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STRONG SYMBOLIC DYNAMICS FOR
GEODESIC FLOWS ON CAT(-1) SPACES AND
OTHER METRIC ANOSOV FLOWS

BY Davip ConsTaNTINE, JEAN-FRANGOTS LAFONT

& DanieL J. THomrson

Apstract. — We prove that the geodesic flow on a locally CAT(—1) metric space which is
compact, or more generally convex cocompact with non-elementary fundamental group, can be
coded by a suspension flow over an irreducible shift of finite type with Hoélder roof function.
This is achieved by showing that the geodesic flow is a metric Anosov flow, and obtaining Hélder
regularity of return times for a special class of geometrically constructed local cross-sections
to the flow. We obtain a number of strong results on the dynamics of the flow with respect to
equilibrium measures for Holder potentials. In particular, we prove that the Bowen-Margulis
measure is Bernoulli except for the exceptional case that all closed orbit periods are integer
multiples of a common constant. We show that our techniques also extend to the geodesic flow
associated to a projective Anosov representation [BCLS15], which verifies that the full power
of symbolic dynamics is available in that setting.

Résumi: (Dynamique symbolique forte pour les flots géodésiques sur les espaces CAT(—1) et les
flots métriques d’Anosov)

Nous montrons que le flot géodésique sur un espace compact localement CAT(—1) ou, plus
généralement, correspondant & une action convexe cocompacte d’un groupe non élémentaire sur
un espace CAT(—1), peut étre codé par un flot symbolique irréductible de type fini avec une
fonction toit holdérienne. Notre approche consiste & montrer que ces flots géodésiques sont des
flots métriques d’Anosov, qui satisfont & une régularité holdérienne pour les temps de retour
associés & une classe spéciale de sections géométriques transverses au flot. Nous obtenons un
certain nombre de résultats sur la dynamique du flot par rapport aux mesures d’équilibre pour
les potentiels holdériens. En particulier, nous démontrons que la mesure de Bowen-Margulis
est Bernoulli, & I'exception du cas particulier ou toutes les périodes d’orbites fermées sont
des multiples entiers d’une constante commune. Nos techniques s’appliquent également au flot
géodésique associé & une représentation projective d’Anosov [BCLS15], donnant acces a toute
la puissance de la dynamique symbolique pour cette classe de flots.
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Anosov representations.
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1. InTRODUCTION

A metric Anosov flow, or Smale flow, is a topological flow equipped with a con-
tinuous bracket operation which abstracts the local product structure of uniform
hyperbolic flows. Examples of metric Anosov flows include Anosov flows, Holder con-
tinuous suspension flows over shifts of finite type, and the flows associated to projec-
tive Anosov representations studied by Bridgeman, Canary, Labourie and Sambarino
[BCLS15, BCS17]. We say that a flow has a Markov coding if there is a finite-to-one
surjective semi-conjugacy m with a suspension flow over a shift of finite type on a
finite alphabet. However, for this symbolic description to be useful, it is also required
that the roof function and the map 7 can be taken to be Holder. For the purposes of
this paper, we call this a strong Markov coding. Pollicott showed that Bowen’s con-
struction of symbolic dynamics for basic sets of Axiom A flows can be extended to
the metric Anosov setting [Pol87] to provide a Markov coding. However, no criteria
for obtaining a strong Markov coding, which is necessary for most dynamical applica-
tions, were suggested. Furthermore, we see no reason that every metric Anosov flow
should have a strong Markov coding, since questions of Holder continuity seem to
require additional structure on the space and the dynamics. In this paper, we give a
method for obtaining the strong Markov coding for some systems of interest via the
metric Anosov flow machinery.

Our primary motivation for this analysis is to gain a more complete dynamical
picture for the geodesic flow on a compact (and, more generally, convex cocompact),
locally CAT(—«) metric space, where k > 0, which is a generalization of the geodesic
flow on a closed (or convex cocompact) Riemannian manifold of negative curvature. In
the closed Riemannian case, the geodesic flow is Anosov, so the system has a strong
Markov coding by Bowen’s results [Bow73]. In the convex cocompact Riemannian
case, the geodesic flow restricted to the non-wandering set is Axiom A, so Bowen’s
argument still applies. We show that this extends to the CAT(—«) case. The majority
of previous dynamical results in this area are based on analysis of the boundary at
infinity via the Patterson—Sullivan construction. This has yielded many results for
the Bowen-Margulis measure [Rob03], and also recently for a class of equilibrium
states [BAPP19]. A weak form of symbolic dynamics for geodesic flows on CAT(—k)
spaces, or more generally on Gromov hyperbolic spaces, is due to Gromov [Gro87],
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STRONG SYMBOLIC DYNAMICS FOR METRIC ANOSOV FLOWS 203

extending on an approach of Cannon [Can84]. Full details were provided by Coornaert
and Papadopoulos [CP12]. This approach uses topological arguments to give an orbit
semi-equivalence with a suspension over a subshift of finite type. A priori, orbit semi-
equivalence is too weak a relationship to preserve any interesting dynamical properties
[GM10, KT19], and it is not known how to improve this construction of symbolic
dynamics to a semi-conjugacy. In [CLT19], we used this weak symbolic description
to prove that these geodesic flows are expansive flows with the weak specification
property, and explored the consequences of this characterization. However, neither the
boundary at infinity techniques, nor techniques based on the specification property
are known to produce finer dynamical results such as the Bernoulli property. Once the
strong Markov coding is established, a treasure trove of results from the literature can
be applied. We collect some of these results as applied to geodesic flow for CAT(—1)
spaces as Corollary D. The Bernoulli property in particular is an application that is
out of reach of the previous techniques available in this setting.

Our first step is to formulate verifiable criteria for a metric Anosov flow to admit
a strong Markov coding. In the following statement, the pre-Markov proper families
at scale o, which are formally introduced in Definition 3.7, are families of sections to
the flow # = {B;}, 2 = {D;}, B; C D; with finite cardinality and diameter less than
« satisfying certain nice basic topological and dynamical properties. These families
were originally introduced by Bowen and are the starting point for his construction
of symbolic dynamics for flows.

Tucorem A. — Let (¢r) be a Hélder continuous metric Anosov flow without fized
points. Suppose that there exists a pre-Markov proper family (8, 9) satisfying:

(1) the return time function r(y) for B is Holder where it is continuous (i.e., on
each B; N H™Y(B;), where H is the Poincaré first-return map);

(2) the projection maps along the flow Projg. : B; x [~a,a] — By are Holder,
where o > 0 is the scale for the pre-Markov proper family.
Then the flow has a strong Markov coding.

Metric Anosov flows are expansive (see §3.1), which implies that their fixed points
are a finite set of isolated points, and can thus be removed. Metric Anosov flows
satisfy Smale’s spectral decomposition theorem [Pol87]. That is, the non-wandering
set for (¢:) decomposes into finitely many disjoint closed invariant sets on each of
which the flow is transitive. In particular, if (¢;) is a transitive metric Anosov flow,
there are no fixed points and the shift of finite type in the strong Markov coding is
irreducible. We verify the criteria of Theorem A in our setting, obtaining the following
application, which is our main result.

Tueorem B. — The geodesic flow for a compact locally CAT(—k) space with non-
elementary fundamental group, where k > 0, has an irreducible strong Markov coding.

We actually prove Theorem B in the more general setting of convex cocompact
locally CAT(—k) spaces with the geodesic flow restricted to the non-wandering set.
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We prove Theorem B by giving a geometric construction of a ‘special’ pre-Markov
proper family (£, 2) for the geodesic flow. The sections are defined in terms of
Busemann functions, which are well known to be Lipschitz. We then use the regularity
of the Busemann functions to establish (1) and (2) of Theorem A for the family (%, 2),
thus establishing Theorem B.

Our second main application is to use similar techniques to study the flow associ-
ated to a projective Anosov representation, which is another important example of a
metric Anosov flow. Again, the key issue is establishing the regularity properties (1)
and (2) of Theorem A. We achieve this using similar ideas to the proof of Theorem B,
although there are some additional technicalities since we must find machinery to
stand in for the Busemann functions.

Turorem C. — The geodesic flow for a projective Anosov representation p : I' —
SL,,(R), where T is a hyperbolic group, admits a strong Markov coding.

This provides a clean self-contained reference for a key step in the paper [BCLS15],
addressing an issue in how their statement was justified. We emphasize that this issue
can be sidestepped in their examples of interest, and thus does not impact their results
in a central way. We explain this here.

In [BCLS15], the statement of Theorem C is justified by showing that the flow is
metric Anosov [BCLS15, Prop. 5.1] and then referencing [Pol87] as saying that this
implies the existence of strong Markov coding. This claim also appears in the papers
[BCS17, BCLS18, PS17, Sam16] either explicitly or implicitly through the claim that
results that are true for Anosov flows are true for metric Anosov flows via [Pol87].
However, [Pol87, Th. 1] only provides a Markov coding with no guarantee of regularity
of the roof function or projection map beyond continuity. When the phase space of the
geodesic flow of the representation is a closed manifold, for example in the important
case of Hitchin representations, the required regularity can be observed easily from
smoothness of the flow and by taking smooth discs for sections in the construction of
the symbolic dynamics, as Bowen argued in the Axiom A case. The case of deformation
spaces of convex cocompact hyperbolic manifolds is also unproblematic due to the
Axiom A structure.

If T is not the fundamental group of a convex cocompact negatively curved man-
ifold, we stress that the phase space of the flow need not be a manifold, so new
arguments for regularity are needed. In the context of [BCLS15], this is only a minor
issue given that they show that the flow is Holder and demonstrate Holder continu-
ity of the local product structure. Sections with Holder return maps can likely be
constructed based on these facts. However, to carry this out and incorporate it into
Pollicott’s symbolic dynamics construction needs rigorous justification. Our proof of
Theorem C realizes this general philosophy (we do not use or prove Holder continuity
of the local product structure, but our arguments have a similar flavor), and our ar-
gument gives a convenient framework and self-contained reference for the regularity
of the Markov coding.

JE.P.— M., 2020, tome 7



STRONG SYMBOLIC DYNAMICS FOR METRIC ANOSOV FLOWS 205

The existence of a strong Markov coding allows one to instantly apply the rich
array of results on dynamical and statistical properties from the literature that are
proved for the suspension flow, and known to be preserved by the projection w. We
collect some of these results as they apply to our primary example of the geodesic
flow for a compact, or convex cocompact, locally CAT(—x) space.

Cororrary D. — Consider the geodesic flow on a compact, or convex cocompact with
non-elementary fundamental group, locally CAT(—k) space, and let ¢ be a Holder
potential function on the space of geodesics (resp. mon-wandering geodesics in the
convex cocompact case). Then there exists a unique equilibrium measure p,, and it
has the following properties.

(1) py satisfies the Almost Sure Invariance Principle, the Law of the Iterated Log-
arithm, and the Central Limit Theorem;

(2) The dynamical zeta function is analytic on the region of the complex plane with
real part greater than h, where h is the entropy of the flow, and has a meromorphic
extension to points with real part greater than h — €.

(3) If the lengths of periodic orbits are not all integer multiples of a single constant
then the system is Bernoulli with respect to iy ;

(4) If the lengths of periodic orbits are all integer multiples of a single constant and
the space is compact and geodesically complete, then n, is the product of Lebesgue
measure for an interval with a Gibbs measure for an irreducible shift of finite type;
the measure in the base is thus Bernoulli if the shift is aperiodic, or Bernoulli times
finite rotation otherwise.

The equilibrium measure for ¢ = 0 is the measure of maximal entropy, which is
known in this setting as the Bowen-Margulis measure ppp. While items (1), (2),
and (3) are true for any topologically transitive system with a strong Markov coding,
item (4) additionally uses a structure theorem of Ricks in [Ric17], which applies for
geodesic flow on compact, geodesically complete locally CAT(0) spaces. Finally, we
note that in our previous work [CLT19], in the compact case, we used a different ap-
proach based on the specification property to show that there is a unique equilibrium
measure y,. However, those techniques do not give the strong consequences listed
above.

The paper is structured as follows. In §2, we establish our definitions and prelim-
inary lemmas. In §3, we establish the machinery required to build a strong Markov
coding for a metric Anosov flow, and prove Theorem A. In §4, we study geometrically
defined sections to the flow, completing the proof of Theorem B. In §5, we extend
the construction to projective Anosov representations, proving Theorem C. In §6, we
discuss applications of the strong Markov coding, proving Corollary D.

Acknowledgements. — D.C. would like to thank Ohio State University for hosting
him for several visits, during which much of this work was done. We are grateful to
Richard Canary for several discussions regarding the application of our work to the
results of [BCLS15].
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2. PRELIMINARIES

2.1. Frows anp secrions. — We consider a continuous flow (¢;);cr with no fixed
points on a compact metric space (X,d). For a set D, and interval I, we write

¢1D ={px |z €D, t eI}

We say that a flow (¢;) is Hélder continuous if the map from X x [0,1] — X given
by (z,t) — ¢:(x) is Holder continuous. It follows that every time—t map is Holder
continuous, and the map ¢t — ¢;(x) is Holder continuous for each z € X.

Derinirion 2.1. For a continuous flow (¢;) on a metric space (X, d), a section is a
closed subset D C X and a £ > 0 so that the map (z,t) — ¢¢z is a homeomorphism
between D x [—£,£] — X and ¢[_¢ ¢ D.

For a section D C X, we write Inty, D for the interior of D transverse to the flow;
that is,
Int¢D =Dn n (¢(—8,6)D)07
e>0

where Y° denotes the interior of Y with respect to the topology of X.

For any section D, there is a well-defined projection map Projp : ¢_¢ gD — D
defined by Proj(¢:2) = z. By definition, the domain of this map contains a nonempty
open neighborhood of X. In [BW72], a set D C X is defined to be a section if D is
closed and there exists £ > 0 so that D N ¢[_¢ gz = {x} for all z € D. It is easily
checked that this is equivalent to Definition 2.1, see [BW72, §5].

2.2. SHIFTS OF FINITE TYPE AND SUSPENSION FLOW. — Let &/ be any finite set. The full,
two-sided shift on the alphabet <7 is the dynamical system (X, o), where

Y={2|Z — «} and (o2), =1z,
We equip X with the metric

1 .
d(z,y) := 5 where ¢ = min{|n| [z, #y, }.

A subshift Y of the full shift is any closed, o-invariant subset of 3, equipped with
the dynamics induced by o. We say that (Y, 0) is a symbolic system. Given a {0,1}-
valued d x d transition matrix A, where d is the cardinality of &7, a (1-step) subshift
of finite type is defined by

Ya={zeX|A,, =1foralln € Z}.

Ty 41
This is the class of symbolic spaces that appears in this paper. We now recall the
suspension flow construction.

Derinirion 2.2, — Given a symbolic system (Y, o) and a positive function p : ¥ —
(0, 00), we let

VP ={(z,t) |z €Y,0<t < p(z)}/((z,p(z)) ~ (02,0))

and we define the suspension flow locally by ¢s(z,t) = (z,t+s). This is the suspension
flow over (Y, o) with roof function p. We denote the flow (Y?, (¢s)) by Susp(Y, p).

JE.P.— M., 2020, tome 7
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2.3. CAT(—1) SPACES AND GEODESIC FLOW. In this paper, a geodesic is defined to
be a local isometry from R to a metric space. Thus, by our definition, a geodesic is
parametrized and oriented.

Derinition 2.3, — In any metric space (Y, dy ), the space of geodesics is
GY :={c|R — Y : ca local isometry}.

The geodesic flow (g:) on GY is given for ¢ € R by gie(s) = c(s + t).

A geodesic metric space is a metric space in which the distance between any pair
of points can be realized by the length of a geodesic segment connecting them. Given
a geodesic metric space ()Z', dg), and points z,y, 2 € X, we can form a geodesic trian-
gle A(x,y,z) in X and a comparison geodesic triangle A(Z,7,z) with the same side
lengths in H2. A point p € A(x,y, z) determines a comparison point p € A(Z,7,%)
which lies along the corresponding side of A(Z,7,Z) at the same distance from the
endpoints of that side as p. We say that the space X is CAT(—1) if for all geodesic tri-
angles A(z,y, z) in X and all p,q € A(z,y,z), we have d¢(p, q) < dy2(p,q). That is, a
space is CAT(—1) if its geodesic triangles are thinner than corresponding triangles in
the model space of curvature —1. All CAT(—1) spaces are contractible, see e.g. [Tro90,
Chap. 3, Props 28 & 29]. A CAT(—«) space is defined analogously: its geodesic trian-
gles are thinner than corresponding triangles in the model space of curvature —x. A
CAT(—k) space can be rescaled homothetically to a CAT(—1) space. Thus, it suffices
to consider CAT(—1) spaces.

In this paper, ()A(:, ds) will be a CAT(—1) space, I' will be a discrete group of isome-
tries of X acting freely and properly discontinuously, and X = X /T will be the result-
ing quotient. A space (X, dx) is locally CAT(—1) if every point has a CAT(—1) neigh-
borhood, and it is easily checked that X = X /T satisfies this property. Conversely,
the universal cover of a complete locally CAT(—1) space is (globally) CAT(—1), see
e.g. [BH99, Th.II.4.1], so every complete locally CAT(—1) space arises this way. We
assume that I' is non-elementary, i.e., I' does not contain Z as a finite index subgroup.

The boundary at infinity of a CAT(—1) space is the set of equivalence classes of
geodesic rays, where two rays c¢,d : [0,00) — X are equivalent if they remain a
bounded distance apart, i.e., if d(c(t), d(t)) is bounded in t. We denote this boundary
by 9>*X . It can be equipped with the cone topology, see e.g. [BH99, Chap.I1.8]. Given
a geodesic ¢, we use ¢(—o0) and ¢(+00) to denote the points in 9°X corresponding
to the positive and negative geodesic rays defined by c.

Given I', let A C 9®X be the limit set of I, i.e., the set of limit points in 0 X
of T'-  for an arbitrary z € X. Let C(A) C X be the convex hull of A; clearly C/(A)
is I-invariant. If C'(A)/I" is compact, we say that the action of I' on X is convex
cocompact. We also call the space X = X /T convex cocompact. If T already acts
cocompactly on X, then A = 9°X, C(A) = X and X = C(A)/T. We assume that X
is compact, or convex cocompact.

JE.P.— M., 2020, tome 7
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For a CAT(—1) space X , the space of geodesics GX can be identified with
[(0°X x 0°X) N A] x R, where A is the diagonal. We equip GX with the metric:

dez () ;:/ dz(&(s),e"(s))e lds.
The factor 2 in the exponent normalizes the metric so that d, (¢, gs¢) = s. The
topologies induced on GX by this metric and on [(0°X x 9°X) \ A] X R using the
cone topology on 9°X agree. We equip GX, the space of geodesics in the quotient
X = X /T, with the metric

dgx(c,¢') = inf dgz(c, ),

where the infimum is taken over all lifts ¢,¢’ of ¢ and ¢’. Since the set of lifts is
discrete, the infimum is always achieved.

When X is compact, the space GX is compact, and we study the flow (g¢) on GX.
When X is convex cocompact, we need to restrict the geodesics we study so that the
phase space for our flow is compact. Given a cocompact action of I" on X , let GX be
the set of geodesics with image in C'(A). This set of geodesics is clearly invariant under
the geodesic flow and the action of I', and can be identified with [(A x A) N\ A] x R.
Then GX = (GX)/T consists of those geodesics in X which remain in the compact
set C(A)/T. As long as T is non-elementary, the geodesic flow on GX is transitive.
This follows from, for example, [Gro87, §8.2]. GX is the non-wandering set for the
geodesic flow on GX, and it is compact. In the convex-cocompact case, we assume
throughout that I" is non-elementary and we study the geodesic flow (g;) restricted to
GX. Clearly, if X is compact, GX = GX and GX = GX. See [Tap11] or [Bou95] for
further background and references on geodesic flow for convex cocompact manifolds.

2.4. GeomEerric LEMMAS. — The following lemma has an elementary proof which can
be found in [CLT19, Lem. 2.8].

Levva 2.4. — There exists some L > 0 such that dx(c¢(0),¢’(0)) < Ldgx (¢, c’).
The following lemma shows that the time-t map of the geodesic flow is Lipschitz.

Levmva 2.5, Fiz any T > 0. Then for any t € [0,T], and any pairs of geodesics
x,y € GX,

dex (giz, gry) < €T dax (z,y).

Proof. — By definition, for properly chosen lifts,

oo

dax(oy) = [ dg(@(s).(s))e " ds.

— 00
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As ¢;x and ¢4y are lifts of g;x and g;y, we compute:

(e}
dax (g:7, gry) < / dg(@(s+1),y(s+ £))e=2lsl ds

_ /jo dz (F(s), 5(s))e ! ds

672‘87“

= / dg(T(s), g(s))e 2 e 9
It is easy to check that e=2Is—t /e=2Isl < 2t which completes the proof. O

It follows that the flow (g¢) is Lipschitz, using Lemma 2.5 and the fact that
dax (gsz, grx) = |s — t| for all z, and all s,t with |s — ¢| sufficiently small.

2.5. BUSEMANN FUNCTIONS AND HOROSPHERES. — We recall the definitions of Busemann
functions and horospheres.

Derivition 2.6. — Let X be a CAT(—1) space, p € X and £ € 9°X, and c the
geodesic ray from p to £&. The Busemann function centered at & with basepoint p is
defined as

By(— &) : X — R,
q+— tliglo d)? (g,c(t)) —t.
It is often convenient for us to use the geodesic ray c(t) itself to specify the Buse-

mann function centered at ¢(+o0) with basepoint ¢(0). Thus, for a given geodesic
ray c(t), we say the Busemann function determined by c is the function

Bc(—) = Bc(O)(_a C(+OO))

It is an easy exercise to verify that any Busemann function is 1-Lipschitz, and it
is a well-known fact that Busemann functions on CAT(—1) spaces are convex in the
sense that for any geodesic 7, B,(n(t),£) is a convex function of ¢ (see, e.g. [BH99,
Prop.11.8.22]). The level sets for B,(—,€) are called horospheres.

2.6. StaBLE AND UNSTABLE SETS FOR CAT(—1) spaces. — In a CAT(—1) space, we de-
fine strong stable and unstable sets in GX generalizing the strong stable and unstable
manifolds for negatively curved manifolds. See also [Bou95, §2.8].

Derinirion 2.7, — Let pax - GX — GX be the natural projection. Given ¢ € GX
with lift ¢ € GX, the strong stable set through c is

W™(c) = pex{¢’ € GX | ¢(00) = &(o0) and Bz(¢'(0)) = 0}.
For any 6 > 0,
W (c) = pax {¢' € GX | & (00) = &(o0), Bs(¢'(0)) =0 and d (') < 6}.
The strong unstable set through c is

W (e) = pex{¢' € GX | &(—o00) = &(—00) and B_s(&'(0)) = 0}

JE.P.— M., 2020, tome 7
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and
W (c) = pax{¢’ € GX | &' (—o0) = &(—o0), B_s(¢'(0)) =0 and dgz(6¢') < 6},
where —¢(t) = ¢(—t).

Lemma 2.8. — There exists a constant C > 1 so that for sufficiently small ¢,
(1) if ¢/ € Ws(c) and t > 0, dax (gic, gr¢’) < Cdgx (e, c)e™t;
(2) if " € W (c) and t <0, dgx(gic, gic”) < Cdax (e, c”)el.

Proof. — We prove this for the stable sets in X. The result in X follows, and the
proof for the unstable sets is analogous. First we note that in H?, given &y > 0,
there exists K > 1 so that if ¢, ¢ are two geodesics with dyz(¢(t),¢’(t)) < do, ¢(c0) =
¢'(00) = € and €(0), ' (0) on the same horosphere centered at &, then dyz(¢(¢),¢’(t)) <
Ke tdy2(¢(0),2'(0)) for all ¢ > 0.

Let ¢/ € W§%(c) with ¢ small enough so that, via Lemma 2.4, dx (c(0), ¢’(0)) < do.
In X, consider the ideal triangle A with vertices (0), &'(0) and &(c0) = & (o00) = &.
There exists an ideal comparison triangle A = A(2(0),¢'(0),£) in H? satisfying
the CAT(—1) comparison estimate dg(c(t),c’(t)) < dm=(¢(t),c'(t)), see [DSU17,
Prop. 4.4.13]. We obtain for all ¢ > 0,

(2.1) A (@(1), (1)) < e (2(1), @ (1)) < Kdg ((0),&(0))e "

Now we calculate:
0

dax(gie.gee’) < [ (@), w)e2d
—o0 oo
+ Ke—t/ A (&(s), & (s))e 2 ds,
—t
by breaking our calculation of dgx (g:c, g+¢’) into integrals over (—oo,0) and (0, c0),
applying a change of variables to the first integral, and equation (2.1) to the second.
We then have that dex (gic, gi¢’) < (1 + K)e tdgx(c, ). O

3. METRIC ANOSOV FLOWS

In this section, we define metric Anosov flows and prove Theorem A. The definition
was first given by Pollicott in [Pol87], generalizing the definition of a hyperbolic flow
in [Bow72, Bow73], and building on the discrete-time definition of a Smale space due
to Ruelle [Rue76]; see [Putl4] for a detailed exposition in discrete time.

3.1. Merric Anosov FLows. — A continuous flow (¢;) on a compact metric space
(Y, d) is a metric Anosov flow, also known as a Smale flow, if it is equipped with a
notion of local product structure. That is, a bracket operation so that the point (z, y)
is analogous in the uniformly hyperbolic setting to the intersection of the unstable
manifold of x with the strong stable manifold of y. We give the definition. We follow
the presentations of Ruelle and Pollicott and start by emphasizing the topological
structure needed. For € > 0, let us write

Y xY)e:={(z,y) €Y xY | d(z,y) < €}.
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Assume there exists a constant ¢ > 0 and a continuous map
(-,) (Y xY), —Y,
which satisfies:

(a) (z,z) ==
(b) ((z,9),2) = (x,2)
(©) (2, (y,2)) = (x,2).
We further assume that if (¢sz, dsy) € (Y x Y), for all s € [0, 1],

(d) ¢t(<‘ray>) = <¢t'ra¢ty>'
We define the local strong stable set according to (-,-) to be

V(o) = fu | u = (u,z) and d(z,u) < 5},
and the local unstable set according to {-,-) to be
Vs'(x) ={v| v = (z,v) and d(z,v) < 0}.

It can be deduced from the properties of the bracket operation that for small § > 0,
the map (-,-) : Vi¥(z) x Vi*(x) — Y is a homeomorphism onto an open set in Y, see
[Rue76, §7.1]. By decreasing ¢ if necessary, we may assume that for each x € Y, the
map (-,-) : V() x V)5 (x) = Y is a homeomorphism onto an open set in Y.

So far, the structure required on (-,-) is purely topological. For this bracket op-
eration to capture dynamics analogous to that of an Anosov flow, we need to add
dynamical assumptions. We define the metric local strong stable and strong unstable
sets as follows:

W3 (@ C\) = {v € V§*(2) | d(¢u, dry) < Ce™Md(x,y) for t > 0},
W (z; O, \) = {v € Vi(z) | d(¢p—ex, d_ry) < Ce Md(x,y) for t > 0}.

Derinition 3.1. — Let (¢¢) be a continuous flow on a compact metric space (Y, d)
and let £ > 0 and (-,-) be as described above. We say that (¢;) is a metric Anosov
flow if there exist constants C,\,dy > 0 and a continuous function v: (Y x Y), —
R such that, writing W§*(z) = W5 (z;C,A) and Wit(z) = Wit(z;C, ), for any
(z,y) € (Y xY). we have

We (Sua.)®) VW5 (y) = {{z,y)}-
Furthermore, v(z,y) is the unique small value of ¢ so that Wi'(¢x) N W§s(y) is
non-empty.

We can deduce the following basic control on scales: for each small § > 0, there
exists v € (0,¢) so that if 7,y € (Y xY),, then Wi (¢y(2,4)2) "W (y) = {(z, )}, and
v(x,y) < 6. This follows from continuity of (-,-) and v, and the fact that (z,z) = =
implies v(z, x) = 0. The details are similar to [Bow72, Lem. 1.5].

In examples of metric Anosov flows, we can consider the bracket operation (-,-)
as being defined by the metric strong stable and unstable sets via the equation in
Definition 3.1, and check that the basic topological properties of the bracket operation
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hold as a consequence of being defined this way. Thus, it is probably helpful to think
of the families W5 and W§*® as the basic objects in the definition.

A hyperbolic set for a smooth flow is locally maximal if and only if it has local
product structure [FH18, Th.6.2.7]. Thus, metric Anosov flows are generalizations
of locally maximal hyperbolic sets for smooth flows. In particular, an Axiom A flow
restricted to its non-wandering set is metric Anosov.

Another class of examples of metric Anosov flows is given by suspension flows by
a Holder continuous roof function over a shift of finite type. The metric Anosov flow
structure for the constant roof function case is described in [Pol87]. The stables and
unstables and bracket operation for the Holder roof function case can be obtained by
using Holder orbit equivalence with the constant roof function case. The details are
similar to the second proof of Theorem 5.1.16 in [FH18, §6.1], which shows that a
smooth time change of a hyperbolic set is a hyperbolic set.

The following property of metric Anosov flows follows the standard proof that
Axiom A flows are expansive.

Turorem 3.2 ([Bow73, Cor. 1.6], [Pol87, Prop.1]). — A metric Anosov flow satisfies
the expansivity property.

There are at most finitely many fixed points for an expansive flow, and they are
all isolated. Expansivity is a corollary of the following result, which says that orbits
that are close are exponentially close.

Tueorem 3.3 ([Bow73, Lem. 1.5]). — For a metric Anosov flow, there are constants
C, X > 0 so that for all € > 0, there exists § > 0 so that if z,y € Y and h: R - R
is continuous such that h(0) = 0 and d(¢sx, dnwyy) < 0 for all t € [-T,T], then
d(x, ¢uy) < Ce ™ T§ for some |v| < e.

Bowen’s proof goes through without change in the setting of metric Anosov flows.
In the case of geodesic flow on a CAT(—1) space, this is a well known property of
geodesics in negative curvature: it holds for geodesics in H? by standard facts from
hyperbolic geometry, and this can be propagated to the universal cover of a locally
CAT(—1) space by using two nearby geodesics to form a comparison quadrilateral
in H2. The details of the argument in this case are contained in the proof of [CLT19,
Prop. 4.3].

Turorem 3.4. — For a compact (resp. convex cocompact), locally CAT(—1) space X,
the geodesic flow on’Y = GX (resp. Y = GX ) is a metric Anosov flow.

Proof. — First, we define (-,-) for geodesics in GX , and verify its properties there.
For (¢,¢') € (GX x GX)., define (¢, ¢’) to be the geodesic d with d(—oc) = ¢(—o0),
d(+00) = ¢/'(+00) and B./(d(0)) = 0 (see Figure 1).

It is easy to verify that (-,-) is continuous and satisfies conditions (a), (b), (c),
and (d) from §3.1. Vi®(c) consists of geodesics d-close to ¢ which have the same
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forward endpoint as ¢ and basepoint on Bz = 0, and V{*(c) is geodesics d-close to ¢
which have the same backward endpoint as c.
It follows from Lemma 2.8 that for a sufficiently large choice of C' and A =1,

W5 (e;C,\) = {c" | ¢/(400) = ¢(+0), Be(c'(0)) =0, and d5(c, ¢’) < 6};
Wi (e; C,N) = {c' | ¢/(=00) = ¢(—00), B_c(c¢'(0)) =0, and d (¢, ¢") < 6}

We define v : (G)Z’ X G)A(:)E — R by setting v(c,¢’) to be the negative of the signed
distance along the geodesic d = (¢, ¢’) from its basepoint to the horocycle B_. = 0.
This is clearly continuous, and it is easily checked that

W;u(gv(c,c’)c) n W(SSS(CI) = <Cv cl>

and that for all other values of t, W™ (g:c) NW§(¢') = @.

Recall that X = X /T, and note that these constructions are clearly I'-equivariant.
For sufficiently small ¢, there clearly exists a small enough Jy such that the scale &g
metric local strong stable and unstable sets descend to GX, and the bracket operation
(-,-) and the map v descend to (GX x GX).. By construction, these operations have
all the desired properties for a metric Anosov flow. If X is compact, this completes
the proof.

Now we extend the argument to the case that X is convex cocompact. The argu-
ment above applies verbatim to define a continuous operation (-,-) on (GX x GX).
which satisfies conditions (a), (b), (c), and (d) from §3.1. To show that we have a
metric Anosov flow on the compact metric space GX , all that remains to check is
that (-,-) can be restricted to GX. If ¢,¢’ € GX, then ¢(—o0),c’(+00) € A, so by
construction the geodesic d = (¢, ¢’) has d(—o0), d(+00) € A. Thus d € GX. O

Figure 1. The geometric construction showing that geodesic flow on
a CAT(-1) space is a metric Anosov flow.
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3.2. SE(ITI()NS, PROPER FAMILIES, AND SYMBOLIC DYNAMICS FOR METRIC ANosov FLOWS

We recall the construction of a Markov coding for a metric Anosov flow. We follow
the approach originally due to Bowen [Bow73] for basic sets for Axiom A flows, which
was shown to apply to metric Anosov flows by Pollicott [Pol87]. We recall Bowen’s
notion of a proper family of sections and a Markov proper family from [Bow73].

Derinition 3.5 — Let B = {By,...,By}, and 2 = {D;,...,D,} be collec-
tions of sections. We say that (8, 9) is a proper family at scale o > 0 if the set
{(Bi, D;) |i=1,2,...,n} satisfies the following properties:

(1) diam(D;) < o and B; C D; for each i € {1,2,...,n};

(2) UiZy ¢(—a,0)(Inty B;) =Y

(3) For all i # j, if ?10,40] (D;)N D, # @, then Bl—40,0] (D;)ND; =w2.

Condition (3) implies that the sets D; are pairwise disjoint, and the condition is
symmetric under reversal of time; that is, it follows that if ¢;_4q 0)(D;)ND; # @, then
#10,40)(Di) N Dj = @. In [BowT73, Pol87], the time interval in condition (2) is taken
to be [—, 0]. Our ‘open’ version of this condition is slightly stronger and convenient
for our proofs in §4.3. We now define a special class of proper families, which we call
pre-Markov.

Derinirion 3.6. For a metric Anosov flow, a rectangle R in a section D is a subset
R C Inty D such that for all z,y € R, Projp(z,y) € R.

Derinirion 3.7 (Compare with §2 in [Pol87], §7 in [BowT73]). Let (#,2) be a
proper family at scale @ > 0. We say that (%, 2) is pre-Markov if the sets B; are
closed rectangles and we have the following property:

(3.1) If B;N ¢[—2a,2a]Bj % @, then B; C ¢[—3a,3a]Dj-

The existence of pre-Markov proper families is left as an exercise by both Bowen
and Pollicott since it is fairly clear that the conditions asked for are mild; some
rigorous details are provided in [BW72]. In Proposition 4.10, we complete this exercise
by providing a detailed proof of the existence of a special class of pre-Markov proper
families. For our purposes, we must carry out this argument carefully since it is crucial
for obtaining the Hoélder return time property of Theorem A.

We now define a Markov proper family. This is a proper family where the sections
are rectangles, and with a property which can be informally stated as ‘different forward
Z-transition implies different future, and different backward Z-transitions implies
different past.

Derintrion 3.8. A proper family (Z,.7) is Markov if the sets R; are rectangles,
and we have the following Markov property: let H denote the Poincaré return map
for |J; R; with respect to the flow (¢;). Then if € R; and H(z) € R;, and z € R;
and H(z) ¢ Rj, then z ¢ V35 p (). Similarly, if 2 € R; and H™'(x) € R;, and
z€ Ry and H™'(2) ¢ Rj, then z ¢ Vi, p (x).
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The reason we call the families defined in Definition 3.7 pre-Markov is because the
argument of §7 of [Bow73], and §2 of [Pol87] gives a construction to build Markov
families out of pre-Markov families. The motivation for setting things up this way is
that the existence of pre-Markov families can be seen to be unproblematic, whereas
the existence of proper families with the Markov property is certainly non-trivial.
More formally, we have:

Lemma 3.9, — If (A, 2) is a pre-Markov proper family at scale « for a metric Anosov
flow, then there exists a Markov proper family (%,.7) at scale v so that for alli, there
exists an integer j and a time u; with |u;| < a such that R; C ¢y, B;.

This is proved in [Bow73, §7] in the case of Axiom A flows, and the construction
in §2 of [Pol87] adapts this proof to the case of metric Anosov flows, culminating in
the statement of [Pol87, §2.2 ‘Key Lemma’]. We note that for metric Anosov flows,
pre-Markov proper families (%, Z) can be found at any given scale a > 0, and thus
Lemma 3.9 provides Markov proper families at any small scale a > 0 (in the sense of
Definition 3.5).

We note that in [Bow73, Pol87], pre-Markov families are also equipped with an
‘intermediate’ family of sections £, which are a collection of closed rectangles K; C
Inty B;, and a scale § > 0 chosen so any closed ball B(z,65) is contained in some
®[—2a,24) K- Given a pre-Markov proper family, such a collection .#" and such a > 0
can always be found. The only role of theses intermediate families is internal to the
proof of Lemma 3.9, and thus we consider the existence of the family % to be a
step in the proof of Lemma 3.9 rather than an essential ingredient which needs to be
included in the definition of proper families.

The proof of Lemma 3.9 involves cutting up sections from the pre-Markov family
into smaller pieces; this can be carried out so that the resulting sections all have
diameter less than a. The flow times u; are used to push rectangles along the flow
direction a small amount to ensure disjointness. These times can be taken arbitrarily
small, in particular, much smaller than «. Note that if Z = {By,..., B,}, then the
collection Z = {Ry,... Ry} provided by Lemma 3.9 satisfies N > n.

3.3. Markov partiTions. — Given a collection of sections %, let H : Uiil R, —
UY, R be the Poincaré (return) map, and let 7 : [JI*, R; — (0,00) be the return
time function, which are well defined in our setting.

Derinition 3.10. — For a Markov proper family (#Z,.7) for a metric Anosov flow,
we define the coding space to be

S = X(%) = {g €I {1.2,...,N}| forall 6,k >0, (\'__, H(Inty Ry,) # @} .

In §2.3 of [Pol87], the symbolic space X(#) is shown to be a shift of fi-
nite type. There is a canonically defined map 7 : X(#) — J, R; given by
m(z) = (jo oo H 7 (Ry,). Let p=r o7 : % — (0,00) and let ¥ = 2P(Z) be the
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suspension flow over 3 with roof function p. We extend 7 to ¥? by 7(x,t) = ¢¢(m(x)).
Pollicott shows the following.

Tueorewm 3.11 ([Pol87, Th. 1]). If (¢4) is a metric Anosov flow on'Y, and (%,
is a Markov proper family, then 3(Z) is a shift of finite type and the map 7@ : P — Y
is finite-to-one, continuous, surjective, injective on a residual set, and satisfies To f; =
¢t o T, where (fi) is the suspension flow.

We say that a flow has a strong Markov coding if the conclusions of the previous
theorem are true with the additional hypothesis that the roof function p is Holder
and that the map 7 is Holder. This is condition (III) on p.195 of [Pol87]. Since
p=rom:X — (0,00), it suffices to know that 7 is Holder and r is Holder where it
is continuous. Thus, we can formulate Pollicott’s result as follows:

Tueorem 3.12 (Pollicott). — If (¢:) is a metric Anosov flow, and there exists a
Markov proper family (Z,9) such that the return time function v for Z is Holder
where it is continuous, and the natural projection map © : X — X is Holder, then
the flow has a strong Markov coding.

A drawback of this statement is that it is not clear how to meet the Holder
requirement of these hypotheses. Our Theorem A is designed to remedy this. Re-
call the hypotheses of Theorem A are that the metric Anosov flow is Holder and that
there exists a pre-Markov proper family (%, 2) so that the return time function and
the projection maps to the B; are Holder. We now prove Theorem A by showing that
these hypotheses imply the hypotheses of Theorem 3.12.

Proofof Theorem A.. — We verify the hypotheses of Theorem 3.12. Let the family
(Z,.) be the Markov family provided by applying Lemma 3.9 to (A, Z). Recall
that by Lemma 3.9, we can choose the scale a for (£, 2) as small as we like. Then #
consists of rectangles R; which are subsets of elements of & shifted by the flow for
some small time. Thus, the return time function for &% inherits Holder regularity from
the return time function for 4.

Now we use Theorem 3.3 to show that the projection map 7 from (%) is Holder.
Fix some small oy > 0. Choose € > 0 sufficiently small that the projection maps
to any section S with diameter less than ag are well-defined on ¢_. S. Then let
us suppose that our Markov family is at scale a so small that o < ag and 3a < 4,
where 0 is given by Theorem 3.3 for the choice of £ above. Let 4, j € ¥(Z#) which agree
from i_,, to i,,. We write x, y for the projected points, which belong to some B;«. If two
orbits pass through an identical finite sequence R; ,..., R R;, then they are
3a-close for time at least 2n multiplied by the minimum value of the return map
on %, which we write rg. The distance is at most 3« since diam R; < « and the
return time is less than «. Thus, by Theorem 3.3 there is a time v with |v| < & so that

TIEEE

d(z, poy) < ae™*2770, Using Holder continuity of the projection map Projp, , which
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is well-defined at ¢,y since |v| < e, we have
d(x, y) = d(PrOjRiU xa PrOjRiO ¢vy) < Cd((ﬂ, ¢vy)ﬂ,

where S is the Holder exponent for the projection map. Thus, d(z,y) < Coae~(2BAro)n
Since d(i,j) = 27", this shows the projection 7 from (&%) is Holder.

It follows that the roof function p = mor is Holder. Thus, since 7 is Holder, the
roof is Holder and the flow is Holder, it follows that 7 : X — X is Holder. O

The advantage of the formulation of Theorem A is that the hypotheses for the
strong Markov coding are now written entirely in terms of properties of the flow
and families of sections 2. In the terminology introduced above, Bowen showed that
transitive Axiom A flows admit a strong Markov coding, using smoothness of the flow
and taking the sections to be smooth discs to obtain the regularity of the projection
and return maps. For a Holder continuous metric Anosov flow, we do not know of a
general argument to obtain this regularity. Our strategy to verify the hypotheses of
Theorem A in the case of geodesic flow on a CAT(—1) space is to construct proper
families in which the sections are defined geometrically. For these special sections, we
can establish the regularity that we need. Our argument relies heavily on geometric
arguments which are available for CAT(-1) geodesic flow, but do not apply to general
metric Anosov flows.

4. GEOMETRIC RECTANGLES AND HOLDER PROPERTIES

4.1. GEOMETRIC RECTANGLES. — In this section, we define geometric rectangles which
can be built in GX for any CAT(—1) space X.

Derinirion 4.1. — Let UT and U~ be disjoint open sets in s X.Let T C X be a
transversal on X to the geodesics between U~ and U™ — that is, a set T so any geo-
desic ¢ with ¢(o0) € Ut and ¢(—o00) € U™ intersects T exactly once. Let R(T,U*,U~)
be the set of all geodesics ¢ with ¢(co) € UT and ¢(—o0) € U~ and which are
parametrized so that ¢(0) € T. If R(T,U*",U™) is a section to the geodesic flow
on G)N(7 we call R(T,UT,U™) a geometric rectangle for GX. Any sufficiently small
geometric rectangle in GX projects bijectively to GX, and this defines a geometric
rectangle for GX.

If ¢,¢’ € R(T,UT,U™), then Proj;{c,c’) is the geodesic d which connects the
backward endpoint of ¢ to the forwards endpoint of ¢/, with d(0) € T, and thus
R(T,U*,U"™) is a rectangle in the sense of Definition 3.6 (see Figure 2). In the case
when X is convex cocompact, we observe that R(T,Ut,U~) NGX is still a rectangle.
This is because membership of GX is determined by whether the endpoints of a
geodesic lie in A C 0® X, and thus if ¢, ¢’ € @)Z', then (c,c') € GX. We keep the
notation R(T,U™,U ™) for rectangles in GX. Although this is formally a slight abuse
of notation, using the same notation for rectangles in GX and GX simplifies notation
and will not cause any issues.
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Ut

U-

IFieure 2. Tllustrating Definition 4.1. The arrows mark the basepoint
and direction for each geodesic in R(T,UT,U™).

To build rectangles we need to specify the sets U™ and U~ and choose our transver-
sals. We do so in the following definition.

Fix a parameter 7 > 1. Let ¢ € GX. Let B, = Bi (c(=7),1) and By =
Bi_(c(7),1) be the open balls of d g-radius 1 around ¢(£7). Let

Y(e,7)={c' € GX |’ NB; # @ for i = 1,2}.

Let
A(e,7) = {(c'(—0), ¢'(+0)) € 8°X x 8°X | ¢’ € y(¢,7)}.

It is easy to check that d(c, 7) is open in the product topology on 90X x 9°X. Then
we may find open sets U~ and U such that (¢(—00),c(+00)) € U~ x Ut C d(c, ).

Derinirion 4.2, — Let ¢ € GX and 7>> 1. Let U~ and U™ satisfy U~ xU™ C d(c, 7).
The good rectangle R(c,7;U~,U™") is the set of all n € GX which satisfy:

(1) n(—o00) € U~ and n(+o0) € UT,

(2) Be(n(0)) =0,

(3) If n(tl) € By and n(tg) € BQ, then t; < 0 < to.
In the convex cocompact case, in addition we take the intersection of all such geodesics
with GX. To remove arbitrariness in the choice of U~,U™, we can let § > 0 be
the biggest value so that if Uy = Buo(c(+00),d) and U = Buo(c(—00),d), then
Us x Ui C (e, 7). We can set R(c,7) = R(c, 7;U; ,Uy").

In other words, for good rectangles, we take as our transversal T' on X a suitably
sized disc in the horocycle based at ¢(+00) through ¢(0) (see Figure 3).

We will usually consider the ‘maximal’ good rectangle R(c, 7). However, we note
that the definition makes sense for any V~ x VT C 9(c, 7). In particular, it is not
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required that the geodesic ¢ itself (which defines the horocycle that specifies the
parameterization of the geodesics) be contained in R(c,7;V ", V™).

Ficure 3. A geodesic n € R(c,7;U~,U™T) as in Definition 4.2.

To justify this definition, we must verify that R(c,7;U~,U™) is in fact a rectangle
in the sense of Definition 4.1. That is, we need to prove the following two lemmas:

Lemma 4.3. For any 1 € GX with n(—oc) € U~ and n(+o0) € U™, there is exactly
one point p € n such that B.(p) = 0 and such that p lies between n’s intersections
with B and Bs.

Proof. — We have

Be(o)(n(t1), c(+00)) >0 when n(t1) € By,
Be(oy(n(ta), c(+00)) <0  when n(t2) € Bs.

Continuity and convexity of the Busemann function implies that there is a unique
t* € (t1,t2) such that By (n(t*),c(+00)) = 0. Let p = n(t*). O

LEvma 4.4. R(c,7;U~,U™) is a section.

Proof. — The openness of U~ and U™, and the 1-Lipschitz property of Busemann
functions are the key facts. |

We give the following distance estimates for geodesics in a rectangle.

Levva 4.5. — For allm € R(e,m;U,U™"), we have

(1) d5(c(0),n(0)) < 2;
(2) dg(c(£7),n(£7)) < 4.
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Proof. First, we prove (1). By the definition of the rectangle, we know that there
exist times ¢+ > 0 and ¢~ < 0 so that dg(c(7),n(t")) < 1 and dg(c(—7),n(t")) < 1.
Since the distance between two geodesic segments is maximized at one of the end-
points, we know that d(n(0),¢) < 1. Thus, there exists t* so that d (n(0),c(t*)) < 1.
Thus, dg(c(0),7(0)) < dg(c(0), c(t”)) + dg (n(0), c(t™)) < [¢*] + 1.

Since the Busemann function is 1-Lipschitz,

| Be(c(t))| = [Be(c(t)) — Be(n(0))| < dg(c(t*),n(0)) < 1.

Since |Bc(c(t*))| = |t*], it follows that [t*| < 1. Thus, d(c(0),7(0)) < 2.

We use (1) to prove (2). Observe that t* < 7+ 3. This is because
" =dg(n(0),n(t")) < dg(1(0),¢(0)) + dx(c(0), (7)) + dg (c(r),n(t"))
<2474+ 1.
We also see that tT > 7 — 3. This is because

7 =dg(c(0),¢(r)) < dg(c(0),7(0)) + dg(n(0), n(t")) + dg (n(t™), c(7))
<24ttt +1.
Thus |7 — t7] < 3. It follows that

dg(c(r),n(1)) < dg(e(),n(t")) +dg(n(r),n(t")) <1+3=4.
The argument that dg(c(—7),n(—7)) < 4 is analogous. O

We obtain linear bounds on the Busemann function for n € R(c, 7;U~,U™T).
Levva 4.6. — Foralln € R(c,7;U~,U™),

t
—t < Beoy(n(t), c(+00)) < —3 forallO<t<T
t
and —3 < Beoy(n(t), c(+00)) < =t forall —7 <t <O0.
That is, for times between —7 and 7, the values of the Busemann function along n lie
between —t and —t/2.

Proof. — That —t < B.(n(t)) follows immediately from the 1-Lipschitz property
of Busemann functions. By Lemma 4.5 and the 1-Lipschitz property of Busemann
functions,

[Be(n(7)) + 7| = [Be(n(7)) = Be(e(r))| < 4,
and similarly [Be(n(7)) — 7| = [Be(n(—7)) — Be(e(—7))| < 4.
Therefore, f(t) = B.(n(t)) is a convex function with f(—7) € (v —4,7], f(0) =0
and f(7) € [-7,—(7 —4)). Then if for some ty € (—7,0], f(to) < —to/2, or for some

to € 10,7), f(to) > —to/2, then for all ¢ > max{0,to}, by convexity, f(t) > —t/2. But
then f(7) > —7/2, a contradiction since 7 > 1. O

The proof actually yields the upper bound of B.(n(t)) < —(( — 4)/7)t but all we
need is some linear bound with non-zero slope.
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Lemva 4.7. Let R and Ry be rectangular subsets of good geometric rectangles.
Suppose diam(Ry) = ¢ and that Ry N Ry # &. Then for |t| > 2Le, g¢R1 N Ry = &,
where L is the constant from Lemma 2.4.

Proof. — Let f be the Busemann function used to specify the basepoints of geodesics
in Ry. Since the diameter of Ry is &, and since for some n € Ry, f(n(0)) = 0,
|f(c(0))] < Le for all ¢ € R;. This uses Lemma 2.4 and the 1-Lipschitz property of
Busemann functions with respect to dx. If n € Ry N Ry, then [t| < [f(n(t))| < |t
by Lemma 4.6. Now suppose that n € g:R1 N Ry for some |t| > 2Le. Then g_;n € Ry
and we must have |f(n(—t))| > Le, which is a contradiction. O

4.2, HOLDER PROPERTIES. We are now ready to prove the regularity results we need
to apply Theorem A. First, we show that return times between geometric rectangles
are Lipschitz. Let R = R(c,7;UT,U~) and R’ = R(c¢’,7';U'",U'™) be good geometric
rectangles and let d € R such that g;,d € R’ for some t( which is minimal with respect
to this property. We write r(d) = r(d, R, R') := tp; this is the return time for d to
RUR.

Let us make the standing assumption that all return times are bounded above by
a > 0. Note that d € R and g;,d € R iff d(—oc0) € U NU'~ and d(+o00) € UTNU'T.
The key property we want is the following:

Prorosition 4.8. Let R, R' be good rectangles and Y = RN H-Y(R'). Then the
return time map r: (Y,d,5) — R is Lipschitz.

Proof. — Let v,w € Y with return times r(v), r(w), respectively. Let ¢ = dgx (v, w).
We consider the Busemann function determined by the geodesic ¢’ which defines the
rectangle R’.

Let f(t) = Ber(v(r(v)+t)) and let g(t) = Be (w(r(v) +t)). Then r(w) —r(v) = t*,
where t* is the unique value of ¢ with [t*| < a such that g(t*) = 0. By Lemma 4.6,
the graph of f(t) lies between the lines y = —t and y = —t/2 for small ¢.

Let C' = e, where « is an upper bound on the return time. By Lemmas 2.4 and 2.5,
dx(v(s),w(s)) < LCe for all s < «, where C is a uniform constant. The 1-Lipschitz
property of Busemann functions implies that |f(¢) — g(t)] < LCe.

Thus, for ¢ > 0, we have g(t) < f(t) + LCe < —t/2+ LCe¢, and so for ¢ > 2LCk,
g(t) < 0. For t < 0, we have g(t) > f(¢t) — LCe > —t/2 — LCe, and so for t < —2LCk,
we have g(t) > 0. Thus, by the intermediate value theorem, the root g(t*) = 0
satisfies t* € (—2LCe,2LCe). Therefore, |r(w) — r(v)| = |[t*| < 2LCe proving the
desired Lipschitz property with constant 2LC'. |

We now show that the projection map to a good rectangle is Holder. Consider
any good geometric rectangle R = R(c,7;U~,U™). Fix some small @ > 0 so that
(—a,a) X R = GX by (t,z) — gix is a homeomorphism.

Prorosition 4.9. Projg : g(—a,a)R — R is Holder.
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Proof. We prove that for all x,y € g(_q,q) R there exists some K > 0 such that

dg, 5 (Projp x, Projpy) < Kdg 5 (2, y)"/>.

First, note that for all [t| < 2a, g; is a 2®-Lipschitz map by Lemma 2.5. Therefore,
to prove the Proposition, it suffices to prove the case where x € R, as we can pre-
compose the projection in this case with the Lipschitz map g+, where g~z € R.

Let t = B.(y(0)). By Lemma 4.6 for all |s| < 7, |s|/2 < |B.(y(s)) — t| < |s].
Similarly, |s|/2 < |B.(z(s))| < |s|]. Since B.(x(s)) and B.(y(s)) are both decreasing
by definition of R, these inequalities give us that

|Be(z(s)) — Be(y(s))| = ¢t —|s|/2 forall s < 7.
Since B, is a 1-Lipschitz function on X ,
dg(z(s),y(s)) =t —|s]/2 forall s <7

Then we can compute

2t

1
doe(a,y) > /2 (t— Isl/2) e~2¥lds = 3 (~1 4+ 4 41) > of?
—2t

for a properly chosen ¢ > 0 since |t| < a. By Lemma 4.6 and the fact that the geodesic
flow moves at speed one for d, 5, d, 5(y, Projg y) < 2[t|. Using

dG}? (LU, PrOjR y) g dG}? (Jf, y) + dG}? (y) PI‘OjR y)a

if there exists some L > 0 such that d, 5 (y, Projpy) < Ld, 5 (z,y)*/?, the Lemma is
proved. But we have shown above that

doz(z,y) > ct® and dg,5(y,Projpy) < 2t O

4.3. A PRE-MARKOV PROPER FAMILY OF GOOD RECTANGLES. — To complete our argu-
ment, it suffices to check that a pre-Markov proper family (#Z,.7) can be found where
the family of sections . consists of good geometric rectangles, perhaps flowed by a
small time. Applying the results of the previous section, this will show that (#Z,.7)
has properties (1) and (2) of Theorem A.

Prorosition 4.10. — Let X be a convex cocompact locally CAT(—k) space, and let
(g¢) be its geodesic flow (on GX when X is compact, and on GX otherwise). For any
sufficiently small o > 0, there exists a pre-Markov proper family (8, 2) for the flow
at scale a such that each D; has the form g, R; for some s; with |s;| < a and some
good geometric rectangle R;.

We need the following lemma.

Lemma 4.11. — Let (¢4) be a Lipschitz continuous expansive flow on a compact metric
space. Given a proper family (#B,2) for (¢.) at scale o > 0 where the B; and D; are
rectangles, there exists a pre-Markov proper family (#',2') at scale o > 0 such that
every D). € 9’ is the image under ¢, of some D; € 9, where |si| < a.
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It is clear from the proof below that the times s; can be made arbitrarily small in
absolute value.

Proof. — Let (#,92) ={(B;,D;) |i=1,...,n} be a proper family at scale o where
the B; and D; are rectangles. Recall that by definition, a proper family satisfies:

(1) diam(D;) < o and B; C D; for each i € {1,2,...,n};

(2) Uiz1 G(—a0)(Inty Bi) =Y

(3) for all i # j, if ¢p9,401(Di) N D; # @,
then (;5[,4&’0] (D;) N D; = 0.

Our strategy for constructing new proper families out of (%, 2) is to replace an
element (B;, D;) by a finite collection {(¢s, Rk, ¢s, D) }r where Ry, are rectangles with
Ry C B; and Uk Inty Ry, covers Intg B;. Then ¢,, R and ¢,, D; inherit the rectangle
property from Ry and D; (and are closed if Ry and D; are), and by choosing all s
distinct and sufficiently small in absolute value, we can ensure that the resulting
collection will still satisfy (1), (2), and (3). We give some details.

For (1), since the flow is Lipschitz and diam(D;) < «, we can choose €1 so small
that diam(¢i., D;) < . Thus, (1) will be satisfied if all s; have |sg| < 7.

For (2), since |J, Inty Rj, covers Inty B;, then it suffices to assume that all s; are
sufficiently small in absolute value.

For (3), let 5 > 0 be the minimum value of s so that there is a pair D;, Dy, in
our proper family with both ¢(o s D; N Dy and ¢[_, 01 D; N Dy nonempty, and observe
that we must have § > 4a. Choosing e2 smaller than (8 — 4a))/2 and smaller than
d(Dj, Dy) for any j # k, condition (3) will be satisfied for ¢, D; and ¢, Dy when
sjl,|sk| < e2 and j # k. Also, it is clear that (3) will hold for the pair ¢, D and
¢si,, D when D € D, |sk, |, |sk,| < e2 and sy, # sk, .

We now use this strategy to refine (%, &) to ensure the pre-Markov property (3.1)
holds. For B € 4, consider the set

F(B;#,9) ={Bj € | BN ¢|_2a,2a)Bj # 2 but B L ¢(_30,30)D;}

The set F(B;%#,2) is finite and encodes the elements of the proper family for
which an intersection with B causes an open version of (3.1) to fail. Clearly, if
F(B;#,2) = @ for all B € £, then the pre-Markov condition (3.1) is satisfied.

Let i1 <iz <---<i, be the set of all indices so that F'(B;,; %, %) # @. We cover B;,
by a finite collection of rectangles Ry C B;, such that

— U, Inty Ry, covers Inty B;,, and

— If Rk N P[_2a,20)Bj # @ for some j, then Ry C ¢(_34,3q)D;-

It is clearly possible to find collections of rectangles satisfying the first condition.
The second can be satisfied because B;, N ¢[_24,24]B; is a closed subset of B;, con-
tained in the open subset ¢(_3q,3q)D;, With respect to the subspace topology on B;, .
We replace (By,,D;,) in (B, 2) with {(¢s, Rk, ¢s,Di, )} for distinct times s suf-
ficiently small in absolute value as detailed above. We obtain (%', 2') with %!
consisting of closed rectangles satisfying conditions (1), (2), and (3).
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Figure 4. Ensuring the pre-Markov condition (3.1). (1,7) and (1,7)
belong to F(By;%,2). The flow direction is vertical. The orange
rectangles provide one possible choice for the Ry.

To establish condition (3.1), we must prove two things. First, we claim that for all &,
F(¢s, Ry;; B',2') = @. This is true for the following reasons. First, if B; € # with
i1 # j, then by construction we know that B; ¢ F(¢s, Ry; ', 2'). It remains only to
consider sets of the form ¢, R; with i # k. Suppose ¢, Rk NP[_24,2q]Ps; Iti # 2. Then
it is clear that since |s;|, |sx| are small and Ry C D;,, then ¢, R C ¢(—30,30)@s, Di, -
It follows that ¢, R; ¢ F(¢s, Ri; B, 21). We conclude that F(¢s, Ry; B, 2') = @.
That is, we have eliminated the ‘bad’ rectangle B;, from the proper family and re-
placed it with a finite collection of rectangles that do not have any ‘bad’ intersections.

Second, we claim that for all k and any j # i1,42,...,%,, we have that ¢4, Ry ¢
F(Bj; #',2"). This is true for the following reason. Since j # i, F(B;; #,9) = @.
Therefore B;, ¢ F(Bj; %, %) prior to refining and replacing B;,. Therefore, either
B N @—2a,2a)Bi; = D or Bj C ¢(_3q,3a) D, - Either condition is ‘open,’ in the sense
that there is some e5(j) > 0 such that the condition remains true if (B;,, D;,) is
replaced by (¢sB;,, $sD;,) for |s| < e3(j). Therefore, if we further demand that all sy,
satisfy |sx| < min;es(j), we will have that ¢s, Ry ¢ F(Bj; #', 2'), as desired. This
implies that F(Bj; #', 2') = & for all such j.

From these two facts we conclude that the set of B € 8" for which F(B; #', 2')# 2
is (at most) B;,,
scheme finitely many times, modifying (%!, 2') into (%2, 2?) by carrying out the
procedure above on (B;,, D;,), etc. Finally, we modify (B; ,D;, ) to produce a col-
lection (%", 2™) which by construction satisfies F(B; #", 2") = & for all B € ™.
In other words, we have eliminated every intersection which causes the pre-Markov
property to fail, and this completes the proof. O

... B;, . To complete the proof, we carry out the ‘refine-and-replace’
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For completeness, we remark on how to obtain the intermediate family of sections
J described after Lemma 3.9. We choose closed rectangles K; so K; C Inty B;. They
can be chosen as close to B; as we like so that {¢|_o o (Inty K1), ..., ¢—a,0(Intg Ky)}
is an open cover. Now take a Lebesgue number 12§ for this open cover. Then for any =z,
B(z,66) C ¢[_a,0(Inty K;) for some i, and thus B(z,66) C ¢[_2q,24)Ki- We now prove
Proposition 4.10 by showing that we can ensure the sections B; are geometrically
defined rectangles.

Proof of Proposition 4.10. — We show that we can construct a proper family out of
good geometric rectangles for GX. Let o be small enough that all {g;}-orbits of
length 8« remain local. Fix p > 0 much smaller than «. Fix some large 7 and for each
ce GX pick an open good geometric rectanglg E(c, 7) with diameter 1Aess than p.
Then {g(—,,0)R(c, T)}CeG

5 is an open cover of GX. By compactness of GX, we can
choose a finite set {Hy, ... ,}Nln}, writing H;, = g(,p’o)ﬁi, so that GX is covered by
the projections H; = g(_, 0)R; of H; to GX. We build our proper family recursively.
Let By C D; be a closed good geometric rectangle of diameter less than a chosen so
that R; C Inty, By. Note that H; C 9(-a,0) Inty By.

Now suppose that {(Bj, Dj)}§:1 have been chosen satisfying diamD; < a,
D;N Dy, =@ for j # k, and so that each D; has the form g, R; for some s; with
|s;| < « and some good geometric rectangle R;. Let H; be the element of our cover of
smallest index such that H; ¢ U§:1 J[-a,0) Inty Bj. We want to build further (Bj, D;)
covering H;. Let

M, = {c € Ri| gope N (U, Int, B;) = @} = Ri~ (U'_, 9(_po) Inty By).

M; is a closed subset of R;. Pick e < p/4L¢, where L is given by Lemma 2.4. By pass-
ing to endpoints of its geodesics, M; can be identified with a closed subset of U= x U T,
so we can find a finite set 11, ...,T;, of closed rectangles with each T}, identified with
some V.~ X Vk+ C U™ x U™ such that {Int, Ty} , cover M;, T, N M; # &, and
diam Ty < e.

By Lemma 4.7, if for some t € [0, p], ¢:T N D; # @, then for |t' —t| > 2Le, g T,
and D; are disjoint. Since 4Le < p/¢, and since there are at most ¢ of the D,’s which
can intersect gy, ,) Tk, we can pick distinct s5 € (0, p) so that gs, T} N (U§:1 D;)=w2.

We add the collection { Dy, := g5, T*}?_, to our collection {D;}. Inside each new Dy,
we choose a slightly smaller closed rectangle By, so that {g_s, Inty By} cover M;. It
is then clear since p < o that Uf;l 9(—a,0) Inty B; covers H;.

We continue this way until GX is covered by {9(—a,0) Inty B;} and check the con-
ditions of Definitions 3.5 and 3.7. We have ensured that 3.5(2) is satisfied. Using the
Lipschitz property of the flow and the fact that ¢ < o we can ensure that diam D; < o
for all j, ensuring condition 3.5(1). We have also ensured 3.5(3) by constructing the D,
disjoint and picking « so small that all orbit segments with length 8« are local.
Applying Lemma 4.11 produces a pre-Markov proper family satisfying Definition 3.7.
By construction, each D; in & is the image of a good geometric rectangle under the
flow for a small time. |
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We now complete the proof of Theorem B. The flow is a metric Anosov flow by
Theorem 3.4. The flow is Holder by Lemma 2.5. We take a pre-Markov proper family
for the flow for which the family of sections Z are good geometric rectangles flowed
for some short constant amount of time, as provided by Proposition 4.10. By Propo-
sitions 4.8 and 4.9 the return time map and projection map to these sections are
Holder. Thus, we have met the hypotheses of Theorem A and we conclude that the
geodesic flow has a strong Markov coding.

5. PROJECTIVE ANOSOV REPRESENTATIONS

We show that the methods introduced in the previous section can be adapted to
the geodesic flow (U,I, (¢;)) for a projective Anosov representation p : I' = SL,,,(R),
proving Theorem C. This flow is a Holder continuous topologically transitive metric
Anosov flow [BCLS15, Prop. 5.1], so to meet the hypotheses of Theorem A it remains
to show there is a pre-Markov proper family of sections to the flow such that the
return time function between any two sections is Holder, and the projection from
a flow neighborhood of a section to the section are Holder. We sketch the proof by
showing how to set up analogues of all the objects defined in §4. This will demonstrate
that the proof in §4 applies in this setting.

Following [BCLS15], we define the geodesic flow for a projective Anosov represen-
tation. Let I' be a Gromov hyperbolic group. We write L/JOVI‘ = 05T x R, and Ul
for the quotient Upl /T. The Gromov geodesic flow (see [Cha94] and [Min05]) can be
identified with the R-action on UgI'.

Derinirion 5.1. — A representation p : I' — SL,,,(R) is a projective Anosov represen-
tation if:

(1) p has transverse projective limit maps. That is, there exist p-equivariant, con-

tinuous maps £ : 9°T — RP(m) and 6 : 9°T — RP(m)* such that if « # y, then
§(x) ©0(y) =R™.

Here we have identified RP(m)* with the Grassmannian of m — 1-planes in R™ by

identifying v € RP(m)* with its kernel.

(2) We have the following contraction property (see §2.1 of [BCLS15]). Let E, =
Uol' x R™/T be the flat bundle associated to p over the geodesic flow for the word
hyperbolic group on Upl', and let £, = Z®O be the splitting induced by the transverse
projective limit maps £ and 6. Let {¢;} be the flow on Uy’ x R™ obtained by lifting
the Gromov geodesic flow on Ugl' and acting trivially on the R™ factor. This flow
descends to a flow {¢;} on E,. We ask that there exists ty > 0 such that for all
Z e Ugl', v € 2z N {0} and w € Oz \ {0}, we have

o)l _ 1 o]
91 ()] 2 [Jw]]

For v € (R™)* and u € R™, we write (v|u) for v(u). We define the geodesic flow

(U,T, (¢¢)) of a projective Anosov representation, referring to [BCLS15, §4] for further
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details. Let
FP = {('r’y7 (U,U)) | (x,y) € 8OOF(2)7 u € 5(1‘), v e e(y)’ <U‘u> = 1}/ ~

where (u,v) ~ (—u, —v) and 9T denotes the set of distinct pairs of points in 9°°T.
Since v determines v, F}, is an R-bundle over 9°°T’ (2), The flow is given by
bi(x,y, (u,0)) = (2,9, (e'u, e )).

We define U,I" = F,/T". The space U,I' is compact [BCLS15, Prop. 4.1] (even though T’
does not need to be the fundamental group of a closed manifold). The flow (¢:)
descends to a flow on U,I'. The flow (U,T, (¢;)) is what we call the geodesic flow of the
projective Anosov representation. The flow is Holder orbit equivalent to the Gromov
geodesic flow on UgT", which motivates this terminology. In [BCLS15, Th. 1.10], it is
proved that (U,T', (¢;)) is metric Anosov. We construct sections locally on F, and
project the resulting sections down to U,I" that will verify the hypotheses of Theo-
rem A, and thus show that the geodesic flow has a strong Markov coding.

We can define stable and unstable foliations in the space F,. For a point Z =
(20, Y0, (uo,v0)) € F,, we define respectively, the strong unstable, unstable, strong
stable, and stable leafs through Z as follows.

WU Z) = {(z, yo, (u,v0)) | © € OFT, & # yo, u € &(x), (vo|u) = 1}.
W(Z) = {(z,y0, (u,v)) | 2 € OFT, @ # yo, u € {(x), v € O(yo), (v|u) =1}
= thﬁﬁt(Wuu(Z))v
W*(Z) = {(z0,y, (uo,v)) | y € OFT, w0 # y, v € 0(y), (v|uo) = 1}.
W*(Z) ={(zo,y, (u,v)) | y € OFT, xo # y, u € {(20), v € 6(y), (v|u) =1}
= U ¢:(W>(2)).

teR
Fix any Euclidean metric |- | on R™. This induces a metric on

RP(m) x RE(m)* x (R™ x (R™)*)/ £ 1).

Let dF, be the pull-back of this metric to Fj; the transversality condition on the limit
maps in the definition of Anosov projective representation ensures this is well-defined.
This is called a linear metric on F),. There is a I'-invariant metric dg on F, which
is locally bi-Lipschitz to any linear metric by [BCLS15, Lem. 5.2]. Therefore, it is
sufficient to verify the Holder properties we want with respect to a linear metric.
We now build our sections in analogy with our construction of good geometric
rectangles in the CAT(—1) setting. Fix some Z = (xo, o, (0, v0)) € F, and choose
some small, disjoint open sets U™ containing o and U~ containing yo. Choose U™
and U~ small enough that for all z,y € Ut x U™, £(x) and 6(y) are transversal.
Since £(xg) and 6(yo) are transversal and £, 0 are continuous, this is possible. Let

R(Z,UT,U7) ={(z,y,(w,v)) € F, |z €U, y e U™, (volu) = 1}.

It is straightforward to check that R(Z,UT,U™) is a transversal to the flow ¢,
by using the definition of a linear metric to verify that all points sufficiently near
to Z project to R(Z,UT,U™). It is also straightforward to check that R(Z, U+, U™)
is a rectangle using the definitions of the (strong) stable and unstable leaves. This is
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essentially the same as our proof of Lemma 4.3. We can describe R(Z, U+, U™) as the
zero set for a ‘Busemann function’ as follows.
Lemma 5.2 — Fiz Zy = (z9, Yo, (uo,v0)). For all (z,y, (u,v)) define

ﬁZO ((.13, Y, (’LL, 1)))) = 10g<1}0|U>.
Then Bz, is a locally Lipschitz function with respect to a linear metric on F),.
Proof. Let Z1 = (x1, 91, (u1,v1)) and Zy = (22, Y2, (u2,v2)) be in a small neighbor-
hood of Zj for the linear metric. This implies that (vg, ;) lie in some range bounded

away from zero. Over this range, the function — log is Lipschitz.
We know by the definition of a linear metric that

dr,(Z1, Z2) = |&(x1) — §(w2)| 4 [0(y1) — O(y2)| + |u1r — ua| + [v1 — val.
(In the various factors above, | — * | denotes the metrics induced on RP(m), RP(m)*,
R™ and (R™)* by the Euclidean metric on R™.) We calculate, using that — log and
(vo|-) are Lipschitz:
B2,(Z1) = Bzy(Z2)| = | — log(vo|uz) — log{vo|u1)]|
< K1 |(voluz) — (volu)| < Kaluz —ui| < Kodp, (21, Z2). O
Levwvia 5.3. — For all Z € R(Zy, U, U™), we have Bz, (¢ Z) = —t.
Proof. — This is immediate from the definition of 8z, . O
It is clear that
R(Zo, U, U) = {(z,y, (u,v)) |2 €UT, y €U, Bz, (u) =0}
and if ¢« Z € R(Zo,UT,U™), then Bz,(Z) = t*. We now have a simple proof of the

analogue of Proposition 4.8 we need:

Prorosition 5.4. — The return time function between two good geometric rectangles
is Lipschitz.
Proof. Suppose that Z1, Zs € R and, for small 71, r5, that
Gri Z1,$r, 22 € R = R(Z',UT,U™).
Then by Lemma 5.2, we have
lry —ra| = B2/ (Z1) — Bz (Z2)| < KdF,(Z1, Z2),
and we thus conclude that the return time function from Z; to Zs is Lipschitz. O

It is also easy to verify that the flow (¢;) is Lipschitz. All that is left to prove is
an analogue of Proposition 4.9:

Lemwa 5.5. — For any good geometric rectangle R, Projg : ¢(—a,o)R — R is Hélder.

Proof. Since the flow is Lipschitz, we can assume Z; € R. Assume Z € ¢_;+ R
for some t* € (—a, ), so Projp(Zs) = ¢u=Zo. If R is a rectangle based at Zy =
(20, Yo, (w0, v0)), then (ug, va) — (¥ ug, et vy) is the projection along the smooth flow
(e',e7*) to the smooth subset of R™ x (R™)* given by {(u,v) | (volu)=1, (v|u)=1},
which is transverse to the flow.
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Therefore this map is smooth, hence Lipschitz on any compact set for any linear
metric, and this suffices for the proof. O

6. APPLICATIONS OF STRONG MARKOV CODING

There is a wealth of literature for Anosov and Axiom A flows which uses the strong
Markov coding to prove strong dynamical properties of equilibrium states. We do not
attempt to create an exhaustive list of these applications, but we refer the reader
to the many results described in references such as Bowen-Ruelle [BR75], Pollicott
[Pol87], Denker-Philipp [DP84] and Melbourne-T6rok [MT04].

We summarize some of these applications as they apply to the non-wandering set
of the geodesic flow of a convex cocompact locally CAT(-1) space X = X /T. The
flow is topologically transitive since the action of T' on (A x A) \ A is topologically
transitive. Thus, the shift of finite type in the strong Markov coding is irreducible.
In places in the discussion below, we need the notion of topological weak-mixing. We
say that a metric Anosov flow is topologically weak-mizing if all closed orbit periods
are not integer multiples of a common constant.

The result that there is a unique equilibrium state i, for every Holder potential is
due to Bowen-Ruelle [BR75] for topologically transitive Axiom A flows. The method
of proof was observed to extend to flows with strong Markov coding in [Pol87]. It is
also observed in [Pol87] that if ¢, are Holder continuous functions then the map
t — P+ t) is analytic and (d/dt)P(¢ + t)|—o = [d,,, where P(-) is the
topological pressure. This result is one of the key applications of thermodynamic
formalism used in [BCLS15, Sam16].

We now discuss the statistical properties listed in (1) of Corollary D. The Almost
Sure Invariance Principle (ASIP), Central Limit Theorem (CLT), and Law of the
Iterated Logarithm are all properties of a measure that are preserved by the push
forward 7* provided by the strong Markov coding, and thus it suffices to establish
them on the suspension flow. The CLT is probably the best known of these results, and
goes back to Ratner [Rat73]. A convenient way to obtain these results in our setting
is to apply the paper of Melbourne and Térok [MT04] which gives a relatively simple
argument that the CLT lifts from an ergodic measure in the base to the corresponding
measure on the suspension flow. They then carry out the more difficult proof that the
ASIP lifts from an ergodic measure in the base to the flow, recovering the result of
Denker and Phillip [DP84]. The other properties discussed (and more, see [MT04]),
are a corollary of ASIP. The equilibrium state for the suspension flow is the lift of a
Gibbs measure on a Markov shift. The measure in the base therefore satisfies ASIP
by [DP84], so we are done.

We now discuss the application to dynamical zeta functions, which was established
in the case there is a strong Markov coding and the flow is topologically weak mixing
in [Pol87]. Results on zeta functions are carried over from the suspension flow by a
strong Markov coding. The assumption of topological weak mixing is not needed for
the result that we stated as (2) in Corollary D. See [PP90, Chap. 6].
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For item (3) of Corollary D, we can refer directly to [Pol87] for the statement
that if the flow has a strong Markov coding and is topological weak-mixing, then the
equilibrium state j, is Bernoulli. The proof is given by Ratner [Rat74].

For item (4) of Corollary D, we argue as follows. Ricks proves that for a proper,
geodesically complete, CAT(0) space X with a properly discontinuous, cocompact
action by isometries I, all closed geodesics have lengths in ¢Z for some ¢ > 0 if and
only if X is a tree with all edge lengths in ¢Z [Ricl7, Th.4]. It follows that X is
a metric graph with all edges of length c. In this case, the symbolic coding for the
geodesic flow on X is explicit: (GX, (g¢)) is conjugate to the suspension flow with
constant roof function ¢ over the subshift of finite type defined by the adjacency
matrix A for the graph X. Equilibrium states for the flow are products of equilibrium
states in the base with Lebesgue measure in the flow direction. Since an equilibrium
state for a Holder potential on a topologically mixing shift of finite type is Bernoulli,
item (4) follows immediately by taking k& > 1 so that A* is aperiodic; if k = 1, the
measure on the base is Bernoulli, and if & > 1 the measure on the base is the product
of Bernoulli measure and rotation of a finite set with k elements.
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