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Abstract There is a growing demand for supercomputers that can support memory-
intensive applications to solve large-scale problems from various domains. Novel
supercomputers with fast and complex memory subsystems are being provisioned
to meet this demand. While complex and deep-memory hierarchies offer increased
memory-bandwidth they can also introduce additional latency. Optimizing the
memory usage of the applications is required to improve performance. However,
this can be an effort-intensive and a time-consuming activity if done entirely man-
ually. Hence, high-level approaches for supporting the memory-management and
memory-optimization on modern supercomputers are needed. Such scalable ap-
proaches can contribute towards supporting the users at the open-science data
centers - mostly domain scientists and students - in their code modernization ef-
forts. In this paper, we present a memory management and optimization workflow
based on high-level tools. While the workflow can be generalized for supercom-
puters with different architectures, we demonstrate its usage on the Stampede2
system at the Texas Advanced Computing Center that contains both Intel Knights
Landing and Intel Xeon processors, and each Knights Landing node offers both
DDR4 and MCDRAM.

1 Introduction

Performance of the memory system/sub-system often does not match the compu-
tational capability of the latest processing elements that are available in modern
supercomputers. Even though the single core performance does not continue to
grow as it did in the previous decades, the number of cores per processor have
gone up with a decrease in the clock frequency of those cores. This comes from
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the fact that dynamic power requirements for a transistor depends on the energy
of a logic transition multiplied by the frequency of transitions [5].

The continuous growth in computing capabilities in existing and upcoming
supercomputers has led to a memory bottleneck. Memory technologies (DDR to
DDR4) have improved to offer more bandwidth. However, the growth rate for the
memory has not been able to keep up with the growth in computing capabilities
of the cores in the chip. This has meant that the memory bandwidth per core has
decreased. While several High Performance Computing (HPC) applications benefit
from the higher FLOPS that the modern compute nodes provide, there are several
other memory-intensive applications (e.g., image processing applications [4] and
Deep Neural Networks) that still suffer from the limited memory-bandwidth.

In order to address the memory-bandwidth issue, the manufactures are design-
ing chips that have High Bandwidth Memory (HBM) [8] integrated 6n package:
The most recent self-bootable Intel Xeon Phi generation (Knights Landing - KNL)
cards are packed with 16 GB of HBM that is named as MCDRAM (Multi-Channel
DRAM - Intel’s proprietary memory). The MCDRAM can be configured either as
a third-level cache or as a NUMA (Non-Uniform Memory Access) node, and up to
384 GB of DDR4 memory. With the specification of HBM2 already defined, along
with the fact that the HBM3 specifications ensuring higher memory-bandwidth
than HBM2 have already been outlined by some manufacturers, it is clear that
HBM/HBM2/HBM3 will continue to feature in the next generation supercomput-
ers. In addition to HBM, some of the latest supercomputers also incorporate an-
other level in the memory hierarchy in the form of Non-Volatile RAM (NVRAM).
This further expands the possibilities of addressing the memory bandwidth needs
of the users along with increasing the complexity of the system and, potentially
making an application complex when trying to reach peak performance.

Based on the recent trends in large-scale HPC systems, and despite the fact
that Intel has discontinued its KNL product-line, we consider that the KNL chip is
a good representation of the complexity in the design of processors in current and
future generation supercomputers. The KNL chip (or package) has: 1) many-core
architecture where each core runs at a relatively low frequency and implements
several simplifications over other Intel Xeon chips in order to meet power require-
ments [20]; 2) contained power consumption; and 3) different types of memories
that satisfy different requirements (large capacity - low bandwidth; limited capac-
ity - higher bandwidth). The inclusion of different types of addressable memory in
a package increases its overall complexity and it is not a straightforward task to
efficiently harness its capabilities. The memory-intensive applications running on
such packages need to be adapted to achieve the best possible performance. With-
out these modifications, such applications will see an increased execution time and
an overall reduction of the efficient utilization of the resources.

When running applications on systems with deep-memory hierarchies, it is
important to analyze the memory usage characteristics of the applications, and
determine the memory layers in which the applications’ data structures should
reside. This, however, can be a challenging task for many software developers.
Moreover, different supercomputers target different communities: some systems
are designed to meet the requirements of a handful of users and applications [3],
while other machines are conceived with the aim of supporting large number of
users, collaborations [22,15] and applications. In the latter, users of these systems
are often either domain experts or graduate students who are using such complex
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systems for the first time. Often times, these users do not have the skills or time
to adapt their applications to take advantage of the latest features on the super-
computers. Therefore, high-level tools for memory-usage optimization on modern
supercomputers are needed. Such tools can significantly reduce the amount of ef-
fort and time required for optimizing the applications. While these tools might
not reach the performance that advanced and expert users would be able to at-
tain, they should still be able to adapt the applications to obtain a significant
percentage of the peak performance.

In this paper, we present a workflow based on high-levels tools for helping users
in taking advantage of the deep-memory hierarchies without knowing the low-
level microarchitectural details. The workflow is designed for usage on production-
quality supercomputers and is already available on petascale systems used by
thousands of users worldwide [21]. The tools can work in the user-space without
the need of privileged access. This simplifies the implementation of the workflow
on many production systems. The results presented in this paper demonstrate the
value-addition done by our workflow during the process of memory-usage opti-
mization. The rest of this paper is organized as follows: Section 2 introduces the
related work; Section 3 details the overall workflow and the tools involved in its im-
plementation. Section 4 introduces a set of benchmarks and real applications that
were used for getting the results presented in this same section. Finally, Section 5
summarizes the main findings of the paper and introduces our future work.

2 Related Work

RTHMS [13] is a tool that analyzes parallel applications and provides a set of
recommendations regarding data placement on systems with different types of
memory. This work is similar to the work done by [11] in the sense that both
define a metric for placing data structures on the HBM (MCDRAM). They both
analyze whether a data structure fits in the available memory so that it can be
fully allocated in it. RTHMS also considers some memory access patterns, which
makes it a more advanced option. Such tools optimize the applications at compile
time, and while they are useful, they can potentially mispredict the data structures
that should be placed on the HBM since they lack critical information that only
exists at run-time, like size of the dynamically allocated data structures.

Authors in [2] propose a runtime system that automatically moves data to and
from MCDRAM on KNL when needed using the Charm-++ runtime system. It,
however, needs the users and programmers to annotate the code to describe which
data structures might be bandwidth-sensitive. This is an effort that many users
are either not willing to undertake or they cannot afford.

Both the aforementioned efforts focus on a particular part of the problem
that we have described in Section 1 of the paper. Advanced users can use these
approaches or they can use any of the available profilers to extract the information
required for identifying the data structures that should be allocated on the HBM.
Based on our experience, it can be stated that such advanced users rarely rely
on new tools that simply act as an additional layer on top of the tools that they
can already use. However, for not so advanced users, these tools still do not hide
enough hardware complexity to make them useful.
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Arora et al. developed a tool [1] to guide the users in compiling and running
their applications efficiently on KNL nodes. The tool can also be used to inter-
actively adapt codes developed in C/C++/Fortran to selectively allocate certain
data structures used in the application on the MCDRAM. The authors mention
extending the tool to support advance vectorization and provide advanced options
for memory-usage optimization as part of their future work.

Rosales et al. [18] presented a tool that monitors the utilization of hardware
resources on supercomputers by a given application with a very low overhead.
This tool is in production on a number of supercomputers with thousands of users
having access to it. It allows users to gather information about a vast number of
resources available on a compute node. It also offers a summarized and a simple
overview of the main issues that an application can be suffering from while running
on a supercomputer.

3 Memory Management and Optimization Workflow

We present a user-friendly memory management and optimization workflow for
applications running on modern supercomputers. The workflow can be adapted
and adopted for future exascale systems as well. It consists of a set of tools for
analyzing the application characteristics, especially those related to memory uti-
lization. Users are not required to perform any manual re-engineering of their
applications.

Our recommended workflow is diagrammatically shown in Figure 1 and the
steps labelled in this Figure are explained in the following subsections. For sim-
plicity and reproducibility, we are going to describe the implementation of the
workflow on a supercomputer consisting of KNL nodes. We use a collection of
external tools, libraries, hardware/performance counters, and the data in sysfs.
All the steps in our workflow run in user-space, without the need for privileged
permissions, to ensure portability and to simplify adoption. We expect that this
workflow can be adapted for other chips with deep-memory hierarchies since those
chips are very likely to have similar libraries and tools too.

Multiple
NUMA

Memaory

Memery
Performance -

Available

Na!
'
'
]
'
¥ -
Analyze and Fix Memaory Object EX::;?C‘;?;:‘- Present Source
; P, .
NUMA Bindings Analysis E ieiatics Changes

NUMA
MI;I;?;)W Recommendation
R Based
l 7 Object eports Based on

" Evaluation
--------------- Information

Fig. 1: Overall workflow. It consists of four different stages with reports after each step to ensure
that users can make informed decisions regarding memory management and optimization.
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3.1 Identify Memory Requirements

As shown in Figure 1, the first step of our workflow consists of identifying the
memory requirements of the target application. This step applies to all the compute
nodes used during run-time. The information that we collect per node includes:

— Memory used by the application: if the application consists of several other
applications running on the same node, which is a typical case for many work-
flows or in Multiple Instruction, Multiple Data (MIMD) scenarios, we collect
the overall memory footprint. We also consider that the actual memory used
by an application includes both virtual memory and the ramdisk in /dev/shm
since that also counts towards the main memory utilization.

— Free memory: capturing the memory used by an application can be difficult or
the data might not be completely accurate under some scenarios. As a result,
we also collect the information on the amount of memory available at all times
during the application run-time. This value can provide a better insight in
cases where the out-of-memory killer terminates the execution of the target
application.

— NUMA utilization: similar to tracking main memory utilization, when NUMA
is present, the utilization of each NUMA node is captured. This can be used
to quickly detect NUMA affinity problems in NUMA-aware applications or
NUMA problems in unoptimized applications.

— NUMA statistics: we collect the number of NUMA hits and misses and whether
the hits or misses are local or remote. This information is important to later
on analyze how NUMA-aware the code is and to decide if the code can be
modified to improve the performance.

At this step of the workflow, if there is only one NUMA domain, step 2 is
skipped since that stage of the workflow focuses on fixing the NUMA bindings.

3.2 Analyze NUMA Utilization and Fix NUMA Bindings

In the previous step, we collected information about NUMA utilization as well as
a set of NUMA counters. This information is analyzed and presented to the users
so that they decide whether to continue with the workflow or to stop. This step of
the workflow does not introduce code modifications, but rather helps users with an
easy approach to improve the NUMA bindings of their applications. As previously
stated, we are using the Intel KNL processor to demonstrate our recommended
workflow. This processor supports different cluster modes [20], that are basically
boot-time configurations, to expose the available MCDRAM as different NUMA
nodes. In some of the cluster modes (all-to-all, hemisphere and quadrant), the
MCDRAM is configured as a single NUMA node. However, there are other modes
(sub-NUMA, or SNC 2 or 4) where the MCDRAM is configured as 2 or 4 different
NUMA nodes.

If the MCDRAM is configured in sub-NUMA 2 or 4 mode, the operating system
will see the available MCDRAM as 2 or 4 NUMA nodes (and also, it will see 2 or
4 NUMA nodes for the DDR4 memory, resulting in 4 or 8 total NUMA nodes).
Even though there is no physical distinction between the hardware based on how
it is configured in software, as it is still the same chip, the mechanism for data
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access changes. Accessing data that is not located on the memory controller of the
local NUMA domain [20] imposes a latency penalty in the same way as accessing
remote memory on a multi-socket system.

The workflow generates a set of plots that represent the NUMA utilization dur-
ing the execution of the target application. The information on NUMA utilization
is collected using the numastat tool. These plots include the memory available and
used on each NUMA node (which considers all NUMA nodes independent of their
level in the hierarchy), the local NUMA hits and misses, as well as the remote
hits and misses. The visualization of the results gives a very quick idea of where
problems reside at run-time.

This step of the workflow is required for those applications whose memory foot-
print makes them suitable for running entirely within a subset of the NUMA nodes.
In systems with deep-memory hierarchies, different NUMA nodes will present dif-
ferent characteristics (i.e., some nodes will have HBM). There are different options
for using the different levels in the hierarchy. If the memory requirements of an
application can be met by the HBM, then all the data structures needed by the
application can be created there. Typically, numactl is used to achieve this.

In cases where there is a single NUMA node for each type of memory in the
hierarchy, using the numactl tool with the appropriate flags is sufficient to specify
which NUMA node must be used first. The problem arises when there are multiple
NUMA nodes for each type of memory in the hierarchy. In this case, setting the
correct policy with numactl is more complicated if the target application has been
parallelized with MPI. Consider the scenario where, in one node, the application is
executed as mpirun ./target_app and the memory hierarchy of the node consists
of DDR4 and HBM. There are two sockets in the node, and each socket has its
own local DDR4 and HBM memory. In this case, there are two NUMA nodes
for DDR4 and another two for the HBM. Also in this case, suppose that the two
DDR4 NUMA nodes are nodes 0 and 1, while the HBM nodes are 2 and 3. By
default, the application would run out of DDR4. However, if the user introduces
numactl to set the memory bindings to use HBM, the application will use one of
the two HBM nodes until full and then use the other HBM node. This can happen
by using the following command: mpirun numactl --membind=2,3 ./target_app.
However, there will still be NUMA misses. We introduce a tool that detects and
fixes the CPU affinity of each individual MPI task at runtime. Based on that CPU
affinity, it instructs numactl to set the memory policy to use the local NUMA
nodes by default. Also, we use the preferred option for numactl, so that the
application would use first the local HBM NUMA node and then, when all the
HBM is completely used, it would allocate memory on the local DDR4 node. This
tool can be configured to select which one of the local nodes to use. Our approach
is independent of the MPI library used to compile/run the application and does
not need any additional configurations. Thus, the command looks like mpirun
fix affinity ./target_app.

At this point, if the memory footprint of a given application is smaller than
the available HBM, the workflow ends. However, if the memory access pattern
of the given application is latency-sensitive instead of bandwidth-sensitive or the
memory footprint is larger than the capacity provided by the HBM, there are
additional steps in the workflow.
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3.3 Identify Bandwidth-Critical Data Structures

As shown in Fig. 1, the third step while analyzing applications for improving per-
formance is to identify the bandwidth-critical data that can reside on the HBM
(or MCDRAM) instead of the DDR4. One of the tools in our workflow, named
ICAT]1], can be used to analyze the application characteristics for identifying this
data. ICAT runs the target application and gathers the information on microar-
chitectural events - such as instructions per cycle, L1 cache loads, L1 cache stores,
L1 cache load misses, L1 cache store misses, Last Level Cache (LLC) loads, LLC
cache stores, LLC cache load misses, and LLC cache store misses. It also collects
the information on the fraction of cycles for which the processor was stalled on
the different levels of cache and the DRAM. If needed, the tool computes the total
sizes of the memory objects in an application, and the memory access patterns
(such as strided access) by internally using hardware performance counters, soft-
ware profiles, and built-in heuristics. These heuristics are related to: 1) size of the
data structures, 2) the number of accesses, 3) whether or not the data structures
are memory bound, 4) whether or not the data structures are DRAM bound, and
5) the amount of memory needed by the entire application. If the application fits
into L2 cache then flat-mode with default settings is recommended and the mem-
ory allocation is done on DDRA4. Otherwise, ICAT checks if the application fits
in MCDRAM and numactl is available - if numactl is available, then flat-mode
with all allocation to MCDRAM is recommended but if numactl is not available,
then cache-mode is recommended with a warning of performance-penalty. Using
the aforementioned information and metrics, ICAT does the analysis for decision-
making purposes. On the basis of its analysis, it guides the users in prioritizing
the allocation of memory objects on the HBM?.

As mentioned in Section 3.2, the KNL nodes can be configured in different
memory and cluster modes, and the performance of an application can be impacted
by the choice of these modes [17]. While there are some default configurations of
these modes recommended by Intel, one would need to understand the memory
usage characteristics of a given application to determine the most suitable modes to
use for running it. There can be some trial-and-error involved in this process, and
tools like Vtune [16] could be required to understand the memory usage pattern of
a given application. Understanding the output of Vtune and making the decision
on the appropriate modes to use can be difficult for many supercomputer users.
Such users can take advantage of the decision-support tool that is incorporated
in our workflow. Our tool already analyzes the aforementioned microarchitectural
characteristics of a given serial or parallel application to advise on bandwidth-
critical data structures and it can also recommend the best KNL configuration
modes for running a given application. It prepares the recommendation reports
for the user and also advises on the appropriate usage of the numactl options.

3.4 Tterative Code Adaptation for Optimizing Memory Use

The applications running on KNL processors that have the MCDRAM configured
as an L3 cache are not required to undergo any change. However, if the MCDRAM

L https://colfaxresearch.com/knl-mcdram/
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is configured in flat-mode, as an extension of the DDR4 memory address space, the
users can choose to allocate memory for specific bandwidth-critical data structures
on the MCDRAM using the hbwmalloc interface, and thereby, gain some perfor-
mance [7]. ICAT can determine if there are bandwidth-critical data structures that
should be allocated to the MCDRAM. It can not only inform the user but can
also re-engineer the code to use the hbwmalloc interface [7] for dynamic memory
allocation in C, C++, and Fortran applications. The main changes required for up-
dating an application to use the hbwmalloc interface include: 1) adding an include
statement for a header file; 2) allocating memory dynamically for the bandwidth-
critical data structures by using the hbw_malloc call that is available through the
hbwmalloc interface instead of calling the malloc function; and 3) updating calls
to the function free with the calls to the hbw_free function. However, additional
lines of code are required if it is desired to make the application portable across
systems that do not contain MCDRAM. ICAT can re-engineer a given application
for optimally using the MCDRAM and adds the necessary checks in the code so
that the application does not fail when it is run on systems that do not contain
MCDRAM or do not have the memkind library [7].

ICAT has a very light-weight parser, code analyzer, and code translator writ-
ten in C++ and bash for identifying certain grammar rules and patterns in the
applications written using the following base languages: C, C++4, and Fortran.
ICAT can handle ambiguities in the C++ language on the basis of the context.
ICAT works with 100% accuracy for code adaptation. Code modification at few
places may not be hard to do manually. However, manually 1) writing portable
code that is easy to maintain and run on systems that may or may not have MC-
DRAM, and 2) identifying potential candidates for allocation on MCDRAM can
be difficult for several domain scientists and students - the target audience of our
tools and workflow. These are the situations in which ICAT is the most valuable.

It should be noted that ICAT is not fully automatic. While it is capable of
1) identifying the data structures that are appropriate candidates for allocation
on MCDRAM, and 2) making appropriate code changes for allocating those data
structures on the MCDRAM, it relies on user-guidance to shortlist the data struc-
tures that should be allocated on MCDRAM. It produces a report on all the data
structures that are good candidates for allocation on MCDRAM. It then itera-
tively prompts the user to agree or disagree to allocate those data structures on
MCDRAM. Only when the user agrees to the suggestions made by the tool, the
tool makes the changes to the code.

4 Experimental Set Up & Results

We implemented and tested our workflow on the KNL nodes in the Stampede2
supercomputer [21]. The KNL nodes offer a memory-bandwidth of up to 479 GB/s
when using MCDRAM directly, while this value decreases to 85 GB/s in the case of
DDR4 [19]. We measured the run-time of our benchmarks using different configu-
ration modes of the KNL nodes, and present an analysis of the results. While hard
to quantify, we also demonstrate that our workflow raises the level of abstraction
of using systems with deep-memory hierarchies.
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4.1 Selected Benchmarks

We have selected a set of benchmarks that are representative of common work-
loads on supercomputers at several open-science data centers. We have focused on
applications that are easily available and that also allow replication of our exper-
iments with the arguments and configurations that we detail in this section. All
codes were compiled with the -03 and -xMIC-AVX512 flags:

1. MiniMD [6] is a parallel molecular dynamics simulation code and is part of the
Mantevo project [12]. It computes physical properties like energy and pressure
for a simulated space containing atoms. We focus on the MPI+OpenMP version
of the code. We used Intel MPI 17.0.3 and Intel Compiler 17.0.4. We chose a
problem size of 643, atomic density of 0.8442, 200 timesteps and performed
reneighboring after every 10 steps. The experiments were carried out on a
single Intel KNL node, with 8 MPI processes and 8 threads per process. The
OpenMP affinity was set to spread. Finally, we set OMP_PLACES to threads, so
that each OpenMP thread can be assigned to individual hardware threads on
the target machine.

2. MiniFE [6] is another mini application that is also part of the Mantevo bench-
mark suite. It mimics the implementation of finite element generation, assem-
bly, and solution for unstructured grid problems. It works over a 3-D box, with
the dimensions of the box being passed as arguments. The implementation sup-
ports both MPI and OpenMP. We selected the optimized hybrid version for
KNL, both with and without memkind support [7]. For our runs, we used a 3-D
box of size 256%. The code was executed using 16 MPI tasks and 4 OpenMP
threads on a KNL node. Similar to MiniMD, we set OMP_PLACES to threads
and used a spread affinity for the threads.

3. SPPARKS [14] is a Monte Carlo application that can be run using any of the
following algorithms: Kinetic Monte Carlo (KMC), rejection KMC (rKMC),
and Metropolis Monte Carlo (MMC). There are multiple subcategories of SP-
PARKS applications and the supported computational models. For our exper-
iments, we chose to run an Ising model. The region for the problem is a block
of sizes [0,500] and [0,500]. We simulated the problem for 100 seconds, setting
a random sweep. Since the code is a pure MPI code, we ran it with 1 MPI task
per physical core of the KNL node (total of 68 tasks).

4. LULESH (Livermore Unstructured Lagrange Explicit Shock Hydrodynamics
[10]) is another mini-app. It is representative of 3D Lagrangian hydrodynamics
on an unstructured mesh. It is a very popular application when used as a
benchmark due to its characteristics and the opportunities that it brings in
terms of generating load-imbalances in processors [9]. For our tests, we focused
on the pure MPI version of the code. We had to use 64 tasks on a KNL node.
We set the number of elements in the mesh to 24 (using the -s argument).

4.2 Workflow Implementation

Next, we ran the different steps in our workflow. This section details the results
that we achieved for those applications.
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4.2.1 Identify Memory Requirements

We first ran all the benchmarks on a KNL node configured in “Flat SNC-4” mode.
This mode exposes the available memory (DDR4 and MCDRAM) as a total of 8
NUMA nodes: the first four nodes [0-3] are DDR4, while the last four [4-7] belong
to MCDRAM. By default, the memory is allocated on DDR4 if no modification
in the code or in the NUMA affinity is introduced. The results can be seen in
Fig. 2. This figure shows the amount of memory allocated on each NUMA node
throughout the execution time of each application. For example, for MiniMD it
can be seen how approximately 2.5 GB are allocated on Node 0, 1.3 GB on Node
1, 1.7 GB on Node 2, 1.2 GB on Node 3, and no data is allocated on the other 4
NUMA nodes (MCDRAM). Since we are running applications with enough MPI
tasks to have at least one task per NUMA node, all four DDR4 NUMA nodes
are used. The MPI library sets the placement of the task and then the operating
system allocates the memory on the closest NUMA node. Overall, the memory
utilization remains constant until the end of the execution when it is deallocated.
Similar behaviour can be observed for all the applications presented in the paper.

MiniMD MiniFE LULESH
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Fig. 2: NUMA utilization for all applications running in “Flat SNC4” mode with default
settings

4.2.2 Analyze NUMA Utilization and Fix NUMA Bindings

In the previous experiment all the test cases ran using DDR4 only. We also ob-
served that for all the test cases, the memory footprint was smaller than 16 GB,
which makes these test cases as ideal candidates for running directly from MC-
DRAM. Next, we will show the results of running the test cases using MCDRAM
only. For applications with multiple MPI tasks per node, it is necessary for users
to introduce additional steps to fix the affinity of the processes involved in the
computation so that the MCDRAM NUMA node that is closest to them is used.
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For these tests, we have used a KNL node configured in Flat SNC4 mode, which
exposes a total of 8 NUMA nodes.

Our workflow captures the CPU usage when each task is executed, and in-
structs numactl to set the appropriate memory policy for the task. Initially, all
data is stored in the local MCDRAM node. Once it is full, the remaining data is
allocated in the local DDR4 node. Indeed, this approach works optimally when
all the data fits within the MCDRAM. However, it might put key data structures
on the DDRA4 if the memory footprint is large enough. Our workflow covers this
scenario by analyzing the placement of individual data structures.

Fig. 3 shows the memory utilization on each NUMA node throughout the
execution time for each test case. It can be seen that after fixing the affinity on
the basis of the recommendation of the tools in our workflow, the applications
effectively use the available MCDRAM nodes rather than the DDR4 nodes. It
is also worth noticing that the execution time has significantly decreased for all
the test cases as a result of the increased memory bandwidth provided by the
MCDRAM. All the test cases show a behavior similar to what was previously
described when using DDR4. However, the SPPARKS memory footprint changed
significantly with the change in problem/model type.
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Fig. 3: NUMA utilization for all codes after fixing the affinity

Left plot in Fig. 4 shows the hits on the different NUMA nodes for LULESH
after correctly setting the affinity on the basis of the recommendations of the tool.
It can be seen how all hits are to MCDRAM NUMA nodes instead of DDR4 nodes.
For comparison, the plot on the right shows the hits on the different MCDRAM
nodes when only numactl is used globally for all tasks (naive approach, as in
mpirun numactl --membind=4,5,6,7 ./lulesh2.0). In the second case, while all
the NUMA hits still take place on MCDRAM nodes, they all hit the first MC-
DRAM node. Many of those hits are remote hits. This is equivalent to incurring
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NUMA misses. We can see how the execution time is higher in the figure on the

right as a result of these misses.
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Fig. 4: NUMA utilization

4.3 Selecting Relevant MCDRAM Configurations

We ran the test cases on KNL nodes configured in different memory and cluster
modes. In this section we present the results of running the test cases in 1) cache-
quadrant mode (i.e., MCDRAM is configured for usage as an L3 cache, and the
KNL tiles are logically divided in four parts which are spatially local to the four
groups of memory controllers); 2) flat-quadrant mode (i.e., MCDRAM is config-
ured for usage as addressable memory that complements DDR4, and the KNL
tiles are logically divided in four parts which are spatially local to the four groups
of memory controllers); and 3) flat-SNC4 mode (i.e., MCDRAM is configured for
usage as addressable memory that complements DDR4, and the KNL tiles are
divided into four separate NUMA nodes).

The tool that we use at this step (ICAT) follows an iterative process as depicted
in Fig. 5. For the purpose of this paper, we focus on the options in the tool that
are relevant for memory optimization. The user interacts with the tool after each
step, agreeing on continuing or answering simple questions. At the end of the
execution of the tool, a set of recommendations are presented. The users can
implement these recommendations to improve the performance of the code. The
recommendations include the best memory/cluster mode to be used as well as
instructions for improving the memory bindings of the target code.

The results shown in Table 1 depict the best KNL configuration for running
the different applications according to ICAT. This saves the user from spending
time and effort in discovering those modes by trial-and-error, and without feeling
burdened about the information on the low-level microarchitectural details of the
processor and the application characteristics. Table 1 also shows how, for the case
of SPPARKS (we include two different use cases, a large run and a short one),
the results for the large run do not follow the recommendation. This is due to the
nature of the problem being solved, with a set of random components that directly
impact the overall execution time.
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Fig. 5: Tterative process for generation of memory/cluster mode configuration

Table 1: Performance comparison of test cases run in different memory and cluster modes -
Run-time in seconds used for comparison.

Application Recommendation Cache-Quad Flat-Quad Flat-SNC4
MiniMD Flat/Cache-Quadrant 34.688 40.930 36.125
MiniFE Flat-SNC4 64.768 45.743 44.538
LULESH Flat/Cache-Quadrant 315.083 328.459 514.193
SPPARKS small Flat/Cache-Quadrant 18.878 17.501 23.022
SPPARKS large Flat/Cache-Quadrant 2314.830 2260.723 1812.511

4.4 Code Adaptation

Code re-engineering may be necessary for improving the parallelization and vector-
ization of applications ported to systems with deep-memory hierarchies. Memory
optimization of the application may also be required. As previously described,
on the basis of an application’s characteristics, one of our tools in the workflow,
ICAT, can advise the user on modifying, compiling, and optimally running the ap-
plication on the KNL processors. If a user desires, our tool can also automatically
modify the application code for implementing any required changes for using the
hbwmalloc interface, and thereby can help in optimally using the MCDRAM.

As previously stated, the memory footprint for all our test cases was less than
16 GB, therefore, all the data fitted into the MCDRAM. In such scenarios, as
previously shown, usually the applications can be run optimally by allocating
the required data on the MCDRAM. However, since the MCDRAM latency is
higher than that of DDR4, applications with latency-sensitive data structures and
memory access patterns would see a penalty when all the data structures are al-
located on MCDRAM. For such latency-sensitive applications, a combination of
MCDRAM and DDR4, where the latency sensitive data structures are allocated
into DDR4, would offer the best performance. Moreover, there can be several ap-
plications that may benefit by prioritizing the assignment of large data structures
to the MCDRAM - that is, the data structure/s that will be used for a longer
duration over the lifetime of a program and are <= 16 GB in size can be assigned
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higher priority for assignment in the MCDRAM. However, upon experimentation,
we found that none of the applications selected as test cases for this paper fall into
this category.

Nonetheless, for demonstrating the code re-engineering capabilities of the tool
present in our workflow, we chose the “openmp-opt-knl” version of the MiniFE
application despite knowing that our tool advised that no such re-engineering is
required. Hence, we do not expect any significant improvement in the application
performance by using the hbwmalloc interface.

The Mantevo benchmark suite already contains a version of the MiniFE code
that is capable of allocating the memory of selected data structures on the MC-
DRAM using the memkind interface - the “openmp-opt-knl-memkind” version. We
show that the performance of the code generated by our tool (that re-engineers the
“openmp-opt-knl” version to use the hbwmalloc interface) is comparable to this
version of the MiniFE code that uses the memkind interface. It should be noted
that both the memkind interface and the hbwmalloc interface are supported by the
same memkind library. The results of the comparison are presented in Table 2. Since
the MiniFE application performed best on the KNL nodes configured in the Flat
memory mode and SNC4 cluster mode, we used this mode for the results in Table
2. It is worth noticing that without requiring the users to introduce any changes
in the code, our tool can help them in adapting their applications to optimally
take advantage of the hbwmalloc interface without incurring any significant loss
in performance.

Table 2: Run-time comparison of different versions of MiniFE.

Version Time (s)
openmp-opt-knl 45.73
openmp-opt-knl-memkind 46.26
re-engineered-openmp-opt-knl 45.922

5 Conclusions

While hardware manufactures release innovative chip designs and memory hierar-
chies for powering science and discoveries, the users of those chips should not be
burdened by the continuous need to manually update application code to take ad-
vantage of the innovative hardware features. Hence, high-productivity workflows
and tools are needed. In this paper, we have presented one such high-productivity
workflow that helps the users in efficiently utilizing the deep-memory hierarchies.
Our workflow can be used on existing petascale supercomputers as demonstrated
in this paper. The workflow, and eventually the tools that comprise the workflow,
free the users from the burden of learning about low-level microarchitectural details
of the deep-memory hierarchies during the process of porting their applications to
supercomputers.

We have demonstrated the applicability of our approach to commonly used
HPC applications as well as to the benchmarks that are representative of the
workloads on the supercomputers at several open-science data centers. The results
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show that we are able to achieve performance comparable to applications optimized
by experts.

We have adopted a user-centric approach for implementing our workflow. In-
stead of offering complex tools with significant overheads and convoluted metrics,
we offer a workflow that is easy to implement and that can be applied to a large
number of applications. The workflow is suitable for running HPC applications de-
veloped using the most common programming languages and models, and involves
tools that are available for public usage. We plan to do the usability analysis of
our tools and the workflow in future. We also plan on expanding the capabilities of
the tools in our workflow to support additional hardware elements like non-volatile
memories.
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