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Abstract—Emerging Internet of Things (IoT) provides con-
nectivity to a wide range of mobile nodes including indoor
wireless users, pedestrian, ground robotics, vehicles, and flying
objects. Such decentralized network require rethinking user-
centric communication protocols which accommodate extremely
dynamic environments of autonomous nodes. The authors re-
cently proposed a predictive routing algorithm, which enables
a delay-optimal communication through incorporating network
topology prediction into the Dijkstra’s shortest path algorithm.
In this work, we extend the proposed solution to jointly optimize
the end-to-end latency and total transmission power. Further, we
develop a ground robotics platform in order to study the utility of
the proposed algorithm in real-world applications. The simulation
results which verified by the test platform, confirm the superiority
of the proposed algorithm compared to the conventional shortest
path algorithms by improving the delay and power consumption
by a factor of 10% to 15%.

I. INTRODUCTION

Internet of Things is an emerging technology to provide
connectivity for a wide range of mobile nodes to realize smart
cities [1]. The idea is to integrate furnish everyday objects with
embedded control units and integrate them into a connected
network with ubiquitous access [2]. This large-scale network
encircles a wide range of heterogeneous nodes with different
levels of autonomy, mobility, storage and data communication
requirements, which demands for more efficient Machine to
Machine (M2M) communications [3].
In this works, we focus on developing optimized

communication protocols appropriate for large-scale networks
which include freely-moving nodes with probabilistic but
predictable motion trajectories. Adaptive communication is a
long-lasting paradigm studies from many different perspec-
tives. The objective of a typical adaptive communication ap-
proach is to tune communication parameters or make smarter
decisions at different layers of the communication protocol
(e.g. packet forwarding in network layer) such that a desired
performance metric (e.g. data throughput, transmission delay,
age of information, network connectivity, etc.) is optimized
[4]–[6].
Majority of the previously reported network optimization

frameworks take into account the current network situation
in the optimization process. This is a careless ignorance
of predictive information that is currently available using
advanced machine learning algorithms. For instance, selecting
a communication link which maximized the instantaneous
performance metric at the current time but is subject to link

loss during the transmission session is extremely inefficient
[7]. This issue becomes more challenging in flying ad-hoc net-
works (FANET), where network parameters constantly change
due to dynamic network topology [8].
Recently, the idea of incorporating predicted network topol-

ogy into communication protocols is introduced in order to
optimize the end-to-end delay in Unmanned Aerial Vehicles
(UAV) networks [9], [10]. However, these works either rely
on GPS information, or consider only delay optimization.
In this work, we plan to extend this idea to jointly opti-
mize the end-to-end delay and the total transmission power,
since both influenced by the network topology. Further, to
demonstrate the applicability of the proposed algorithm in real-
world applications, we develop a test and evaluation platform
based on autonomously controlled ground robotics. We choose
ground robots for their motion stability and predictability [11].
However, the idea is general and applicable to other mobile
objects such as drones, small satellites and airplanes [12].
The rest of this paper is organized as follows. In section

II, the system model and the utilized mobility model are
presented. Section III elaborates on the proposed predictive
routing algorithm. In section IV, the test and evaluation
platform is presented. Finally, simulation results are provided
in section V, followed by concluding remarks in section VI.

II. NETWORK MOBILITY MODEL

Consider a network of freely moving objects that commu-
nicate with high bit rate through a queued communication
platform. An example is a network of UAVs that exchange
video information for border patrolling. The purpose of a
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Fig. 1: Utility of predictive routing in finding optimal paths
for dynamic networks.
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routing algorithm is to find an end-to-end communication
path from the source to the destination such that a desired
performance metric is optimized. In a queue-less systems with
light traffic regime, the network topology does not significantly
change during a short transmission session. However, in a
queued system with heavy traffic regime, network topology
can change significantly, while a data packet is waiting in a
transmission buffer in the intermediate nodes. Thereby, the
optimal path, if found by the source node based on the initial
network topology using a typical shortest path algorithm,
may not remain optimal. An illustrative example is shown
in Fig. 1, where the blue and red circles, respectively show
the original and the updated positions of the nodes (after
motions shown by dashed green arrows). A conventional
algorithm would determine (1-2-3-5) as the optimal path from
source node 1 to destination 5 (represented by blue arrows)
based on the original positions (blue circles), whereas the
proposed predictive routing algorithm selects the path (1-2-
4-5) (represented by red arrows) taking into account predicted
network topology change, while the packet is waiting in the
transmission buffer of node 2.
Here, the main idea is to utilize prediction algorithms and

incorporate the predicted network topologies into the optimal
path selection algorithm. The network is composed of 𝑁
nodes uniformly distributed in a two-dimensional squared grid.
Therefore, the initial node positions 𝑙⃗𝑖(0)=[𝑥𝑖(0), 𝑦𝑖(0)] ∼
𝒰(−𝐿,𝐿) follow a Uniform distribution within the prede-
fined range (−𝐿,𝐿). Edges between nodes represent bi-way
communication links in terms of a contact graph, where exis-
tence of each link following an i.i.d. Bernoulli distribution with
sparsity level 𝑠, i.e. 𝑃𝑟(𝑒𝑖𝑗 = 1) = 1−𝑃𝑟(𝑒𝑖𝑗 = 0) = 𝑠. The
edge metrics 𝑤𝑖𝑗(𝑡) are based on the previously set up contact
graph and the distances between the nodes 𝑑𝑖𝑗(𝑡), where
𝑤𝑖𝑗(𝑡) = 𝑤𝑗𝑖(𝑡). Initial velocities 𝑣⃗𝑖(0) = [𝑣

(𝑥)
𝑖 (0) 𝑣

(𝑦)
𝑖 (0)]

and acceleration vectors 𝑎⃗𝑖 = [𝑎
(𝑥)
𝑖 𝑎

(𝑦)
𝑖 ] are randomly gener-

ated using uniform distributions within a predefined range.
The motion trajectories can be obtained in terms of a

discrete state transition model as follows:{
𝑠⃗𝑖(𝑘 + 1) = 𝐴𝑠⃗𝑖(𝑘) +𝐵𝑎⃗𝑖(𝑘) + 𝑤⃗𝑖(𝑘),

𝑜⃗𝑖(𝑘) = 𝛾𝑖(𝑘)𝐶𝑠⃗𝑖(𝑘) + 𝑧⃗𝑖(𝑘),
(1)

where we have:

𝑠⃗𝑖(𝑘) =
[
𝑥𝑖(𝑘) 𝑦𝑖(𝑘) 𝑣

(𝑥)
𝑖 (𝑘) 𝑣

(𝑦)
𝑖 (𝑘)

]𝑇
, (state vector)

𝑎⃗𝑖(𝑘) =
[
𝑎
(𝑥)
𝑖 (𝑘) 𝑎

(𝑦)
𝑖 (𝑘)

]𝑇
, (input vector)

𝑜⃗𝑖(𝑘) =
[
𝑜
(𝑥)
𝑖 (𝑘) 𝑜

(𝑦)
𝑖 (𝑘)

]𝑇
, (observation vector)

𝐴 =

[
𝐼2×2 𝑑𝑡𝐼2×2

0⃗2×2 𝐼2×2

]
, 𝐵 =

[⃗
02×2 𝐼2×2

]
, 𝐶 =

[
𝐼2×2 0⃗2×2

]𝑇
,

𝑤⃗𝑖(𝑘) ∼ 𝒩 (⃗0, 𝑅⃗𝑖), 𝑧⃗𝑖(𝑘) ∼ 𝒩 (⃗0, 𝑄⃗𝑖). (2)

Here, 𝑘 represents the discrete time point 𝑘.𝑑𝑡 for an
arbitrarily chosen time step 𝑑𝑡. Also, 𝑤⃗𝑖(𝑘) and 𝑧⃗𝑖(𝑘) are zero
mean Gaussian distributed random vectors of covariances 𝑅𝑖

and 𝑄𝑖 that respectively represent the system and observation

noise terms. Finally, 𝛾𝑖(𝑘) is a Bernoulli distributed random
variable Pr(𝛾𝑖(𝑘) = 1) = 𝜆 to capture object tracking success.
The optimal prediction of locations when the measurement is
absent (𝛾𝑖(𝑘) = 0) for a known input vector 𝑎⃗𝑖 can be obtained
using Kalman filtering with intermittent observation [13].
From motion trajectories we can determine actual node

locations 𝑙⃗𝑖(𝑡) = [𝑥𝑖(𝑡) 𝑦𝑖(𝑡)] and we assume that the lo-

cation estimates and predictions ⃗̂𝑙𝑖(𝑡) = [𝑥𝑖(𝑡) 𝑦𝑖(𝑡)] for all
neighbor nodes are available to each node 𝑛𝑖 using a proper
tracking system, where we include the prediction error term

𝑒⃗𝑖(𝑡) =
⃗̂
𝑙𝑖(𝑡) − 𝑙⃗𝑖(𝑡). Here, we take a realistic consideration

that the prediction certainty declines over time. In other words,
we have 𝑒𝑖(𝑡) ∼ 𝒩 (0, 𝜎2(𝑡)I2×2), where the prediction noise
variance 𝜎2 increases over time as

𝜎2(𝑡) = 𝜎2
0 + 𝛼𝑡, (3)

where 𝛼 is a predefined discount factor to capture the rise in
localization uncertainty. Lastly, to model queuing delay, we
assign a random waiting time to each node, 𝑤𝑖(𝑡) ∼ 𝒰(0,𝑊 ).
Likewise, each node has an estimate of other node’s waiting
time as 𝑤𝑖(𝑡) = 𝑤𝑖(𝑡) + 𝑒𝑤𝑖(𝑡), where 𝑒𝑤𝑖(𝑡) ∼ 𝒩 (𝜇𝑤, 𝜎

2
𝑤)

is the error measurement for the waiting time. The optimal
path from the source to destination is determined based on
the predicted locations and waiting times, whereas the actual
end-to-end objective function calculations are made based on
the actual locations and waiting times.

III. PREDICTIVE ROUTING ALGORITHMS

The predictive algorithm is a modification of the well-
known conventional Dijkstra’s shortest path algorithm [14].
The algorithm is efficient and is the fundamental core of most
shortest path algorithms. However, for scenarios where the
edge metrics are time-varying, the conventional version is not
appropriate, especially for queued communications.
In our network model, we use both conventional and predic-

tive routing, respectively using initial and predicted location
information to find the shortest path from the source node to
the destination. The optimization goal is find the optimal path
𝒫opt, which maximizes the function in (4), where 𝑑(𝒫) and
𝑝(𝒫) represent the end-to-end delay and the total transmission
power for path 𝒫 . Then, a desired importance factor 𝛾 is used
to balance between the two objective functions.

𝑓(𝒫) = 𝛾𝑑(𝒫) + (1− 𝛾)𝑝(𝒫) (4)

The proposed predictive routing algorithm starts from the
source node at time 0 and finds the next intermediate node in
the path by including the predicted locations and estimating
when the packet would reach each of the possible intermediate
nodes. On this basis, it select the best intermediate node
according to the lowest objective function and updates the
topology at the time the packet is ready for transmission in the
intermediate node. This process repeats for the intermediate
node, excluding previously visited nodes, until we reach the
destination. Consequently, we obtain the path which minimizes
the multi-objective function. The following is the edge update
procedure.

994



In a general formulation, we can consider edge weights
as 𝑤𝑖𝑗(𝑡) = 𝑓(𝑑𝑖𝑗(𝑡)) + 𝑔𝑖𝑗(𝑡), where 𝑓(𝑑𝑖𝑗(𝑡)) mimics the
distance-related terms as can be the propagation delay and
𝑔𝑖𝑗(𝑡) represents other terms, for example the waiting delay. In
this paper, the goal is to minimize the transmission delay and
power, represented by 𝑓() in (4). To optimize the power, noting
that transmission power is proportional to distance squared, we
use 𝑑2𝑖𝑗(𝑡) as the surrogate of power in selecting the optimal
path. To optimize the end-to-end delay, we consider an edge
metrics 𝑤𝑖𝑗(𝑡) that represents the delays associated with the
edge 𝑒𝑖𝑗 accounting for time delays for a packet when it
reaches node 𝑖 denoted by 𝑡𝑖 until the epoch it is delivered to
node 𝑗, denoted by 𝑡𝑗 . This time is composed by the waiting
time in transit buffer of node 𝑖 at time 𝑡𝑖, denoted by 𝑤𝑖(𝑡𝑖)
and the actual propagation time. The propagation time for a
packet that leaves node 𝑛𝑖 at time 𝑡𝑖 + 𝑤𝑖 and reaches the
mobile node 𝑗, denoted by 𝑝𝑖𝑗(𝑡𝑖+𝑤𝑖) is calculated by solving
the following equations:{

𝑑𝑖𝑗 = ∣𝑙̂𝑗(𝑡𝑖 + 𝑤̂𝑖 + 𝑝𝑖𝑗(𝑡𝑖 + 𝑤̂𝑖))− 𝑙𝑖(𝑡𝑖 + 𝑤̂𝑖)∣2,
𝑝𝑖𝑗(𝑡𝑖 + 𝑤̂𝑖) = 𝑑𝑖𝑗/𝑐,

(5)

where the first equations characterizes the predicted distance
between node 𝑛𝑖 (when the packet leaves this node at time
𝑡𝑖 + 𝑤𝑖) and node 𝑛𝑗 (when the packet reaches this node at
time 𝑝𝑖𝑗(𝑡𝑖 +𝑤𝑖)). The second equations relates this distance
to the propagation time 𝑝𝑖𝑗(𝑡𝑖 + 𝑤𝑖) using the wave propa-
gation phenomenon with the speed of light 𝑐. The operator
∣𝑥⃗∣2 =

√
𝑥21 + 𝑥22 is the second norm of vector 𝑥⃗ = [𝑥1𝑥2].

Note that (5) may require numerical methods to solve the
nonlinear equation, since 𝑙̂𝑗(𝑡) is the solution of (1) and in
general is not linear. However, noting the fact that propagation
time is negligible compared to waiting times, we can use the
convenience of 𝑝𝑖𝑗 = 0 in (5), thereby the end-to-end delay is
the accumulated waiting times through the path.
Once, we solve (5) with or without the simplifying assump-

tion, the edge metrics are determined as

𝑤𝑖𝑗(𝑡𝑖) = 𝑤𝑖 + 𝑝𝑖𝑗(𝑡𝑖 + 𝑤𝑖), 𝑡𝑗 = 𝑡𝑖 + 𝑤𝑖𝑗 . (6)

The total transmission delay of a 𝐾-hop path 𝒫 =
(𝑛𝑖1 , 𝑛𝑖2 , . . . 𝑛𝑖𝐾 ) is calculated as:

𝑑(𝒫) =
𝐾−1∑
𝑘=1

𝑤𝑖𝑘𝑖𝑘+1
(𝑡𝑖𝑘) =

𝐾−1∑
𝑘=1

𝑤𝑖𝑘 + 𝑝𝑖𝑘𝑖𝑘+1
(𝑡𝑖𝑘 + 𝑤𝑖𝑘)

(7)

Likewise, the power can be represented by

𝑝(𝒫) =

𝐾−1∑
𝑘=1

𝑑2𝑖𝑘𝑖𝑘+1
(8)

The following is the summary of the proposed algorithm.
We observe that the objective function in Algorithm 1 is

the combination of the end-to-end delay and power along.
Also, note that the predicted node locations 𝑙𝑗(𝑡) and estimated
waiting times 𝑤𝑖(𝑡) are used to find the optimal intermediate
nodes in the path, while actual node locations 𝑙𝑗(𝑡) and

Algorithm 1: Optimal shortest path algorithm
Data: 𝑁 : number of nodes, 𝑛𝑠: source, 𝑛𝑑: destination,

𝒢 = (𝑉,𝐸𝑖𝑗(𝑡)), 𝑙⃗𝑖(𝑡), 𝑙𝑖(𝑡), 𝑤𝑖(𝑡), 𝑤̂𝑖(𝑡) 𝑐
Result: 𝒫: optimal path, 𝑜𝑏𝑗(𝒫): path objective function,

𝑑(𝒫): path delay, 𝑝(𝒫): path power
(initialization):
{𝑉 𝑖𝑠𝑖𝑡𝑒𝑑} ← {𝑛𝑠}; 𝑡𝑛𝑠

= 0;
{𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑} ← 𝑉 ∖ {𝑛𝑠}; 𝑡𝑛 = ∞∀𝑛 ∈ {𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑};
𝑛𝑖 ← 𝑛𝑠;
(finding optimal path:)
while 𝑛𝑑 /∈ {𝑉 𝑖𝑠𝑖𝑡𝑒𝑑} do

for 𝑛𝑗 ∈ {𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑} do
if 𝑒𝑖𝑗 = 1 then

update 𝑤𝑖𝑗(𝑡𝑖) using (6);
update 𝑑𝑖𝑗 using (5);
update 𝑜𝑏𝑗𝑖𝑗 using 𝑤𝑖𝑗(𝑡𝑖) and 𝑑𝑖𝑗 in (4);
𝑡𝑗 = 𝑡𝑖 + 𝑤𝑖𝑗(𝑡𝑖);
𝑑𝑠𝑗 = 𝑑𝑠𝑖 + 𝑑𝑖𝑗 ;
𝑜𝑏𝑗𝑠𝑗 = 𝑜𝑏𝑗𝑠𝑖 + 𝑜𝑏𝑗𝑖𝑗 ;

{𝑉 𝑖𝑠𝑖𝑡𝑒𝑑} ← {𝑉 𝑖𝑠𝑖𝑡𝑒𝑑} ∪ {𝑛𝑖};
{𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑} ← 𝑉 ∖ {𝑛𝑖};
update next node: 𝑛𝑖 ← argmin

𝑗∈{𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑}
{𝑜𝑏𝑗𝑠𝑗} ;

Previous(𝑛𝑗)=𝑛𝑖;

(form the optimal path:)
𝒫 = {𝑛𝑑}; 𝑛 = 𝑛𝑑;
while 𝑛 ∕= 𝑛𝑠 do

𝑛← Previous(𝑛);
𝒫 ← 𝑛 ∪ 𝒫

(calculate delay:)
t=0; dist=0; obj=0;
for 𝑛 ∈ 𝒫 do

𝑖 = 𝑛; 𝑗 = next(𝑛);
calculate 𝑑𝑖𝑗 using (5) by substituting 𝑙̂𝑗(𝑡) with 𝑙𝑗(𝑡)
and 𝑤̂𝑖(𝑡) with 𝑤𝑖(𝑡);
update 𝑤𝑖𝑗(𝑡) using (5) and (6);
update 𝑜𝑏𝑗𝑖𝑗 using 𝑤𝑖𝑗(𝑡𝑖) and 𝑑𝑖𝑗 in (4);
𝑡← 𝑡+ 𝑤𝑖𝑗(𝑡);
𝑑𝑖𝑠𝑡← 𝑑+ 𝑑𝑖𝑗 ;
𝑜𝑏𝑗 ← 𝑜𝑏𝑗 + 𝑜𝑏𝑗𝑖𝑗 ;

𝑑(𝒫) = 𝑡;
𝑝(𝒫) = 𝑝(𝒫) + 𝑑2𝑖𝑗 ;
𝑓(𝒫) = 𝛾𝑑(𝒫) + (1− 𝛾)𝑝(𝒫);

node delays 𝑤𝑖(𝑡) are used to calculate the actual delay
and power metrics. In the case of linear motions, we have
𝐵 = 0 in (1) and the state transition equations are reduced
to 𝑙⃗𝑖(𝑡+ 1) = 𝑙⃗𝑖(𝑡) + 𝑑𝑡𝑣𝑖+noise, which further simplifies the
calculations by linearizing (5).

IV. TEST AND EVALUATION PLATFORM DESIGN

In order to test the practicality of the developed Predictive
Routing algorithm in practical Dynamic Networks, we develop
a test and evaluation platform using ground robots. The main
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Fig. 2: Block diagram of the test and evaluation platform.
Green color represents the external modules.

goal is to assess the superiority of the proposed algorithm
in finding optimal paths in real scenarios compared to con-
ventional shortest path algorithms. In order to validate the
credibility of the obtained simulation results, we compare the
actual end-to-end distances for an end-to-end communication
extracted from the captured video against the numerical values
obtained by processing the planned motion trajectories. Fig. 2
illustrates the block diagram of the proposed system.
The system consists of three main modules including

computer-based control unit (CBCU), localization unit (LU),
and 5 ground robots. The ground robots are three-wheel car
platform equipped with two electric motors, a LiDAR based
localization module, and a control and wireless communication
module based on Raspberry pi 3 Model B.
The control unit is developed in MATLAB environment

with a graphic user interface (GUI) which includes the
following modules: i) path planing module (PPU) in order
to program the robots motion trajectories according to the
probability distributions presented in section II, ii) command
and control unit (CCU) in order to convert the planned motion
trajectories as well as the communication parameters into a
sequence of control commands, iii) a bi-way communication
module in order to send the control commands to the ground
robots and receive the relevant measurements from the robots,
iv) topology prediction module in order to predict network

topology based on the localization information, and v) a
predictive routing algorithm in order to find the optimal path
from the source to the destination, as detailed in section III.
Finally, we note that the localization module includes two
different approaches based on QR imaging and LiDAR system,
as detailed in sections IV-B and IV-C.

A. Communication Protocol

The information exchange occurs between the CBCU and
the robots through WiFi connectivity and using TCP/IP pro-
tocol. We select TCP/IP over WiFi (IEEE 802.11 family)
connectivity as opposed to other candidates such as Zig-
Bee protocol (based on IEEE 802.15) for implementation
convenience and also its capability of exchanging high data
rates. In order to simulate the waiting times at intermediate
nodes, we program the nodes to hold data-packets for a pre-
programmed time before forwarding to the next node. In
order to facilitate information exchange among the robots and
CBCU, we propose to use the following template for data
packets. Note that TCP/IP includes built-in per-link routing,
framing and integrity check, but we include relevant fields in
our packet format to make it independent from the underlying
communication protocol.

TABLE I: Communication Protocol: Unified Packet Format

Field Values: Options
Start Flag Fixed value: 01111110
Source Id Unique source node ID
Destination Id Unique destination node ID
Command Options: Localization Info, Control

command, Data Packet, ...
Length Length of the payload data
Payload Data Measurement information, motion

trajectory information, ...
CheckSum Module-256 addition
End Flag Fixed value: 01111110

The Source and Destination fields include uniques IDs of
the source and destination nodes. We assign ID=1,2,. . . ,5
to the 5 robots, ID=0 to CBCU, and ID=6 to localization
module. Start and Stop Flags with constant patterns are used to
mark the beginning and end of the packet. The fields Length
and CheckSum are used for additional integrity check. The
Source and Destination fields define the two ends of a per-
link communications, and it is changed per link based on the
optimal path determined by the predictive routing algorithm.
This information is programmed in terms of routing tables
in robots at the beginning of a transmission session. The
Command filed defines the type of the packet including i) path
planning command, ii) delay programming, ii) routing update
command, iii) datapacket, and iv) localization measurement.
The Payload data has a variable length and its content depends
on the command. For instance, the payload data includes the
velocity and initial directions of robots for a path planning
command. Details of commands and payload data are omitted
here for the sake of brevity.
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(a)

(b)

Fig. 3: Image-based identification/localization based on QR
codes. (a): the localization module, (b): sample QR code.

B. QR-Code Based Identification and Localization

In this project, we use Quick Response (QR) code for
both identification and localization purposes. QR codes are
extensions of bar-codes into matrix format and can be used
for image-based identification. Here, we attach a unique QR
code printout on the upper side of each robot, representing its
unique ID. A central camera pointing downwards is used 3
meters above the field level to locate the robots as shown in
Fig. 3a. We use the Zxing: zebra crossing package developed
in Python programming language to identify and locate the
objects labeled with QR codes. This package provides accurate
readings for three corner points of QR codes (Fig. 3b). The
dimensions of the coverage area is fixed (5𝑚× 5𝑚), and the
exact position of the camera are known. Even without these
information, relative distances between labeled objects can be
easily found with high accuracy by scaling the distances in the
captured images (video frames). If the actual distance between
the QR points 0 and 1 in a QR label is 𝑑01 and the program
output is Point 0: (𝑥0, 𝑦0) and Point 1:(𝑥1, 𝑦1), the distance
between any arbitrary readings (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) is:

𝑑𝑖𝑗 = 𝑑01

√
(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

(𝑥0 − 𝑥1)2 + (𝑦0 − 𝑦1)2
(9)

The QR readings can also be used to determine the ori-
entation of each labeled object with respect to a reference
direction. For instance if Points 0 and 2 are aligned with the
reference direction (horizontal direction in Fig .3b), the relative

angle 𝜃 is calculated as follows:

𝜃 = tan−1[(𝑦2 − 𝑦0)/(𝑥2 − 𝑥0)] (10)

The obtained information is shared with other robots and the
CBCU for predicting future locations and executing predictive
routing algorithm. Note that only one central camera is used
to reduce the implementation cost, but a distributed version
can be implemented if one camera is deployed by each robot.

C. LiDAR-based Localization Method

The QR-based imaging provides accurate localization for
both centralized and distributed methods. However, it requires
high-resolution camera and image processing which increases
the implementation cost. To implement low-cost solution, we
plan to use laser based localization, as depicted in Fig. 4.
In this approach, a reference rod is located in the center of
the field. Also, a controllable turret with LiDAR transmitter
and detector of type Benewake TFMINI Micro LiDAR Module
mounted on the robot’s body. The LiDAR module rotates a full
circle using an embedded servo motor in order to detect and
locate the reference rod. The strength of the reflected light as
well as the angular phase, which maximizes the signal strength
provides an accurate estimate of the robots location. Each
robot share its location information with other robots as well
as the CBCU in order to realize predictive communications.
Note that similar to the QR-based localization, this approach is
centralized, but it is easily extend-able to decentralized method
if the LiDAR transceiver keep track of all surrounding objects.
This approach can be integrated with QR-based imaging to
realize a fully distributed joint identification and localization
method. The accuracy of utilized LiDAR transceiver is the
range of few millimeters within the localization 30cm to 12m.

Fig. 4: LiDAR localization based on wireless networks.

Finally, Fig. 5 shows different building blocks of each robot.

V. EXPERIMENTAL RESULTS

In this section, we provide simulations results as well as
the practical tests in order to verify the optimality of the
proposed predictive routing algorithm as well as the utility
of the developed test and evaluation platform.

A. Experimental Setup

The objective of the practical test is to program robots
such that they follow a pre-planned motion paths. The motion
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Fig. 5: Block diagram of the designed Robotic vehicle.

trajectory of each node is determined by its initial posi-
tion, orientation, and velocity. These parameters are randomly
generated by the CBCU in the initialization phase using
probability distributions discussed in section II and sent as
a set of control commands to robots using the wireless
communication module. Also, waiting time for each robot
is randomly generated and programmed. The robots are pro-
grammed to send packets based on the determined optimal
path all the way to the final destination. Each node once
receives a packet, holds it according to its programmed waiting
time and relays it to the next node. Transmit, receive and
waiting modes are indicated by three LEDs for easy visu-
alization. This framework can be used to verify the optimality
of the developed predictive routing algorithm based on the
collected localization information in real-world applications.
In order to confirm the accurate operation of different steps
(path planning, robot programming, routing, and waiting time
enforcement), we develop a simple scenario where two robots
exchange a data packet 5 times back and forth under different
scenarios, and we compare the experimental values of the link
lengths during each transmission phase (obtained from the
captured video) with mathematically calculated values (based
on the programmed parameters). The results are shown in
Fig. 6. The transmission power in this figure is calculated as∑∣𝒞∣

𝑗=1 𝑑𝑖𝑗𝑖𝑗+1
, where 𝒞 = {𝑖1, 𝑖2, . . . , 𝑖∣𝒞∣} is the selected path

which includes the ordered set of ∣𝒞∣ nodes. The error between
the analytically derived and practically obtained values for
total power consumption across 20 scenarios is less than
1%, which ensures the accuracy of the subsequent simulation
results.

B. Simulation Results

For testing the performance of the predictive routing proto-
col, the path planning module first generates random network
topologies by defining initial positions 𝑙⃗𝑖(𝑡), initial velocities,
and the acceleration profile for each nodes based on distribu-
tions presented in section II. The robots are programmed with
path-planning parameters along with the randomly generated
waiting time.
Different simulation scenarios include investigating the im-

pact of different network parameters including i) the number of
nodes, ii) the average node velocity and iii) the average waiting

Fig. 6: Comparison of expected transmission power with the
experimental values.

time. In particular, we are interested to see the improvement
of the delay and power consumption performance for the
proposed method compared to the Dijkstra’s shortest path
algorithm. The idea is to identify the optimal path using the
predicted locations and estimated waiting times and quantify
the objective function with the actual node motions and
waiting times.
Fig. 7 shows the effect of the number of nodes in the

efficiency of the method proposed. It is observable that as
number of nodes in the network increases, the optimal al-
gorithm exhibits a higher performance improvement in terms
of delay and power utilization compared to the conventional
algorithm. The reason is that, more decision making steps are
involved in a larger network, and thereby there is larger margin
between the two algorithms. Further, the network topology
change is more extreme for larger networks, simply because
it takes a longer time for a packet to reach the destination.
For a network of 50 nodes, the performance of the optimal
method shows about 10% improvement. For a larger network,
this improvement is expected to rise.

Fig. 7: The performance improvement (in percentage) by
using predictive routing compared to conventional shortest
path method. Objective function, the end-to-end delay and the
power consumption show improvement consistently.
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Next, the objective function for both methods regarding the
average waiting time has been evaluated. Simulation results,
as shown in Fig. 8, suggest higher performance gain for the
optimal algorithm when the average waiting times are longer.
As we increase the waiting time for each node, topology
changes are more severe and we obtain higher gains by
predicting network topology. Therefore, substantial benefits
can be obtained for queued networks with heavy traffic mode.

Fig. 8: Objective function for the proposed and the conven-
tional Dijkstra’s shortest path algorithms based on the average
node waiting time.

Lastly, we test the performance gain with respect to the
average node velocity. For more dynamic networks, where
the node velocities are higher, the optimal method improves
compared to the conventional, as shown in Fig. 9. The reason
is that for higher node velocities the network topology is
evolving rapidly and consequently, the proposed algorithm
shows a better performance. For this reason, the proposed
algorithm is well suited to FANET with fast-flying objects.

Fig. 9: Objective function for the proposed and the conven-
tional Dijkstra’s shortest path algorithms based on the average
node velocity.

VI. CONCLUSIONS

In this paper, an optimal routing method based on Dijkstra’s
shortest path algorithm is proposed for UAV networks by in-

corporating predicted network topology into the path selection
criterion. Using a multi-objective function, we were able to
jointly optimize the end-to-end delay and the transmission
power. In order to mimic the real-world prediction uncertainty,
we let the prediction error rise over time. We conducted pre-
liminary tests on ground robots to showcase the optimality and
applicability of the proposed method in real-world application.
Simulation results conform an improvement of about 10% for
moderate network sizes. The performance gain increases for
larger networks, larger average waiting time and higher node
velocities.
This method can be viewed as a primary step towards

developing predictive communications and we envision that
much larger gains can be obtained by incorporating predic-
tive network topology into different layers of communication
protocols.
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