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Abstract— This paper presents ELASTIN, a stagnation-free
intermittent computing system for energy-harvesting devices that
ensures forward progress in the presence of frequent power
outages without partitioning program into recoverable regions
or tasks. ELASTIN leverages both timer-based checkpointing
of volatile registers and copy-on-write mappings of nonvolatile
memory pages to restore them in the wake of power failure.
During each checkpoint interval, ELASTIN tracks memory writes
on a per-page basis and backs up the original page using custom
software-controlled memory protection without MMU or TLB.
When a new interval starts at each timer expiration, ELASTIN
clears the write permission of all the pages written during
the previous interval and checkpoints all registers including a
program counter as a recovery point. In particular, ELASTIN
dynamically reconfigures both the checkpoint interval and the
page size to achieve stagnation-free intermittent computation
and maximize forward progress across power outages. The
experiments on TI’s MSP430 board with energy harvesting traces
show that ELASTIN outperforms the state-of-the-art scheme by
3.5X on average (up to orders of magnitude speedup) and
guarantees forward progress.

[. INTRODUCTION

Adoption of energy harvesting technologies in Internet of
Things (IoT) has led to the advent of batteryless low-power
embedded systems [1]-[5]. By leveraging ambient energy
sources such as solar, thermal, wireless, vibration, and so
on [6]-[16], energy harvesting devices are not only self-
sustaining and maintenance-free but also eco-friendly, and they
continue to be used in many areas: sensor, wearable, storage,
and implantable medical devices [12], [13], [17]-[21].

However, due to the unreliable power source, energy-
harvesting systems suffer from unpredictable and frequent
power failure. They use a small capacitor as an energy
buffer and intermittently compute only when enough energy
is secured in the capacitor; when it is depleted, the systems
die. This is so-called intermittent computation [22]. With the
intermittent nature in mind, the researchers equip the energy
harvesting system with nonvolatile memory (NVM) and some
form of crash consistency to checkpoint necessary data and
restore them across power outages.

The state-of-the-art intermittent computing schemes parti-
tion program into a series of recoverable regions (tasks) so
that their re-executions always result in the same and correct
output [23]-[28]. Such a recoverability is achieved by either
compiler-directed idempotent region formation [23], [29]-[34]
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or user-based manual task partitioning [24]-[28]. In the wake
of power failure, the prior schemes restart from the beginning
of the interrupted region (task) after restoring the checkpoints
saved at the region/task (task) boundary for correct recovery.

However, the region (task) based schemes [24], [26]-[28],
[35], [36] face several critical issues. First, the schemes end
up wasting the hard-won energy due to the lack of flexibility
in the checkpoint interval; they make a checkpoint, that entails
multiple energy-consuming NVM writes, at every pre-defined
region (task) boundary, which would be unnecessary under
stable energy-harvesting condition. The crux of the problem is
that due to the compile-time fixed regions (tasks), checkpoint
interval cannot be adapted to the underlying energy harvesting
quality and the power outage behavior.

Unfortunately, the inability to adapt checkpoint interval can
cause a more serious issue, i.e., making the system stagnate
while consuming the hard-won energy; that is why the prior
schemes [26], [28], [37]-[40] cannot ensure forward progress.
If power outages repeatedly occur within a certain region
(task) before it ends, the schemes continually attempt to re-
execute the same interrupted region (task). This work refers to
such a livelock-like situation as stagnation. Due to the small
capacitance of an energy buffer, stagnation often occurs during
the execution of long regions (tasks). Without solving the
stagnation problem, all other efforts to make energy-harvesting
systems reality would eventually fail, calling for a practical
solution.

Last but not least, all prior works cannot handle capacitor
malfunction issues such as excessive leakage and crack, that
occur in reality and reduce the capacitance, thereby leading
to incorrect recovery or even worse stagnation [41], [42].
According to Cronin et al.’s recent work [43]-[45], even
fresh capacitors can be worn out due to physical access
attacks. For example, attackers can damage the capacitor by
injecting malicious voltage fluctuation into the target board.
This urges the existing schemes to be robust against such
security attacks for stagnation-free intermittent computation
with correct recovery.

To address above issues, this paper presents ELASTIN,
a stagnation-free intermittent computing system for energy-
harvesting devices that ensures forward progress in the pres-
ence of frequent power outages. Unlike prior works, ELASTIN
does not partition a program into recoverable regions or tasks;



such a boundary-free nature allows ELASTIN to realize full
potential of checkpoint adaptation. ELASTIN leverages both
timer-based checkpointing of volatile registers and copy-on-
write mappings of nonvolatile memory pages to restore them
in the wake of power failure. During each checkpoint interval,
ELASTIN tracks memory writes on a per-page basis and backs
up the original page—i.e., the copy-on-write granularity, not
a virtual memory page—using software-controlled memory
protection without MMU or TLB'. When a new interval starts
at each timer expiration, ELASTIN clears the write permission
of all the pages written in the previous interval and checkpoints
all registers including a program counter as a recovery point.
ELASTIN reconfigures the checkpoint interval and the page
size based not only on the underlying energy harvesting quality
but also on the observed forward progress. Consequently,
ELASTIN achieves stagnation-free intermittent computation,
ensuring forward progress across power outages.

Finally, ELASTIN can survive the capacitor malfunction.
ELASTIN’s boundary-free adaptive execution makes it possible
to adapt the checkpoint interval and the page size to even the
cracked capacitor or one under attacks. For example, ELASTIN
can ensure forward progress even for 50% of original ca-
pacitance with 2x faster leakage draining. The takeaway is
that ELASTIN can improve both the capacitor security and
the lifetime of energy-harvesting systems while maximizing
forward progress even under exceptional circumstances.

The contributions of this paper are as following:

« ELASTIN strongly guarantees forward execution progress.
Experimental results show that ELASTIN is able to com-
plete all benchmark applications, whereas the state-of-
the-art work cannot due to stagnation.

ELASTIN’s boundary-free checkpointing requires neither
user intervention nor program partitioning for region
(task) formation while its 2-dimensional adaptation of
timer interval and page size can maximize the forward
progress; ELASTIN achieves 3.5X average speedup over
the state-of-the-art region based scheme.

ELASTIN can handle the capacitor malfunction issues,
thereby achieving forward progress even when the ca-
pacitor is under security attacks or simply worn out. This
can eventually lengthen the life-time of the capacitor and
the energy-harvesting system.

II. BACKGROUND AND MOTIVATION
A. System Model

Since power failure is the norm in energy-harvesting sys-
tems, they should have byte-addressable nonvolatile memory
(NVM) for the efficient backup/recovery across the failures.
TI’'s MSP430FR series of microcontrollers (MCU) have al-
ready integrated FRAM, though SRAM is still used due to
the high write energy/latency of the current FRAM technol-
ogy [46]. The MCUs are expected to have NVM soon as main
memory thanks to new technologies such as STT-MRAM.

'ELASTIN can be regarded as library OS that only offers memory protection
and timer interrupt. In general, energy-harvesting devices do not run OS.
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Currently, ELASTIN targets MSP430 MCUs, 3-stage pipeline
in-order core without cache, MMU, or TLB, where FRAM is
used as main memory; SRAM is not used in our evaluation.
Thus, only data in a processor, i.e., registers, are transient and
will be lost on power failure; they need to be checkpointed
for recovery.

B. Curse of Stagnation

Suppose a program region/task whose execution time is
greater than the power failure period, i.e., the time between the
failures. If they periodically occur with the same frequency,
the program ends up rolling back to the beginning of the
same region again and again. That is because the failures keep
occurring before the end of the region is reached, in which case
the program just wastes harvested energy in vain making no
forward progress. Section III shows how ELASTIN guarantees
forward progress to overcome the curse of stagnation.

C. Lack of Checkpoint Adaptation

If the amount of harvested energy is sufficient, the energy-
harvesting system does not have to frequently checkpoint
to back up necessary program status due to low likelihood
of power failure. On the other hand, if the harvesting en-
ergy source is weak or unstable, the system would need
to checkpoint more frequently than usual. Unfortunately, all
prior software schemes partition program to regions or re-
structuring it as tasks to form recoverable regions/tasks without
considering the level of harvested energy. Since the schemes
checkpoint program status at each region/task boundary fixed
at compile time, they cannot adapt to the varying quality of
harvested energy at run time. Even if power failure rarely
occurs, the schemes can waste hard-won energy by performing
an unnecessary checkpoint at every single boundary during
the execution of consecutive regions (tasks). Even worse, the
schemes can suffer from stagnation during the execution of a
long region (task) when power outages occur frequently.

D. Capacitor (Energy Buffer) Vulnerability

Existing task based schemes [27], [47]-[49] take into
account capacitor’s behavior to improve forward progress.
However, they may end up with stagnation due to their
assumption that the capacitor can maintain its original quality
(characteristic), which is not true in reality for several reasons.

First, the capacitor energy can be drained a lot faster than
usual when the temperature goes up. This can be understood
by Arrhenius law [41], [50], [51] that specifies the high impact
of temperature on the leakage current, i.e., exponential leakage
increase with rising temperature.

Second, even if the temperature is maintained, the capacitor
can still malfunction. For example, due to mechanical or
external pressure, the packaging material can be worn out,
and the capacitor will be cracked eventually [52]. If cracked,
the capacitor leaks the buffered energy more dramatically or
charges only partial amount of the original capacitance.

Third, the capacitor quality can be deteriorated by security
attacks that can physically access it and inject malicious
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Fig. 1: Overall workflow: checkpoint interval can be adjusted when it ends at timer expiration and in the wake of power outage at boot time

voltage fluctuation to the system. As shown in the recent
work [43], the attackers can inject square wave voltage fluc-
tuation that generates extremely frequent checkpoints in the
system, thus making capacitor malfunction occur much earlier.
Section III-D details how ELASTIN addresses these issues.

III. DESIGN OVERVIEW

To realize full potential of adaptive execution according
to energy-harvesting condition, we design ELASTIN’s backup
and recovery mechanisms in a boundary-free way without
inserting region or task boundaries to program. For this pur-
pose, ELASTIN leverages both timer-based checkpointing of
volatile registers (Section III-A) and copy-on-write mappings
of nonvolatile memory (NVM) pages (Section III-B) to restore
them in the wake of power failure. Figure 1 describes the
overall workflow of ELASTIN.

A. Watchdog Timer Based Checkpointing of Volatile Registers

ELASTIN leverages a watchdog timer, that can be adjusted
at both its expiration and boot time (Section III-C1), to form
flexible checkpoint interval. At each timer expiration where
the current checkpoint interval finishes and the new one is
about to start, ELASTIN checkpoints all registers including
the program counter (PC) to a reserved area in NVM. In
case of power outage during the register checkpoint, ELASTIN
leverages double buffering to leave at least one of the two
buffers intact [23], [53]; see Figure 1.

Note that ELASTIN saves the registers for the new interval
in case it is interrupted due to power failure. As described in
Figure 1, when power comes back, ELASTIN uses the PC as a
recovery point to restart the interrupted interval after restoring
all the other registers; they serve as inputs to the interval to be
restarted. As will be shown in Section III-B, in addition to a
volatile register file, ELASTIN needs to make a copy of NVM
pages, which is invalidated at both timer expiration and boot
time, for correct recovery. Thus, the recovery process includes
the page restoration as well.

B. Page Protection Based Backup of Nonvolatile Memory

The timer-based checkpointing alone can lead to a memory
inconsistency problem. Consider an example shown in Fig-
ure 2. Here, an energy-harvesting system checkpoints between
write#2 and the following read instruction and encounters a
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Fig. 2: Memory inconsistent recovery due to anti-dependence

power failure right after write#3. In this case, the write#3
and the Read instruction access to the same memory, mem{ay).
Thus, these two instructions are anti-dependent, i.e., they form
a WAR (write-after-read) dependence. In the wake of the
power failure, the system starts from the most recently check-
pointed point, thus subsequently reading mem[a]. However, it
ends up reading not the original value but the one updated by
write#3, thereby leading to incorrect recovery.

To address the memory inconsistency, during each check-
point interval, ELASTIN tracks memory writes on a per-page
basis and backs up the original page; in the wake of power
failure, ELASTIN first reverts all the writes (including anti-
dependent ones) performed in the interrupted interval using
the backup page and then jumps back to the recovery PC
(Section III-A) where the interval started. That way ELASTIN
can restart the interrupted interval with original memory status
as if it were being started for the first time.

To achieve this, ELASTIN leverages a conventional page
protection mechanism of operating systems which tracks
writes to non-writable page as a page fault and backs up the
page with a copy-on-write mechanism [54]. In general, energy-
harvesting systems do not run OS due to the scarce power
supply, and thus we implemented custom page protection
library; in a sense, ELASTIN can be regarded as a library
OS that only supports page protection’ and timer interrupt
handling.

Interaction with Timer Based Checkpointing: When the
watchdog timer is expired (i.e., the current checkpoint interval

21t is only for page backup and does not support virtual memory. The MCU
of energy harvesting systems lacks MMU/TLB due to power constraint.
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has just been finished), ELASTIN clears the write permission of
all the pages written in the interval. In other words, when the
upcoming new interval starts, no page has a write permission.
This gets the new interval ready to track its own writes and
trigger copy-on-write for backing up the corresponding pages.
In this way, ELASTIN can ensure that each interval starts with
clean memory status.

Custom Software-Controlled Page Protection: To track
memory writes and trigger their copy-on-write if needed,
ELASTIN instruments store instructions at compile time while
maintaining a page number vector (PNV) to record which page
has a write permission at run time. For each store, ELASTIN
first checks if the target page has a write permission by
consulting PNV (@ in Figure 3). If not, i.e., the page number
is not found in PNV, ELASTIN creates a copy of the page
(i.e., copy-on-write) in shadow memory or radix tree based
data structure (@®); Section IV-B discusses the overhead of
these alternatives. Then, to grant the page a write permission,
ELASTIN inserts the page number (#4 in Figure 3) to PNV
as a mark for the permission (®). In this way, ELASTIN can
preserve the copy of the page until the end of the current
checkpoint interval so that the copy can be used to recover
from possible outages during the interval. Finally, ELASTIN
performs the write (@).

On the other hand, if the page being stored has a write
permission 3 ie., the page number is found in PNV, ELASTIN
skips both the page copy and the PNV insertion. In summary,
for a store to writable pages, ELASTIN takes only two steps
(®—®) while a store to non-writable pages goes through
all four steps (@—®—®—®). Note that any power outage
between these steps does not cause a memory inconsistency
problem during the recovery as long as their order is enforced.

In the wake of power failure, ELASTIN reverts all the written
pages (i.e., those populated in PNV) by using their original
copy in shadow memory along with restoring all registers as
shown in Figure 1. Obviously, this software-controlled page
protection mechanism consumes the harvested energy for both
page backup and restoration; Section III-C2 describes how
ELASTIN adjusts the page size to minimize the copy-on-write
overhead, and Section III-E shows how ELASTIN bounds the
energy consumption to ensure forward progress.

3In other words, the page has already been accessed before in the current
checkpoint interval.
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Discussion: PNV is small enough to keep the lookup cost
low. In energy-harvesting systems, the common case is that
they encounter frequent power failures, e.g., in a few tens of
milliseconds. During the short power-on period (one charge
cycle run time), PNV is populated with only a handful number
of pages in reality. Another reason for the small size of PNV
is spatial locality; many stores fall into a few previously-
populated pages during the short period of intermittent ex-
ecution [55].

In particular, the size of PNV never grows unboundedly. To
avoid stagnation not only at run time but also at boot time,
ELASTIN bounds the number of pages, that can be populated
at run time, by taking into account their restoration cost at
boot (i.e., recovery) time. Section III-D shows how ELASTIN
bounds the number of the populatable pages.

C. Adaptive Execution

To enable energy efficient intermittent computation,
ELASTIN dynamically adjusts the checkpoint interval and the
page size at both timer expiration time and boot time if needed.

1) Checkpoint Interval Adaptation: ELASTIN reconfigures
the checkpoint interval by taking into account the condition
(quality) of the energy harvesting source. This harvesting
condition is an important factor for ELASTIN to determine
whether the checkpoint interval should be adjusted or not. If
the quality of the harvested energy is sufficiently good, there is
no need to frequently checkpoint at run time; not doing so can
make a better forward progress by saving the high energy of
NVM writes required for the register checkpoint and the page
backup. In contrast, if the harvested energy is not enough, a
system should checkpoint before the impending power outage.
In light of this, ELASTIN leverages the timer itself to figure
out the underlying energy harvesting condition.
12ms

6ms 12ms(doubling)

[ | | [ [ ]
1 ! 1,
Reboot
Start I * I* Reboot
Reconfiguration Reconfiguration
‘ * Power failure l:l Unexecuted area

Fig. 4: Timer reconfiguration example



Figure 4 describes how ELASTIN reconfigures the check-
point interval. If the timer expires two times in a row * while
the energy-harvesting system is active, ELASTIN assumes that
the system have gone through good energy harvesting condi-
tion. Thus, it doubles the checkpoint interval at the second
timer expiration. The rationale behind this heuristic is that at
the second timer expiration, at least the first checkpoint inter-
val turns out to be unnecessary because it did not encounter
a power outage; the harvested energy was that sufficient.
However, the second interval should not be considered as
unnecessary because the next interval may encounter a power
outage.

On the other hand, if the timer has never expired since
the last reboot, i.e., checkpoint counter is 0, then ELASTIN
assumes that the system is under poor energy-harvesting
condition. The intuition here is that the harvested energy was
insufficient to pass even the first checkpoint interval without
interruption due to power failure. With that in mind, ELASTIN
sets the interval as a half of the last timer value in the wake
of the power failure, i.e., at the reboot time. This particular
approach (i.e., timer-halving mechanism) helps the system
to overcome the stagnation problem for most of the time,
though there are a few exceptional cases; Section III-D shows
how ELASTIN handles them for stagnation-free intermittent
computation.

2) Page Size Adaptation: To reduce the copy-on-write
overhead, ELASTIN attempts to find the optimal page size;
the spatial locality of memory writes is likely to vary due to
program phase behavior [56], and therefore the best page size
might vary for each phase.

In our current design, the memory page size cannot be
changed at run time, which would otherwise cause signif-
icant metadata (e.g., PNV) updates overheads and a subtle
correctness issue due to power failure between them. Instead,
ELASTIN reconfigures the page size at reboot time as shown
in Figure 1 to make the adaptation easier and still find the best
size across power outages.

In the wake of a power outage, ELASTIN first restores all
the pages populated in PNV. Then, it measures the cost of the
current page configuration by the product of the page size and
the number of populated pages, i.e., the size of PNV. Finally,
ELASTIN resets the page size to the best-performing one using
the decision logic of adaptive execution [57], [58].

That is, as decision runs, ELASTIN tries a set of page
sizes to select the best among them across power outages;
Section IV-E shows how the set is determined. Even though
the best page size is selected at the end of decision runs, it
is not fixed for the upcoming reboot times. Instead, at every
reboot time, ELASTIN measures the cost of its current pick,
which is compared to the most recent costs of the other page
sizes, to see if it is still the best or one of them becomes the
new best.

4To detect this, we use a metadata variable called checkpoint counter.
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D. Challenges in Forward Progress Guarantee

When the system repeatedly starts at the same recovery
point due to stagnation, ELASTIN reduces the checkpoint
interval by halving the watchdog timer value in the wake
of each power outage (Section III-C1). In this simple way,
ELASTIN can effectively avoid the stagnation problem.

However, there are a couple of challenges that must be
addressed to ensure forward progress for stagnation-free inter-
mittent computation; (1) an excessive pages populated during
a checkpoint interval, and (2) capacitor (i.e., energy buffer)
malfunction due to wear-out, environmental factors such as
temperature change, physical access attacks, and so on. First,
if there are too many populated pages which must be restored
at recovery time, the system may be stagnated in the middle of
the recovery process. Second, if the capacitor is malfunction-
ing, the system may suffer from stagnation—e.g., the buffered
energy is not enough to complete even single page backup or
restoration.

To tackle these potential stagnation problems, ELASTIN
defines thresholds for each condition: (1) the quota (i.e., maxi-
mum number) of populatable pages during a given checkpoint
interval and (2) the lower bound of the power-on period (i.e.,
one charge cycle run time) of the energy harvesting system
while its capacitor works fine. This paper assumes that the
lower bound as the worst case scenario to ensure forward
progress even in the most harsh situation, i.e., the lower bound
is called WCPT (the worst case power consuming time) °.

E. Stagnation-free Adaptation Solution

In this section, we first delve into WCPT and then show
how to use it for detecting the capacitor malfunction problem.
Finally, we show how WCPT can be used as a basis for solving
the other problem, i.e., how to bound the number of the pages
populated in a checkpoint interval.

1) Worst Case Power Consuming Time: Specifically, we
define WCPT as follows: how long can an energy harvest-
ing system sustain its execution under the maximum power
consumption mode? To figure this out for the target energy
harvesting system, ELASTIN analyzes its capacitor, i.e., energy
buffer ®. This is motivated by the insight that energy harvesting
systems do not boot until the capacitor (energy buffer) is fully
charged as with commodity systems such as WISP [61]. In
the wake of each power outage, it is thus assured that the
program can make as much progress as the fully charged
capacitor allows, even if no additional energy is harvested.
Section IV-F shows how ELASTIN calculates WCPT with this
in mind and discusses how the calculation can be extended in
case the system is equipped with other components such as
Sensors.

SELASTIN can precisely bound WCPT due to the MSP430 MCU’s simple
architecture and execution environment, i.e., in-order core without cache/OS.

6A capacitor is used as an energy buffer [59], [60]. When an electric
component depends upon a specific amount of power, the energy buffer is
placed to provide the required power.



2) Energy Buffer Malfunction: Once WCPT is obtained,
ELASTIN leverages it to detect the capacitor malfunction
problem based on the following invariant: the power-on period
of an energy harvesting system should not be shorter than
its WCPT—as long as the capacitor works well. That is, if
this invariant does not hold, the capacitor is malfunctioning.
However, it is impossible for a timer to measure the power-on
period because the timer value is reset on a power outage; Sec-
tion IV-C shows how ELASTIN checks the invariant without
measuring the power-on period.

If the capacitor turns out to be malfunctioning based on
the invariant checking, ELASTIN treats this situation as an
exception and switches to its handling mode. At the reboot
time, ELASTIN first decreases the page size to the minimum
(2 bytes) and then sequentially restores the registers and pages
one by one in case there is an insufficient amount of energy
for their restoration in a the batch manner. With the exception
handling mechanism, ELASTIN can avoid stagnation even if
the capacitor malfunctions—provided the system can run at
least a single read/write instruction without interruption 7.

3) Populatable Pages: ELASTIN also leverages WCPT to
determine the maximum number of the populatable pages with
their boot-time restoration cost in mind. To ensure that at
recovery (boot) time, all the pages populated in the last check-
point interval can be safely restored, the total page restoration
time must be shorter than WCPT, i.e., Number_of_Pages *
Single_Page_Restore_Time < WCPT; otherwise, power
failure may occur in the middle of the restoration process.
For the threshold of Number_of_Pages, ELASTIN therefore
uses the maximum value among those that satisfy the above
inequality. In this way, when ELASTIN reconfigures the page
size at boot time, the threshold is also updated according to
the new page size. If the number of the pages populated in
a checkpoint interval happens to exceed the threshold, which
is detected by checking a metadata variable called populated
page counter, ELASTIN makes an additional checkpoint right
at the moment. This allows ELASTIN to safely restore all the
pages at the next reboot time without interruption due to power
failure.

IV. IMPLEMENTATION
A. Register Checkpointing, Permission Clearing Protocol

As shown in Section III-B, at each timer expiration,
ELASTIN checkpoints all registers including PC with double
buffering and invalidates out the write permission of all pages.
For this purpose, ELASTIN maintains two bits: (1) a double
buffer index bit that is toggled at the end of the register file
checkpointing and (2) a PNV valid bit whose reset invalidates
the write permission of all pages. Note that these two bits must
be atomically updated. Otherwise, a power outage between
the two separate updates leads to incorrect recovery; in the
wake of the power outage, ELASTIN ends up reverting the
pages written in the formerly finished interval though it is

7If the capacitor cannot even secure energy required for one memory
instruction, ELASTIN assumes that the system is completely unusable.
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about to start a new interval from the checkpointed PC, not
the former. To avoid the incorrect recovery, ELASTIN updates
the two bits in a single store instruction that guarantees failure
atomicity [62]. Once they atomically updated, ELASTIN clears
out all page numbers in PNV by using a single DMA operation
8 as will be shown in Section IV-D; the amount of the DMA
write is determined by populated page counter. Once it is
successfully done, ELASTIN finally sets the counter to zero
before starting the new interval.

B. Memory Organization

ELASTIN divides the whole nonvolatile memory into four
areas: main (original) memory, shadow memory, register dou-
ble buffer, and reserved memory for PNV and the rest of
various metadata, i.e., the checkpoint counter, valid bits for
checkpoint and PNV, a performance table of page sizes,
the populated page counter, thresholds for the number of
populatable pages and WCPT, and so on.

The biggest problem with shadow memory is that it occu-
pies a half of the total memory size, thus failing to run those
applications that have high memory footprints. To overcome
this challenge, ELASTIN proposes another design choice, radix
tree memory management; as OS implements the page table
using a radix tree, we used the same kind of data structure. By
using radix tree as backup page storage, ELASTIN can increase
available main memory size for applications at the expense of
the increased page search overhead. Section V evaluates the
performance overhead of both shadow memory and radix tree.

C. Invariant Checking for Capacitor Malfunction Detection

To detect capacitor malfunction, ELASTIN uses the invariant
of an intact capacitor, i.e., the power-on period (one charge
cycle run time) should not be shorter than WCPT; see Sec-
tion III-E2. However, ELASTIN cannot use a timer to measure
the period because the timer value will be reset on power
outage. To achieve the invariant checking without a timer,
ELASTIN relies on the following observation: when the first
checkpoint is not made—due to power outage—since the last
reboot, we can infer that the power-on period must be less than
the checkpoint interval; this is the reason ELASTIN to halve the
interval (Section III-C1). With this in mind, ELASTIN detects
the capacitor malfunction as follows.

While the capacitor malfunctions, ELASTIN keeps decreas-
ing the checkpoint interval due to frequent power outages.
Thus, after many outages and resumptions, the interval would
eventually become WCPT at some recovery time. At the
moment, if it turns out that no checkpoint was performed
since the last boot, i.e., checkpoint counter is 0, then we know
that the power-on period is definitely shorter than the interval
(WCPT). Thus, we conclude that capacitor is malfunctioning.
In short, when a checkpoint interval is the minimum (WCPT),
if the checkpoint is not made before power failure, ELASTIN
switches to the exception handling mode (Section III-E2).

8Even if the DMA operation fails due to power failure, ELASTIN does not
lead to incorrect recovery. In the wake of the power failure, ELASTIN simply
starts the DMA operation over and follows the rest of the protocol.
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ELASTIN’s copy-on-write mechanism entails NVM writes
for the page copy. However, due to the nature of NVM,
memory writes incur very significant latency [63]-[72]. To
reduce the overhead, ELASTIN leverages direct memory access
(DMA) hardware accelerator available in the target energy
harvesting system. Figure 5 demonstrates that a single byte
DMA transfer takes only 8 cycles which is about 1.5X faster
than the standard memory copy without DMA. When the copy
size is larger than a single byte [73]. DMA copy becomes
4~5X faster.

Il PNV clear
I PNV lookup

[ Page copy

2000 [ PNV insert

1000

Executime Time [us]

Non-DMA

DMA

Fig. 6: Copy-on-write overhead breakdown in stable power input
case. With the page size of 256 bytes, the major overhead comes
from the page copy.

We also measured the impact of DMA on ELASTIN’s per-
page based copy-on-write mechanism for all of our bench-
marks. Figure 6 shows the average execution time breakdowns
of the copy-on-write for a 256B page with and without DMA.
The page copy overhead occupies the most significant portion,
and the PNV lookup overhead follows. With DMA, the overall
execution time becomes about one third of the original time
without DMA; this results from the large reduction of the
page copy overhead which is about 6X speedup. In particular,
the PNV clearing overhead is negligible because all page
numbers are cleared by one DMA operation. In contrast, PNV
insertions cannot be batched, since they are far apart from
each other. Even though DMA can be leveraged for them, the
DMA initialization and completion costs offset the benefit.
Consequently, ELASTIN takes advantage of the DMA only
for the page copying and the page clearing.

E. Page Size Adaptation Range

ELASTIN’s page size selection is based on a series of
decision runs for testing each size; see Section III-C2. Since
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most of them are suboptimal, ELASTIN tries to minimize the
decision runs by limiting the range of page sizes to be tested.

To find the optimal page size, it is necessary to understand
the tradeoff between the cost of PNV copying and the cost of
page clearing. For example, if the page size is too small, it may
incur frequent page copies causing expensive PNV clearing
cost at reboot time or timer expiration. In contrast, if the page
size is too large, the system may consume too much energy
for copying even on page. In addition, the spatial locality of
memory writes is another important factor. The high locality
lets ELASTIN skip the page copy and PNV insertion since the
memory writes are likely to be concentrated on a few pages.
while the low locality increases them since many writes tend
to touch many different pages.

The tradeoff is affected by the locality, e.g., with the high
locality can amortize the cost of a large page copy by many
subsequent writes whose address falls into the same page. To a
large extent, the locality significantly varies across applications
due to their different pattern of memory writes. With that in
mind, we empirically measured the performance of each page
size for all of our benchmarks. Figure 7 shows the average
execution time overhead of the best 4 page size configurations,
i.e., 32B, 64B, 128B, 256B. As a result, ELASTIN’s adaptive
execution uses them for decision runs, i.e., the page size
adaptation range is 32~256 bytes.
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£
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256 128 64 32

Page Size (bytes)

Fig. 7: Average execution time overhead of the best 4 page size
configurations for all benchmarks when DMA and shadow memory
are used with stable power input, i.e., no power failure.

E. Worst Case Power Consuming Time

In this paper, WCPT is defined as: how long a program can
sustain its execution under the maximum power consumption
mode of the microcontroller (MCU) which drains the energy
from the capacitor at the highest rate. To measure WCPT,
ELASTIN needs to know the energy buffer size (capacitance),
because the MCU may rely on only the buffer without any
input from harvesting energy sources in the worst case. For a
given capacitance of the energy buffer (e.g., 47uF in WISPS),
it provides the MCU with the operating voltage from its
starting point (V;;,42) to the power outage point (V,,,;,,). Then,
ELASTIN estimates the available energy input as follows:

1
Available Energy Input = §Cbuf * (V2. —V2.). (D)

max



For the maximum power consumption estimation of MCU,
ELASTIN leveraged the following equation [74] :

Etot - Ptott == Vdd-[leak’t + Cmspvd2d (2)

where Vyq, Lieqk, and Cy,sp are input voltage to MCU, leakage
current, and the MCU capacitance, respectively. ELASTIN
considers the input voltage to MCU by taking into account
the capacitor discharge behavior, since the capacitor cannot
consistently provide the same amount of power. ELASTIN
models the input voltage variation while the energy buffer is
discharged with a simple equation: v,(t) = V,ecr for which
the capacitance (C) is already given by Equation 1, and the
resistance (R) can be calculated by Ohm’s law, R = V/I.
ELASTIN views the MCU as a huge constant resistor, R, under
the maximum power consumption mode. That is, ELASTIN
refers to the MCU manual to figure out the maximum current
(I)—that the device can consume—and use it to calculate the
resistance (R). For Ijcqr and Cp,sp, ELASTIN refers to the
manual as well; If a certain MCU’s manual does not specify
them in any case, ELASTIN can adapt the typical leakage cur-
rent and capacitance model as one used in [74]. With all these
findings, the available energy input obtained by Equation 1
should be always greater than the energy consumption of the
underlying MCU given by FEquation 2. With that in mind,
ELASTIN calculates the WCPT by calculating a threshold ¢ in
the following equation:

) > ‘/065—1; (Ileak)t + Cmsp(v;)e%)Q
3
In particular, this is applicable to commodity energy harvesting
devices. For instance, WISPS consists of 47uF energy buffer
and MSP430FR5969. This MCU consumes 2650uA at 3.0V,
16MHz, in an active mode [75]. The MCU starts to operate
at 2.4V and performs down to 1.8V while the resistance value
of the MCU is 1133). Therefore, the resulting WCPT is
approximately 11.6ms.
Discussion: Thanks to the simplicity of the above analytical
model, it is easy for ELASTIN to incorporate other system
components in the WCPT calculation. For example, if the sys-
tem is equipped with other components, e.g., sensors and actu-
ators. For this purpose, ELASTIN needs to update the resistance
part of Equation 3, ie., R = f———V—7—— To
figure out the maximum current of the components, ELASTIN
simply refers to their manuals as usual.

2
ij in

1
gcb“f * (Vtriai -

V. EVALUATION

We conducted all the experiments on TI’s MSP430FR5994
Launchpad development kit board® and implemented ELASTIN
described in Section III as a runtime library. To instrument
nonvolatile memory (NVM) writes (Figure 3), we imple-
mented a source-to-source translator using the LLVM compiler
infrastructure [76]. Then, the instrumented program and the
runtime library are compiled and linked using TI's MSP430
GCC toolchain to generate the binary executable.

9FRAM is used as main memory, and we do not use SRAM at all.
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To compare ELASTIN with Ratchet [23], the state-of-the-
art region based work, we ported it to MSP430 since it
was originally implemented for ARM [77]. Note that we
omitted Ratchet’s timer based checkpointing, because it does
not work—i.e., it may cause incorrect recovery—for those
idempotent regions that contain WARAW (Write-After-Read-
After-Write) dependence as admitted by the author [23]. We
evaluated both ELASTIN and Ratchet for total 11 benchmarks
comprised of a subset of MiBench applications [78], [79]
and others from prior works [28], [36]. All the benchmark
applications were compiled with standard -O3 optimization.

A. Intermittent Computing Platform
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Fig. 8: Realistic intermittent power traces (simplified)

We developed a special power generator board with TI’s
MSP430FR5969 to mimic various power outages and resump-
tions as with prior work [80]. The power generator board pro-
vides supply voltage between 0 to 3.3V, directly to the target
evaluation board (i.e., TI's MSP430FR5994) through GPIO
pins to power it on/off at will based on power input traces.
Unlike prior works [23], [25], [26], [28], [55] that do not
vary the power failure frequency, we randomly increase and
decrease the power-on period to model various energy sources
and environments, which serves to stress-test ELASTIN. The
minimum bound of the power-on period is set to 15ms '°
while the minimum bound to a half of the execution time of
the smallest application among our benchmarks. With that in
mind, we synthesized two power traces for our intermittent
computing experiments as shown in Figure 8. At power-on,
the power generator board provides voltage to the target board
while it cuts the voltage at power-off for outage.

B. Execution Time Overhead Analysis with No Power Failure

We first analyze ELASTIN’s execution time overhead when
the power source is stable, i.e., there is no power failure.
Here, we set the baseline to the uninstrumented binaries
that have no checkpoint/restart support. We measured the
overhead of ELASTIN for 11 benchmark applications varying
the page size from 2B to 4KB and alternating the backup
page storage between a shadow memory and a 2-level radix
tree data structure. Figure 9 shows the normalized overhead
of ELASTIN compared to the baseline when shadow memory
is used while 10 shows that when the 2-level Radix tree
is used. Overall, the average overhead of ELASTIN is 88%

IOWISP5 [61], a commodity energy-harvesting system, has an a capacitor
of 47uF, and it can sustain about 15ms as one charge cycle run time [28].



with the best page size of 256 bytes in shadow memory (see
Figure 7) while 2-level Radix tree results in 243% with the
same page size as the best. Nevertheless, it would be a mistake
to take this to mean that ELASTIN incurs such a significant
overhead for intermittent computation. Recall that frequent
power failures are the norm in energy-harvesting systems,
and this particular experiment has no power failure at all;
Section V-C evaluates the performance impact of ELASTIN
on intermittent computation with frequent power outages.

As shown in the figures, some applications such as bitcnt,
dijkstra, and stringsearch prefer larger page size. Even if
the copy-on-write of a large page size is expensive due to
high volume of NVM copy, the cost is amortized by high
spatial locality in the following memory writes. In contrast,
the other applications show performance degradation when
the page size is bigger than 256 bytes. That is because the
cost of such a large page copy cannot be paid off in the
applications due to their low spatial locality. The takeaway
is that the best page size varies depending on application
characteristics. Furthermore, the best page might vary even
during program execution due to phase behavior [56]. In such
a case, ELASTIN’s boundary-free adaptive execution can find
the right page size across power failures.

C. Execution Time Overhead Analysis with Power Outages

To evaluate the forward execution progress in the presence
of power failures, we measured the application’s completion
time i.e., the execution time taken to complete the application
across power failures. In Figure 11 and Figure 12, total three
cases are compared using the two power traces shown in
Figure 8: the state-of-the-art [23], i.e., Ratchet in the legend,
ELASTIN with timer only adaptation, i.e., ELASTIN (timer),
and ELASTIN with both timer and page size adaptation, i.e.,
ELASTIN (timer+page). Note that in Figure 11 (trace#1) and
Figure 12 (trace#2), we set the baseline to our approach,
i.e., ELASTIN (timer+page) because Ratchet makes many
applications stagnate.

As shown in the figures, Ratchet [23] incurs stagnation prob-
lem in five applications on both traces. For the rest applica-
tions where Ratchet does not stagnate, ELASTIN (timer+page)
outperforms Ratchet on average by 3.5X and 3X for trace#1
and trace#2, respectively. Also, it turns out that ELASTIN
(timer+page) improves ELASTIN (timer) on average by 40%
and 8% for trace#l and trace#2, respectively. This confirms
that ELASTIN’s boundary-free 2-dimensional (timer and page
size) adaptation works effectively.

Interestingly, Figure 11 shows that Ratchet could outper-
form ELASTIN for basicmath. That is because in basicmath,
Ratchet happens to have the optimal size of regions which
corresponds to the input power cycle characteristics, i.e.,
trace#1. Thus, when a different power trace is used, Ratchet
cannot beat ELASTIN, which is confirmed by our experiment
with trace#2. As shown in Figure 12, for the same application
(basicmath), ELASTIN significantly outperforms Ratchet under
trace#2.
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geomean of Ratchet is calculated only for non-stagnated applications.
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Fig. 12: Application completion time in the presence of power failures
using trace#2: the bar of stagnated applications reaches oo, and the
geomean of Ratchet is calculated only for non-stagnated applications.

D. Energy Consumption Breakdown across Power Outages

We also analyzed the energy consumption breakdown across
power outages. Figure 13 shows that copy-on-write and the
register checkpoint (ckpt in the legend) do not consume sig-
nificant amount of energy, i.e., less than 1% on average. That
is because the average number of copied pages in intermittent
computation is only about 1 or 2 thanks to spatial locality and
high power outage frequency; as shown in Figure 6, the PNV
lookup overhead is trivial as well, and thus overall copy-on-
write overhead is not significant.

Overall, the overhead of ELASTIN comes from the re-
execution cost; in the legend, ’forward’” means the energy
consumption for a portion of execution time that has never
been restarted, thus it is not an overhead technically. Even
if ELASTIN reconfigures the checkpoint interval by halving
the previously selected interval when the system dies without
forward progress, the re-defined checkpoint interval may not
help for the first time to make progress. For example, to get out
of stagnation, ELASTIN might need to perform multiple times
of checkpoint interval halving across power failures, and the
re-execution of the reduced intervals consumes the harvested
energy. As shown in Figure 13, this re-execution overhead is
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capacitor malfunction but also capable of working with smaller
capacitance, e.g., less than 10uF. Consequently, we believe that
ELASTIN enables using a smaller capacitor, which should be
a desired approach for smaller chips required for IoT industry
such as wearable markets.

about 39% on average.
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E. Exception Handling for Capacitor Malfunction

. . . . Fig. 14: ELASTIN’s robustness against capacitor malfunction
Capacitor (i.e., energy buffer) can malfunction either by & & P i

natural worn-out or physical security attacks [43]. For ex-
ample, when cracked, the capacitor leaks the buffered energy VI. RELATED WORKS
more quickly and the original capacitance is significantly re-
duced [41]. To have a scenario of the malfunctioning capacitor,
we set the power-on period to 5X lower than the normal
minimum bound mimicking the cracked energy buffer. That
is, the system only runs for 3ms intermittently. As shown in
Figure 14, Ratchet was unable to complete all of benchmark
applications. In contrast, ELASTIN successfully completes
them all. This implies that ELASTIN is not only robust against

The problem of ensuring data consistency and improving the
forward progress of an intermittently powered system is at the
heart of energy harvesting computing. Various methods have
been proposed from hardware designs to software solutions.

a) Hardware Schemes: To solve the problem, researchers
have designed the nonvolatile processor. Wang et al. propose
utilizing nonvolatile flip-flops (NVFF), as their fundamental
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block for register checkpointing [40]. NVFF leverages a hybrid
CMOS and ferroelectric technology in which a backup ferro-
electric capacitors (FeCap) are coupled to a standard CMOS
D latches. Lui er al. [8], [81] expand on the work of Wang
et al. by additionally designing nonvolatile SRAM while Liu
and Jung [8], [82] design nonvolatile gated store buffer for
consistency-aware checkpointing; their designs are roughly the
same hybrid technique as NVFF.

The benefit of such technologies would be a fast transfer
of bit data because of the close proximity to the storage
source. However, to checkpoint volatile states to NVFF, the
scheme requires a voltage monitor. For instance, when the
system detects voltage drops, the processor backs up volatile
states to NVFF. However, Cronin et al.’s recent work reported
that the design is vulnerable to frequent bit flip attacks [43],
[44] or checkpoint failure [43], [45]. ELASTIN does not rely
on unconventional hardware support yet it can address the
energy buffer issue by treating the capacitor malfunction as
an exception.

Colins et al. propose a reconfigurable energy buffer with
multiple capacitor banks [49]. Since a different task may
require a different amount of energy, they attempt to recon-
figure the energy capacity to match the application demand.
However, this scheme overlooks the capacitor malfunction
issues that can be caused by wear-out, environmental factors
such as temperature change, and even physical access attacks.
When the capacitor is malfunctioning, the scheme does not
work properly. In contrast, ELASTIN can survive the capacitor
malfunction issues with its exception handling mode that
works orthogonally to the capacitor.

b) Software Schemes: A number of software solutions
have been proposed for the past few years. They differ how
the correct placement of checkpoints, what occurs during
checkpointing, and whether the method is automated or able
to ensure forward progress. As for the correct placement of
checkpoints, two starkly different approaches are given. In the
research by Xie et al [35], [36], they present algorithms to
figure out when is a safe to perform checkpoints and how to
minimize them as a heuristic. This design revolves around the
idea of severing anti-dependencies that appear in the code by
placing a checkpoint between the dependent load-store pair.

As for the other approach [26], [28], [37], [53], this burden
is placed on programmers. For example, they are required
to determine re-executable task boundaries on their own by
taking into account potential memory inconsistency and power
failure during the task execution. That is, it is up to program-
mers to make good judgment of whether a task is considered
idempotent or free from stagnation. Unfortunately, all of these
software schemes end up splitting an program into several
regions (or tasks) by re-compilation or user-intervention. In
contrast, ELASTIN never places such a burden on end users
thanks to its boundary-free and fully-automated nature.

Colins et al. [27] propose to use an energy debugger [47],
[48] to deal with the stagnation phenomenon. They also found
that the state-of-the-arts including task-based schemes [26],
[28], [37], [53] suffer from the ’non-terminating” bug and
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tried to partition the stagnated tasks. However, the scheme
requires multi-step user interventions, i.e., energy profiling,
energy checking over the profiled paths, and boundary place-
ment, and so on, without considering energy buffer malfunc-
tion/vulnerability. Although the energy debugger approach can
measure the whole system energy including MCU, sensors,
and actuators, it cannot measure the worst case energy con-
sumption thereby failing to ensure forward progress. It is
rather a very complicated process to measure the maximum
current consumption of the entire system, because it requires
expensive experimental settings such as heating/cooling cham-
bers for precise measurement. In fact, the manufacturers of
the MCU, sensors, and other components measure the maxi-
mum current in that expensive way, considering temperature
variation and other factors. In light of this, ELASTIN simply
refers to the manuals to figure out the maximum current and
incorporates it to the analytical model for WCPT calculation.

On top of the profile directed task partitioning, Chin-
chilla [25] recently introduced a dynamic adaptive check-
point scheme using a timer and a undo logging mechanism.
Chinchilla also reconfigures the timer interval according to
system performance, but it checkpoints at pre-determined
program point determined by the energy debugger [27], [48]
for forward progress. As this paper discussed, capacitor can
be worn out, and thus the energy buffer can behave differently
from its original behavior. Consequently, Chinchilla is unable
to guarantee forward progress though it requires substantial
manual effort. In addition, its undo logging scheme fixed
the logging granularity (i.e., 8 bytes) without DMA support
resulting in lower performance. In contrast, ELASTIN is user-
intervention-free, boundary-free, and fully-adaptive. Moreover,
it strongly guarantees forward progress even when the energy
buffer is malfunctioning or under attacks.

VII. SUMMARY

This paper presents ELASTIN, a stagnation-free intermit-
tent computing system that ensures forward progress in the
presence of frequent power outages. ELASTIN leverages both
timer-based checkpointing of volatile registers and copy-on-
write mappings of nonvolatile memory pages to restore them in
the wake of power failure. Unlike prior works, ELASTIN does
not partition program into recoverable regions or tasks. The
boundary-free nature allows ELASTIN to realize full potential
of adaptive execution, adjusting both the checkpoint interval
and the page size at will. Consequently, ELASTIN can achieve
stagnation-free intermittent computation and maximize for-
ward progress across power outages.
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