictive location information decreases the
probability of selecting nodes with empty progress area, as
was expected. Finally, when the network is more dynamic,
more nodes are subject to getting out of the communication
ranges of their neighbors, and hence the probability of success
declines.

Lastly, in Fig. 6 we present the average power consumption
per packet to complete the path for the proposed predictive
greedy algorithm and the standard Dijkstra’s algorithm without
including predictive information in order to show the practical
utility of the proposed method. Since the power consumption
is proportional to the sum of all link distances squared,
considering predictive information provides a significant gain
for our suboptimal algorithm. This gain is higher for more
dynamic networks, since the inclusion of predictive locations
is more beneficial for higher average node velocities.

VI. CONCLUSION

In this paper, we studied the routing problem in dynamic
UAV networks. Prior approaches fail to perform well in such
dynamic environments due to the requirement of maintaining
information about the network topology or using frequent
route-establishment phases. We studied an agile distance-
greedy routing algorithm which is low-complexity and the

Fig. 6. End-to-end power comparison between the conventional Dijkstra’s
algorithm and the predictive greedy algorithm.

intermediate nodes take decisions solely based on the predicted
locations of their neighbors. This algorithm is fully distributed
and incorporates predicted locations into the algorithm, hence
outperforms the centralized shortest algorithm. We character-
ized the number of hops, the probability of success delivery
and the expected distance a packet travels based on system
parameters. We plan to characterize the impact of the predic-
tion uncertainty on the optimality of the selected path as an
extension of this work.
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