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Abstract— This paper presents ELASTIN, a stagnation-free
intermittent computing system for energy-harvesting devices that
ensures forward progress in the presence of frequent power
outages without partitioning program into recoverable regions
or tasks. ELASTIN leverages both timer-based checkpointing
of volatile registers and copy-on-write mappings of nonvolatile
memory pages to restore them in the wake of power failure.
During each checkpoint interval, ELASTIN tracks memory writes
on a per-page basis and backs up the original page using custom
software-controlled memory protection without MMU or TLB.
When a new interval starts at each timer expiration, ELASTIN
clears the write permission of all the pages written during
the previous interval and checkpoints all registers including a
program counter as a recovery point. In particular, ELASTIN
dynamically reconfigures both the checkpoint interval and the
page size to achieve stagnation-free intermittent computation
and maximize forward progress across power outages. The
experiments on TI’s MSP430 board with energy harvesting traces
show that ELASTIN outperforms the state-of-the-art scheme by
3.5X on average (up to orders of magnitude speedup) and
guarantees forward progress.

I. INTRODUCTION

Adoption of energy harvesting technologies in Internet of

Things (IoT) has led to the advent of batteryless low-power

embedded systems [1]–[5]. By leveraging ambient energy

sources such as solar, thermal, wireless, vibration, and so

on [6]–[16], energy harvesting devices are not only self-

sustaining and maintenance-free but also eco-friendly, and they

continue to be used in many areas: sensor, wearable, storage,

and implantable medical devices [12], [13], [17]–[21].

However, due to the unreliable power source, energy-

harvesting systems suffer from unpredictable and frequent

power failure. They use a small capacitor as an energy

buffer and intermittently compute only when enough energy

is secured in the capacitor; when it is depleted, the systems

die. This is so-called intermittent computation [22]. With the

intermittent nature in mind, the researchers equip the energy

harvesting system with nonvolatile memory (NVM) and some

form of crash consistency to checkpoint necessary data and

restore them across power outages.

The state-of-the-art intermittent computing schemes parti-

tion program into a series of recoverable regions (tasks) so

that their re-executions always result in the same and correct

output [23]–[28]. Such a recoverability is achieved by either

compiler-directed idempotent region formation [23], [29]–[34]

or user-based manual task partitioning [24]–[28]. In the wake

of power failure, the prior schemes restart from the beginning

of the interrupted region (task) after restoring the checkpoints

saved at the region/task (task) boundary for correct recovery.

However, the region (task) based schemes [24], [26]–[28],

[35], [36] face several critical issues. First, the schemes end

up wasting the hard-won energy due to the lack of flexibility

in the checkpoint interval; they make a checkpoint, that entails

multiple energy-consuming NVM writes, at every pre-defined

region (task) boundary, which would be unnecessary under

stable energy-harvesting condition. The crux of the problem is

that due to the compile-time fixed regions (tasks), checkpoint

interval cannot be adapted to the underlying energy harvesting

quality and the power outage behavior.

Unfortunately, the inability to adapt checkpoint interval can

cause a more serious issue, i.e., making the system stagnate

while consuming the hard-won energy; that is why the prior

schemes [26], [28], [37]–[40] cannot ensure forward progress.

If power outages repeatedly occur within a certain region

(task) before it ends, the schemes continually attempt to re-

execute the same interrupted region (task). This work refers to

such a livelock-like situation as stagnation. Due to the small

capacitance of an energy buffer, stagnation often occurs during

the execution of long regions (tasks). Without solving the

stagnation problem, all other efforts to make energy-harvesting

systems reality would eventually fail, calling for a practical

solution.

Last but not least, all prior works cannot handle capacitor

malfunction issues such as excessive leakage and crack, that

occur in reality and reduce the capacitance, thereby leading

to incorrect recovery or even worse stagnation [41], [42].

According to Cronin et al.’s recent work [43]–[45], even

fresh capacitors can be worn out due to physical access

attacks. For example, attackers can damage the capacitor by

injecting malicious voltage fluctuation into the target board.

This urges the existing schemes to be robust against such

security attacks for stagnation-free intermittent computation

with correct recovery.

To address above issues, this paper presents ELASTIN,

a stagnation-free intermittent computing system for energy-

harvesting devices that ensures forward progress in the pres-

ence of frequent power outages. Unlike prior works, ELASTIN

does not partition a program into recoverable regions or tasks;
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such a boundary-free nature allows ELASTIN to realize full

potential of checkpoint adaptation. ELASTIN leverages both

timer-based checkpointing of volatile registers and copy-on-

write mappings of nonvolatile memory pages to restore them

in the wake of power failure. During each checkpoint interval,

ELASTIN tracks memory writes on a per-page basis and backs

up the original page—i.e., the copy-on-write granularity, not

a virtual memory page—using software-controlled memory

protection without MMU or TLB1. When a new interval starts

at each timer expiration, ELASTIN clears the write permission

of all the pages written in the previous interval and checkpoints

all registers including a program counter as a recovery point.

ELASTIN reconfigures the checkpoint interval and the page

size based not only on the underlying energy harvesting quality

but also on the observed forward progress. Consequently,

ELASTIN achieves stagnation-free intermittent computation,

ensuring forward progress across power outages.

Finally, ELASTIN can survive the capacitor malfunction.

ELASTIN’s boundary-free adaptive execution makes it possible

to adapt the checkpoint interval and the page size to even the

cracked capacitor or one under attacks. For example, ELASTIN

can ensure forward progress even for 50% of original ca-

pacitance with 2x faster leakage draining. The takeaway is

that ELASTIN can improve both the capacitor security and

the lifetime of energy-harvesting systems while maximizing

forward progress even under exceptional circumstances.

The contributions of this paper are as following:

• ELASTIN strongly guarantees forward execution progress.

Experimental results show that ELASTIN is able to com-

plete all benchmark applications, whereas the state-of-

the-art work cannot due to stagnation.

• ELASTIN’s boundary-free checkpointing requires neither

user intervention nor program partitioning for region

(task) formation while its 2-dimensional adaptation of

timer interval and page size can maximize the forward

progress; ELASTIN achieves 3.5X average speedup over

the state-of-the-art region based scheme.

• ELASTIN can handle the capacitor malfunction issues,

thereby achieving forward progress even when the ca-

pacitor is under security attacks or simply worn out. This

can eventually lengthen the life-time of the capacitor and

the energy-harvesting system.

II. BACKGROUND AND MOTIVATION

A. System Model

Since power failure is the norm in energy-harvesting sys-

tems, they should have byte-addressable nonvolatile memory

(NVM) for the efficient backup/recovery across the failures.

TI’s MSP430FR series of microcontrollers (MCU) have al-

ready integrated FRAM, though SRAM is still used due to

the high write energy/latency of the current FRAM technol-

ogy [46]. The MCUs are expected to have NVM soon as main

memory thanks to new technologies such as STT-MRAM.

1ELASTIN can be regarded as library OS that only offers memory protection
and timer interrupt. In general, energy-harvesting devices do not run OS.

Currently, ELASTIN targets MSP430 MCUs, 3-stage pipeline

in-order core without cache, MMU, or TLB, where FRAM is

used as main memory; SRAM is not used in our evaluation.

Thus, only data in a processor, i.e., registers, are transient and

will be lost on power failure; they need to be checkpointed

for recovery.

B. Curse of Stagnation

Suppose a program region/task whose execution time is

greater than the power failure period, i.e., the time between the

failures. If they periodically occur with the same frequency,

the program ends up rolling back to the beginning of the

same region again and again. That is because the failures keep

occurring before the end of the region is reached, in which case

the program just wastes harvested energy in vain making no

forward progress. Section III shows how ELASTIN guarantees

forward progress to overcome the curse of stagnation.

C. Lack of Checkpoint Adaptation

If the amount of harvested energy is sufficient, the energy-

harvesting system does not have to frequently checkpoint

to back up necessary program status due to low likelihood

of power failure. On the other hand, if the harvesting en-

ergy source is weak or unstable, the system would need

to checkpoint more frequently than usual. Unfortunately, all

prior software schemes partition program to regions or re-

structuring it as tasks to form recoverable regions/tasks without

considering the level of harvested energy. Since the schemes

checkpoint program status at each region/task boundary fixed

at compile time, they cannot adapt to the varying quality of

harvested energy at run time. Even if power failure rarely

occurs, the schemes can waste hard-won energy by performing

an unnecessary checkpoint at every single boundary during

the execution of consecutive regions (tasks). Even worse, the

schemes can suffer from stagnation during the execution of a

long region (task) when power outages occur frequently.

D. Capacitor (Energy Buffer) Vulnerability

Existing task based schemes [27], [47]–[49] take into

account capacitor’s behavior to improve forward progress.

However, they may end up with stagnation due to their

assumption that the capacitor can maintain its original quality

(characteristic), which is not true in reality for several reasons.

First, the capacitor energy can be drained a lot faster than

usual when the temperature goes up. This can be understood

by Arrhenius law [41], [50], [51] that specifies the high impact

of temperature on the leakage current, i.e., exponential leakage

increase with rising temperature.

Second, even if the temperature is maintained, the capacitor

can still malfunction. For example, due to mechanical or

external pressure, the packaging material can be worn out,

and the capacitor will be cracked eventually [52]. If cracked,

the capacitor leaks the buffered energy more dramatically or

charges only partial amount of the original capacitance.

Third, the capacitor quality can be deteriorated by security

attacks that can physically access it and inject malicious
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Fig. 1: Overall workflow: checkpoint interval can be adjusted when it ends at timer expiration and in the wake of power outage at boot time

voltage fluctuation to the system. As shown in the recent

work [43], the attackers can inject square wave voltage fluc-

tuation that generates extremely frequent checkpoints in the

system, thus making capacitor malfunction occur much earlier.

Section III-D details how ELASTIN addresses these issues.

III. DESIGN OVERVIEW

To realize full potential of adaptive execution according

to energy-harvesting condition, we design ELASTIN’s backup

and recovery mechanisms in a boundary-free way without

inserting region or task boundaries to program. For this pur-

pose, ELASTIN leverages both timer-based checkpointing of

volatile registers (Section III-A) and copy-on-write mappings

of nonvolatile memory (NVM) pages (Section III-B) to restore

them in the wake of power failure. Figure 1 describes the

overall workflow of ELASTIN.

A. Watchdog Timer Based Checkpointing of Volatile Registers

ELASTIN leverages a watchdog timer, that can be adjusted

at both its expiration and boot time (Section III-C1), to form

flexible checkpoint interval. At each timer expiration where

the current checkpoint interval finishes and the new one is

about to start, ELASTIN checkpoints all registers including

the program counter (PC) to a reserved area in NVM. In

case of power outage during the register checkpoint, ELASTIN

leverages double buffering to leave at least one of the two

buffers intact [23], [53]; see Figure 1.

Note that ELASTIN saves the registers for the new interval

in case it is interrupted due to power failure. As described in

Figure 1, when power comes back, ELASTIN uses the PC as a

recovery point to restart the interrupted interval after restoring

all the other registers; they serve as inputs to the interval to be

restarted. As will be shown in Section III-B, in addition to a

volatile register file, ELASTIN needs to make a copy of NVM

pages, which is invalidated at both timer expiration and boot

time, for correct recovery. Thus, the recovery process includes

the page restoration as well.

B. Page Protection Based Backup of Nonvolatile Memory

The timer-based checkpointing alone can lead to a memory

inconsistency problem. Consider an example shown in Fig-

ure 2. Here, an energy-harvesting system checkpoints between

write#2 and the following read instruction and encounters a

Write #1 -> mem[a]
Write #2 -> mem[a+2]
Checkpoint()
Read mem[a] -> r3
…
Write #3 -> mem[a]
Write #4 -> mem[a+4]

power outage

Write #1 -> mem[a]
Write #2 -> mem[a+2]
Checkpoint()
Read mem[a] -> r3
…
Write #3 -> mem[a]
Write #4 -> mem[a+4]
…

Recovery

WAR dependence

Fig. 2: Memory inconsistent recovery due to anti-dependence

power failure right after write#3. In this case, the write#3
and the Read instruction access to the same memory, mem[a].
Thus, these two instructions are anti-dependent, i.e., they form

a WAR (write-after-read) dependence. In the wake of the

power failure, the system starts from the most recently check-

pointed point, thus subsequently reading mem[a]. However, it

ends up reading not the original value but the one updated by

write#3, thereby leading to incorrect recovery.

To address the memory inconsistency, during each check-

point interval, ELASTIN tracks memory writes on a per-page

basis and backs up the original page; in the wake of power

failure, ELASTIN first reverts all the writes (including anti-

dependent ones) performed in the interrupted interval using

the backup page and then jumps back to the recovery PC

(Section III-A) where the interval started. That way ELASTIN

can restart the interrupted interval with original memory status

as if it were being started for the first time.

To achieve this, ELASTIN leverages a conventional page

protection mechanism of operating systems which tracks

writes to non-writable page as a page fault and backs up the

page with a copy-on-write mechanism [54]. In general, energy-

harvesting systems do not run OS due to the scarce power

supply, and thus we implemented custom page protection

library; in a sense, ELASTIN can be regarded as a library

OS that only supports page protection2 and timer interrupt

handling.

Interaction with Timer Based Checkpointing: When the

watchdog timer is expired (i.e., the current checkpoint interval

2It is only for page backup and does not support virtual memory. The MCU
of energy harvesting systems lacks MMU/TLB due to power constraint.
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Fig. 3: copy-on-write backup: � page number vector (PNV) lookup, � copy the page to shadow, � PNV insertion, � memory write

has just been finished), ELASTIN clears the write permission of

all the pages written in the interval. In other words, when the

upcoming new interval starts, no page has a write permission.

This gets the new interval ready to track its own writes and

trigger copy-on-write for backing up the corresponding pages.

In this way, ELASTIN can ensure that each interval starts with

clean memory status.
Custom Software-Controlled Page Protection: To track

memory writes and trigger their copy-on-write if needed,

ELASTIN instruments store instructions at compile time while

maintaining a page number vector (PNV) to record which page

has a write permission at run time. For each store, ELASTIN

first checks if the target page has a write permission by

consulting PNV (� in Figure 3). If not, i.e., the page number

is not found in PNV, ELASTIN creates a copy of the page

(i.e., copy-on-write) in shadow memory or radix tree based

data structure (�); Section IV-B discusses the overhead of

these alternatives. Then, to grant the page a write permission,

ELASTIN inserts the page number (#4 in Figure 3) to PNV

as a mark for the permission (�). In this way, ELASTIN can

preserve the copy of the page until the end of the current

checkpoint interval so that the copy can be used to recover

from possible outages during the interval. Finally, ELASTIN

performs the write (�).
On the other hand, if the page being stored has a write

permission 3, i.e., the page number is found in PNV, ELASTIN

skips both the page copy and the PNV insertion. In summary,

for a store to writable pages, ELASTIN takes only two steps

(�→�) while a store to non-writable pages goes through

all four steps (�→�→�→�). Note that any power outage

between these steps does not cause a memory inconsistency

problem during the recovery as long as their order is enforced.
In the wake of power failure, ELASTIN reverts all the written

pages (i.e., those populated in PNV) by using their original

copy in shadow memory along with restoring all registers as

shown in Figure 1. Obviously, this software-controlled page

protection mechanism consumes the harvested energy for both

page backup and restoration; Section III-C2 describes how

ELASTIN adjusts the page size to minimize the copy-on-write

overhead, and Section III-E shows how ELASTIN bounds the

energy consumption to ensure forward progress.

3In other words, the page has already been accessed before in the current
checkpoint interval.

Discussion: PNV is small enough to keep the lookup cost

low. In energy-harvesting systems, the common case is that

they encounter frequent power failures, e.g., in a few tens of

milliseconds. During the short power-on period (one charge

cycle run time), PNV is populated with only a handful number

of pages in reality. Another reason for the small size of PNV

is spatial locality; many stores fall into a few previously-

populated pages during the short period of intermittent ex-

ecution [55].

In particular, the size of PNV never grows unboundedly. To

avoid stagnation not only at run time but also at boot time,

ELASTIN bounds the number of pages, that can be populated

at run time, by taking into account their restoration cost at

boot (i.e., recovery) time. Section III-D shows how ELASTIN

bounds the number of the populatable pages.

C. Adaptive Execution

To enable energy efficient intermittent computation,

ELASTIN dynamically adjusts the checkpoint interval and the

page size at both timer expiration time and boot time if needed.

1) Checkpoint Interval Adaptation: ELASTIN reconfigures

the checkpoint interval by taking into account the condition

(quality) of the energy harvesting source. This harvesting

condition is an important factor for ELASTIN to determine

whether the checkpoint interval should be adjusted or not. If

the quality of the harvested energy is sufficiently good, there is

no need to frequently checkpoint at run time; not doing so can

make a better forward progress by saving the high energy of

NVM writes required for the register checkpoint and the page

backup. In contrast, if the harvested energy is not enough, a

system should checkpoint before the impending power outage.

In light of this, ELASTIN leverages the timer itself to figure

out the underlying energy harvesting condition.

Start Reboot

6ms 12ms(doubling) 12ms

Reboot

6ms

Power failure Unexecuted area

Reconfiguration Reconfiguration

Fig. 4: Timer reconfiguration example

334



Figure 4 describes how ELASTIN reconfigures the check-

point interval. If the timer expires two times in a row 4 while

the energy-harvesting system is active, ELASTIN assumes that

the system have gone through good energy harvesting condi-

tion. Thus, it doubles the checkpoint interval at the second

timer expiration. The rationale behind this heuristic is that at

the second timer expiration, at least the first checkpoint inter-

val turns out to be unnecessary because it did not encounter

a power outage; the harvested energy was that sufficient.

However, the second interval should not be considered as

unnecessary because the next interval may encounter a power

outage.

On the other hand, if the timer has never expired since

the last reboot, i.e., checkpoint counter is 0, then ELASTIN

assumes that the system is under poor energy-harvesting

condition. The intuition here is that the harvested energy was

insufficient to pass even the first checkpoint interval without

interruption due to power failure. With that in mind, ELASTIN

sets the interval as a half of the last timer value in the wake

of the power failure, i.e., at the reboot time. This particular

approach (i.e., timer-halving mechanism) helps the system

to overcome the stagnation problem for most of the time,

though there are a few exceptional cases; Section III-D shows

how ELASTIN handles them for stagnation-free intermittent

computation.

2) Page Size Adaptation: To reduce the copy-on-write
overhead, ELASTIN attempts to find the optimal page size;

the spatial locality of memory writes is likely to vary due to

program phase behavior [56], and therefore the best page size

might vary for each phase.

In our current design, the memory page size cannot be

changed at run time, which would otherwise cause signif-

icant metadata (e.g., PNV) updates overheads and a subtle

correctness issue due to power failure between them. Instead,

ELASTIN reconfigures the page size at reboot time as shown

in Figure 1 to make the adaptation easier and still find the best

size across power outages.

In the wake of a power outage, ELASTIN first restores all

the pages populated in PNV. Then, it measures the cost of the

current page configuration by the product of the page size and

the number of populated pages, i.e., the size of PNV. Finally,

ELASTIN resets the page size to the best-performing one using

the decision logic of adaptive execution [57], [58].

That is, as decision runs, ELASTIN tries a set of page

sizes to select the best among them across power outages;

Section IV-E shows how the set is determined. Even though

the best page size is selected at the end of decision runs, it

is not fixed for the upcoming reboot times. Instead, at every

reboot time, ELASTIN measures the cost of its current pick,

which is compared to the most recent costs of the other page

sizes, to see if it is still the best or one of them becomes the

new best.

4To detect this, we use a metadata variable called checkpoint counter.

D. Challenges in Forward Progress Guarantee

When the system repeatedly starts at the same recovery

point due to stagnation, ELASTIN reduces the checkpoint

interval by halving the watchdog timer value in the wake

of each power outage (Section III-C1). In this simple way,

ELASTIN can effectively avoid the stagnation problem.

However, there are a couple of challenges that must be

addressed to ensure forward progress for stagnation-free inter-

mittent computation; (1) an excessive pages populated during

a checkpoint interval, and (2) capacitor (i.e., energy buffer)

malfunction due to wear-out, environmental factors such as

temperature change, physical access attacks, and so on. First,

if there are too many populated pages which must be restored

at recovery time, the system may be stagnated in the middle of

the recovery process. Second, if the capacitor is malfunction-

ing, the system may suffer from stagnation—e.g., the buffered

energy is not enough to complete even single page backup or

restoration.

To tackle these potential stagnation problems, ELASTIN

defines thresholds for each condition: (1) the quota (i.e., maxi-

mum number) of populatable pages during a given checkpoint

interval and (2) the lower bound of the power-on period (i.e.,

one charge cycle run time) of the energy harvesting system

while its capacitor works fine. This paper assumes that the

lower bound as the worst case scenario to ensure forward

progress even in the most harsh situation, i.e., the lower bound

is called WCPT (the worst case power consuming time) 5.

E. Stagnation-free Adaptation Solution

In this section, we first delve into WCPT and then show

how to use it for detecting the capacitor malfunction problem.

Finally, we show how WCPT can be used as a basis for solving

the other problem, i.e., how to bound the number of the pages

populated in a checkpoint interval.

1) Worst Case Power Consuming Time: Specifically, we

define WCPT as follows: how long can an energy harvest-
ing system sustain its execution under the maximum power
consumption mode? To figure this out for the target energy

harvesting system, ELASTIN analyzes its capacitor, i.e., energy

buffer 6. This is motivated by the insight that energy harvesting

systems do not boot until the capacitor (energy buffer) is fully

charged as with commodity systems such as WISP [61]. In

the wake of each power outage, it is thus assured that the

program can make as much progress as the fully charged

capacitor allows, even if no additional energy is harvested.

Section IV-F shows how ELASTIN calculates WCPT with this

in mind and discusses how the calculation can be extended in

case the system is equipped with other components such as

sensors.

5ELASTIN can precisely bound WCPT due to the MSP430 MCU’s simple
architecture and execution environment, i.e., in-order core without cache/OS.

6A capacitor is used as an energy buffer [59], [60]. When an electric
component depends upon a specific amount of power, the energy buffer is
placed to provide the required power.
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2) Energy Buffer Malfunction: Once WCPT is obtained,

ELASTIN leverages it to detect the capacitor malfunction

problem based on the following invariant: the power-on period
of an energy harvesting system should not be shorter than
its WCPT—as long as the capacitor works well. That is, if

this invariant does not hold, the capacitor is malfunctioning.

However, it is impossible for a timer to measure the power-on

period because the timer value is reset on a power outage; Sec-

tion IV-C shows how ELASTIN checks the invariant without

measuring the power-on period.

If the capacitor turns out to be malfunctioning based on

the invariant checking, ELASTIN treats this situation as an

exception and switches to its handling mode. At the reboot

time, ELASTIN first decreases the page size to the minimum

(2 bytes) and then sequentially restores the registers and pages

one by one in case there is an insufficient amount of energy

for their restoration in a the batch manner. With the exception

handling mechanism, ELASTIN can avoid stagnation even if

the capacitor malfunctions—provided the system can run at

least a single read/write instruction without interruption 7.

3) Populatable Pages: ELASTIN also leverages WCPT to

determine the maximum number of the populatable pages with

their boot-time restoration cost in mind. To ensure that at

recovery (boot) time, all the pages populated in the last check-

point interval can be safely restored, the total page restoration

time must be shorter than WCPT, i.e., Number of Pages ∗
Single Page Restore T ime < WCPT ; otherwise, power

failure may occur in the middle of the restoration process.

For the threshold of Number of Pages, ELASTIN therefore

uses the maximum value among those that satisfy the above

inequality. In this way, when ELASTIN reconfigures the page

size at boot time, the threshold is also updated according to

the new page size. If the number of the pages populated in

a checkpoint interval happens to exceed the threshold, which

is detected by checking a metadata variable called populated
page counter, ELASTIN makes an additional checkpoint right

at the moment. This allows ELASTIN to safely restore all the

pages at the next reboot time without interruption due to power

failure.

IV. IMPLEMENTATION

A. Register Checkpointing, Permission Clearing Protocol

As shown in Section III-B, at each timer expiration,

ELASTIN checkpoints all registers including PC with double

buffering and invalidates out the write permission of all pages.

For this purpose, ELASTIN maintains two bits: (1) a double
buffer index bit that is toggled at the end of the register file

checkpointing and (2) a PNV valid bit whose reset invalidates

the write permission of all pages. Note that these two bits must

be atomically updated. Otherwise, a power outage between

the two separate updates leads to incorrect recovery; in the

wake of the power outage, ELASTIN ends up reverting the

pages written in the formerly finished interval though it is

7If the capacitor cannot even secure energy required for one memory
instruction, ELASTIN assumes that the system is completely unusable.

about to start a new interval from the checkpointed PC, not

the former. To avoid the incorrect recovery, ELASTIN updates

the two bits in a single store instruction that guarantees failure

atomicity [62]. Once they atomically updated, ELASTIN clears

out all page numbers in PNV by using a single DMA operation
8 as will be shown in Section IV-D; the amount of the DMA

write is determined by populated page counter. Once it is

successfully done, ELASTIN finally sets the counter to zero

before starting the new interval.

B. Memory Organization

ELASTIN divides the whole nonvolatile memory into four

areas: main (original) memory, shadow memory, register dou-

ble buffer, and reserved memory for PNV and the rest of

various metadata, i.e., the checkpoint counter, valid bits for

checkpoint and PNV, a performance table of page sizes,

the populated page counter, thresholds for the number of

populatable pages and WCPT, and so on.

The biggest problem with shadow memory is that it occu-

pies a half of the total memory size, thus failing to run those

applications that have high memory footprints. To overcome

this challenge, ELASTIN proposes another design choice, radix

tree memory management; as OS implements the page table

using a radix tree, we used the same kind of data structure. By

using radix tree as backup page storage, ELASTIN can increase

available main memory size for applications at the expense of

the increased page search overhead. Section V evaluates the

performance overhead of both shadow memory and radix tree.

C. Invariant Checking for Capacitor Malfunction Detection

To detect capacitor malfunction, ELASTIN uses the invariant

of an intact capacitor, i.e., the power-on period (one charge

cycle run time) should not be shorter than WCPT; see Sec-

tion III-E2. However, ELASTIN cannot use a timer to measure

the period because the timer value will be reset on power

outage. To achieve the invariant checking without a timer,

ELASTIN relies on the following observation: when the first

checkpoint is not made—due to power outage—since the last

reboot, we can infer that the power-on period must be less than

the checkpoint interval; this is the reason ELASTIN to halve the

interval (Section III-C1). With this in mind, ELASTIN detects

the capacitor malfunction as follows.

While the capacitor malfunctions, ELASTIN keeps decreas-

ing the checkpoint interval due to frequent power outages.

Thus, after many outages and resumptions, the interval would

eventually become WCPT at some recovery time. At the

moment, if it turns out that no checkpoint was performed

since the last boot, i.e., checkpoint counter is 0, then we know

that the power-on period is definitely shorter than the interval

(WCPT). Thus, we conclude that capacitor is malfunctioning.

In short, when a checkpoint interval is the minimum (WCPT),

if the checkpoint is not made before power failure, ELASTIN

switches to the exception handling mode (Section III-E2).

8Even if the DMA operation fails due to power failure, ELASTIN does not
lead to incorrect recovery. In the wake of the power failure, ELASTIN simply
starts the DMA operation over and follows the rest of the protocol.
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D. DMA-Based Fast Page Copy

Fig. 5: NVM write latency with DMA (Cycles per byte)

ELASTIN’s copy-on-write mechanism entails NVM writes

for the page copy. However, due to the nature of NVM,

memory writes incur very significant latency [63]–[72]. To

reduce the overhead, ELASTIN leverages direct memory access

(DMA) hardware accelerator available in the target energy

harvesting system. Figure 5 demonstrates that a single byte

DMA transfer takes only 8 cycles which is about 1.5X faster

than the standard memory copy without DMA. When the copy

size is larger than a single byte [73]. DMA copy becomes

4∼5X faster.

Fig. 6: Copy-on-write overhead breakdown in stable power input
case. With the page size of 256 bytes, the major overhead comes
from the page copy.

We also measured the impact of DMA on ELASTIN’s per-

page based copy-on-write mechanism for all of our bench-

marks. Figure 6 shows the average execution time breakdowns

of the copy-on-write for a 256B page with and without DMA.

The page copy overhead occupies the most significant portion,

and the PNV lookup overhead follows. With DMA, the overall

execution time becomes about one third of the original time

without DMA; this results from the large reduction of the

page copy overhead which is about 6X speedup. In particular,

the PNV clearing overhead is negligible because all page

numbers are cleared by one DMA operation. In contrast, PNV

insertions cannot be batched, since they are far apart from

each other. Even though DMA can be leveraged for them, the

DMA initialization and completion costs offset the benefit.

Consequently, ELASTIN takes advantage of the DMA only

for the page copying and the page clearing.

E. Page Size Adaptation Range

ELASTIN’s page size selection is based on a series of

decision runs for testing each size; see Section III-C2. Since

most of them are suboptimal, ELASTIN tries to minimize the

decision runs by limiting the range of page sizes to be tested.

To find the optimal page size, it is necessary to understand

the tradeoff between the cost of PNV copying and the cost of

page clearing. For example, if the page size is too small, it may

incur frequent page copies causing expensive PNV clearing

cost at reboot time or timer expiration. In contrast, if the page

size is too large, the system may consume too much energy

for copying even on page. In addition, the spatial locality of

memory writes is another important factor. The high locality

lets ELASTIN skip the page copy and PNV insertion since the

memory writes are likely to be concentrated on a few pages.

while the low locality increases them since many writes tend

to touch many different pages.

The tradeoff is affected by the locality, e.g., with the high

locality can amortize the cost of a large page copy by many

subsequent writes whose address falls into the same page. To a

large extent, the locality significantly varies across applications

due to their different pattern of memory writes. With that in

mind, we empirically measured the performance of each page

size for all of our benchmarks. Figure 7 shows the average

execution time overhead of the best 4 page size configurations,

i.e., 32B, 64B, 128B, 256B. As a result, ELASTIN’s adaptive

execution uses them for decision runs, i.e., the page size

adaptation range is 32∼256 bytes.

Fig. 7: Average execution time overhead of the best 4 page size
configurations for all benchmarks when DMA and shadow memory
are used with stable power input, i.e., no power failure.

F. Worst Case Power Consuming Time

In this paper, WCPT is defined as: how long a program can

sustain its execution under the maximum power consumption

mode of the microcontroller (MCU) which drains the energy

from the capacitor at the highest rate. To measure WCPT,

ELASTIN needs to know the energy buffer size (capacitance),

because the MCU may rely on only the buffer without any

input from harvesting energy sources in the worst case. For a

given capacitance of the energy buffer (e.g., 47μF in WISP5),

it provides the MCU with the operating voltage from its

starting point (Vmax) to the power outage point (Vmin). Then,

ELASTIN estimates the available energy input as follows:

Available Energy Input =
1

2
Cbuf ∗ (V 2

max − V 2
min). (1)
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For the maximum power consumption estimation of MCU,

ELASTIN leveraged the following equation [74] :

Etot = Ptott = VddIleakt+ CmspV
2
dd (2)

where Vdd, Ileak, and Cmsp are input voltage to MCU, leakage

current, and the MCU capacitance, respectively. ELASTIN

considers the input voltage to MCU by taking into account

the capacitor discharge behavior, since the capacitor cannot

consistently provide the same amount of power. ELASTIN

models the input voltage variation while the energy buffer is

discharged with a simple equation: vo(t) = Voe
−t
CR for which

the capacitance (C) is already given by Equation 1, and the

resistance (R) can be calculated by Ohm’s law, R = V/I .

ELASTIN views the MCU as a huge constant resistor, R, under

the maximum power consumption mode. That is, ELASTIN

refers to the MCU manual to figure out the maximum current

(I)—that the device can consume—and use it to calculate the

resistance (R). For Ileak and Cmsp, ELASTIN refers to the

manual as well; If a certain MCU’s manual does not specify

them in any case, ELASTIN can adapt the typical leakage cur-

rent and capacitance model as one used in [74]. With all these

findings, the available energy input obtained by Equation 1
should be always greater than the energy consumption of the

underlying MCU given by Equation 2. With that in mind,

ELASTIN calculates the WCPT by calculating a threshold t in

the following equation:

1

2
Cbuf ∗ (V 2

max − V 2
min) > Voe

−t
CR (Ileak)t+ Cmsp(Voe

−t
CR )2

(3)

In particular, this is applicable to commodity energy harvesting

devices. For instance, WISP5 consists of 47μF energy buffer

and MSP430FR5969. This MCU consumes 2650μA at 3.0V,

16MHz, in an active mode [75]. The MCU starts to operate

at 2.4V and performs down to 1.8V while the resistance value

of the MCU is 1133Ω. Therefore, the resulting WCPT is

approximately 11.6ms.

Discussion: Thanks to the simplicity of the above analytical

model, it is easy for ELASTIN to incorporate other system

components in the WCPT calculation. For example, if the sys-

tem is equipped with other components, e.g., sensors and actu-

ators. For this purpose, ELASTIN needs to update the resistance

part of Equation 3, i.e., R = V
IMCU+ISensor+IActuator

. To

figure out the maximum current of the components, ELASTIN

simply refers to their manuals as usual.

V. EVALUATION

We conducted all the experiments on TI’s MSP430FR5994

Launchpad development kit board9 and implemented ELASTIN

described in Section III as a runtime library. To instrument

nonvolatile memory (NVM) writes (Figure 3), we imple-

mented a source-to-source translator using the LLVM compiler

infrastructure [76]. Then, the instrumented program and the

runtime library are compiled and linked using TI’s MSP430

GCC toolchain to generate the binary executable.

9FRAM is used as main memory, and we do not use SRAM at all.

To compare ELASTIN with Ratchet [23], the state-of-the-

art region based work, we ported it to MSP430 since it

was originally implemented for ARM [77]. Note that we

omitted Ratchet’s timer based checkpointing, because it does

not work—i.e., it may cause incorrect recovery—for those

idempotent regions that contain WARAW (Write-After-Read-

After-Write) dependence as admitted by the author [23]. We

evaluated both ELASTIN and Ratchet for total 11 benchmarks

comprised of a subset of MiBench applications [78], [79]

and others from prior works [28], [36]. All the benchmark

applications were compiled with standard -O3 optimization.

A. Intermittent Computing Platform
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Fig. 8: Realistic intermittent power traces (simplified)

We developed a special power generator board with TI’s

MSP430FR5969 to mimic various power outages and resump-

tions as with prior work [80]. The power generator board pro-

vides supply voltage between 0 to 3.3V, directly to the target

evaluation board (i.e., TI’s MSP430FR5994) through GPIO

pins to power it on/off at will based on power input traces.

Unlike prior works [23], [25], [26], [28], [55] that do not

vary the power failure frequency, we randomly increase and

decrease the power-on period to model various energy sources

and environments, which serves to stress-test ELASTIN. The

minimum bound of the power-on period is set to 15ms 10

while the minimum bound to a half of the execution time of

the smallest application among our benchmarks. With that in

mind, we synthesized two power traces for our intermittent

computing experiments as shown in Figure 8. At power-on,

the power generator board provides voltage to the target board

while it cuts the voltage at power-off for outage.

B. Execution Time Overhead Analysis with No Power Failure

We first analyze ELASTIN’s execution time overhead when

the power source is stable, i.e., there is no power failure.

Here, we set the baseline to the uninstrumented binaries

that have no checkpoint/restart support. We measured the

overhead of ELASTIN for 11 benchmark applications varying

the page size from 2B to 4KB and alternating the backup

page storage between a shadow memory and a 2-level radix

tree data structure. Figure 9 shows the normalized overhead

of ELASTIN compared to the baseline when shadow memory

is used while 10 shows that when the 2-level Radix tree

is used. Overall, the average overhead of ELASTIN is 88%

10WISP5 [61], a commodity energy-harvesting system, has an a capacitor
of 47μF, and it can sustain about 15ms as one charge cycle run time [28].
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with the best page size of 256 bytes in shadow memory (see

Figure 7) while 2-level Radix tree results in 243% with the

same page size as the best. Nevertheless, it would be a mistake

to take this to mean that ELASTIN incurs such a significant

overhead for intermittent computation. Recall that frequent

power failures are the norm in energy-harvesting systems,

and this particular experiment has no power failure at all;

Section V-C evaluates the performance impact of ELASTIN

on intermittent computation with frequent power outages.

As shown in the figures, some applications such as bitcnt,

dijkstra, and stringsearch prefer larger page size. Even if

the copy-on-write of a large page size is expensive due to

high volume of NVM copy, the cost is amortized by high

spatial locality in the following memory writes. In contrast,

the other applications show performance degradation when

the page size is bigger than 256 bytes. That is because the

cost of such a large page copy cannot be paid off in the

applications due to their low spatial locality. The takeaway

is that the best page size varies depending on application

characteristics. Furthermore, the best page might vary even

during program execution due to phase behavior [56]. In such

a case, ELASTIN’s boundary-free adaptive execution can find

the right page size across power failures.

C. Execution Time Overhead Analysis with Power Outages

To evaluate the forward execution progress in the presence

of power failures, we measured the application’s completion

time i.e., the execution time taken to complete the application

across power failures. In Figure 11 and Figure 12, total three

cases are compared using the two power traces shown in

Figure 8: the state-of-the-art [23], i.e., Ratchet in the legend,

ELASTIN with timer only adaptation, i.e., ELASTIN (timer),

and ELASTIN with both timer and page size adaptation, i.e.,

ELASTIN (timer+page). Note that in Figure 11 (trace#1) and

Figure 12 (trace#2), we set the baseline to our approach,

i.e., ELASTIN (timer+page) because Ratchet makes many

applications stagnate.

As shown in the figures, Ratchet [23] incurs stagnation prob-

lem in five applications on both traces. For the rest applica-

tions where Ratchet does not stagnate, ELASTIN (timer+page)

outperforms Ratchet on average by 3.5X and 3X for trace#1

and trace#2, respectively. Also, it turns out that ELASTIN

(timer+page) improves ELASTIN (timer) on average by 40%

and 8% for trace#1 and trace#2, respectively. This confirms

that ELASTIN’s boundary-free 2-dimensional (timer and page

size) adaptation works effectively.

Interestingly, Figure 11 shows that Ratchet could outper-

form ELASTIN for basicmath. That is because in basicmath,

Ratchet happens to have the optimal size of regions which

corresponds to the input power cycle characteristics, i.e.,

trace#1. Thus, when a different power trace is used, Ratchet

cannot beat ELASTIN, which is confirmed by our experiment

with trace#2. As shown in Figure 12, for the same application

(basicmath), ELASTIN significantly outperforms Ratchet under

trace#2.

Fig. 11: Application completion time in the presence of power failures
using trace#1: the bar of stagnated applications reaches ∞, and the
geomean of Ratchet is calculated only for non-stagnated applications.

Fig. 12: Application completion time in the presence of power failures
using trace#2: the bar of stagnated applications reaches ∞, and the
geomean of Ratchet is calculated only for non-stagnated applications.

D. Energy Consumption Breakdown across Power Outages

We also analyzed the energy consumption breakdown across

power outages. Figure 13 shows that copy-on-write and the

register checkpoint (ckpt in the legend) do not consume sig-

nificant amount of energy, i.e., less than 1% on average. That

is because the average number of copied pages in intermittent

computation is only about 1 or 2 thanks to spatial locality and

high power outage frequency; as shown in Figure 6, the PNV

lookup overhead is trivial as well, and thus overall copy-on-

write overhead is not significant.

Overall, the overhead of ELASTIN comes from the re-

execution cost; in the legend, ’forward’ means the energy

consumption for a portion of execution time that has never

been restarted, thus it is not an overhead technically. Even

if ELASTIN reconfigures the checkpoint interval by halving

the previously selected interval when the system dies without

forward progress, the re-defined checkpoint interval may not

help for the first time to make progress. For example, to get out

of stagnation, ELASTIN might need to perform multiple times

of checkpoint interval halving across power failures, and the

re-execution of the reduced intervals consumes the harvested

energy. As shown in Figure 13, this re-execution overhead is
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Fig. 9: Normalized performance overhead of ELASTIN (shadow memory design)

Fig. 10: Normalized performance overhead of ELASTIN (2-level radix tree design)

about 39% on average.

Fig. 13: Energy consumption breakdown of ELASTIN

E. Exception Handling for Capacitor Malfunction

Capacitor (i.e., energy buffer) can malfunction either by

natural worn-out or physical security attacks [43]. For ex-

ample, when cracked, the capacitor leaks the buffered energy

more quickly and the original capacitance is significantly re-

duced [41]. To have a scenario of the malfunctioning capacitor,

we set the power-on period to 5X lower than the normal

minimum bound mimicking the cracked energy buffer. That

is, the system only runs for 3ms intermittently. As shown in

Figure 14, Ratchet was unable to complete all of benchmark

applications. In contrast, ELASTIN successfully completes

them all. This implies that ELASTIN is not only robust against

capacitor malfunction but also capable of working with smaller

capacitance, e.g., less than 10μF. Consequently, we believe that

ELASTIN enables using a smaller capacitor, which should be

a desired approach for smaller chips required for IoT industry

such as wearable markets.

Fig. 14: ELASTIN’s robustness against capacitor malfunction

VI. RELATED WORKS

The problem of ensuring data consistency and improving the

forward progress of an intermittently powered system is at the

heart of energy harvesting computing. Various methods have

been proposed from hardware designs to software solutions.

a) Hardware Schemes: To solve the problem, researchers

have designed the nonvolatile processor. Wang et al. propose

utilizing nonvolatile flip-flops (NVFF), as their fundamental
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block for register checkpointing [40]. NVFF leverages a hybrid

CMOS and ferroelectric technology in which a backup ferro-

electric capacitors (FeCap) are coupled to a standard CMOS

D latches. Lui et al. [8], [81] expand on the work of Wang

et al. by additionally designing nonvolatile SRAM while Liu

and Jung [8], [82] design nonvolatile gated store buffer for

consistency-aware checkpointing; their designs are roughly the

same hybrid technique as NVFF.

The benefit of such technologies would be a fast transfer

of bit data because of the close proximity to the storage

source. However, to checkpoint volatile states to NVFF, the

scheme requires a voltage monitor. For instance, when the

system detects voltage drops, the processor backs up volatile

states to NVFF. However, Cronin et al.’s recent work reported

that the design is vulnerable to frequent bit flip attacks [43],

[44] or checkpoint failure [43], [45]. ELASTIN does not rely

on unconventional hardware support yet it can address the

energy buffer issue by treating the capacitor malfunction as

an exception.

Colins et al. propose a reconfigurable energy buffer with

multiple capacitor banks [49]. Since a different task may

require a different amount of energy, they attempt to recon-

figure the energy capacity to match the application demand.

However, this scheme overlooks the capacitor malfunction

issues that can be caused by wear-out, environmental factors

such as temperature change, and even physical access attacks.

When the capacitor is malfunctioning, the scheme does not

work properly. In contrast, ELASTIN can survive the capacitor

malfunction issues with its exception handling mode that

works orthogonally to the capacitor.

b) Software Schemes: A number of software solutions

have been proposed for the past few years. They differ how

the correct placement of checkpoints, what occurs during

checkpointing, and whether the method is automated or able

to ensure forward progress. As for the correct placement of

checkpoints, two starkly different approaches are given. In the

research by Xie et al [35], [36], they present algorithms to

figure out when is a safe to perform checkpoints and how to

minimize them as a heuristic. This design revolves around the

idea of severing anti-dependencies that appear in the code by

placing a checkpoint between the dependent load-store pair.

As for the other approach [26], [28], [37], [53], this burden

is placed on programmers. For example, they are required

to determine re-executable task boundaries on their own by

taking into account potential memory inconsistency and power

failure during the task execution. That is, it is up to program-

mers to make good judgment of whether a task is considered

idempotent or free from stagnation. Unfortunately, all of these

software schemes end up splitting an program into several

regions (or tasks) by re-compilation or user-intervention. In

contrast, ELASTIN never places such a burden on end users

thanks to its boundary-free and fully-automated nature.

Colins et al. [27] propose to use an energy debugger [47],

[48] to deal with the stagnation phenomenon. They also found

that the state-of-the-arts including task-based schemes [26],

[28], [37], [53] suffer from the ”non-terminating” bug and

tried to partition the stagnated tasks. However, the scheme

requires multi-step user interventions, i.e., energy profiling,

energy checking over the profiled paths, and boundary place-

ment, and so on, without considering energy buffer malfunc-

tion/vulnerability. Although the energy debugger approach can

measure the whole system energy including MCU, sensors,

and actuators, it cannot measure the worst case energy con-

sumption thereby failing to ensure forward progress. It is

rather a very complicated process to measure the maximum

current consumption of the entire system, because it requires

expensive experimental settings such as heating/cooling cham-

bers for precise measurement. In fact, the manufacturers of

the MCU, sensors, and other components measure the maxi-

mum current in that expensive way, considering temperature

variation and other factors. In light of this, ELASTIN simply

refers to the manuals to figure out the maximum current and

incorporates it to the analytical model for WCPT calculation.

On top of the profile directed task partitioning, Chin-

chilla [25] recently introduced a dynamic adaptive check-

point scheme using a timer and a undo logging mechanism.

Chinchilla also reconfigures the timer interval according to

system performance, but it checkpoints at pre-determined

program point determined by the energy debugger [27], [48]

for forward progress. As this paper discussed, capacitor can

be worn out, and thus the energy buffer can behave differently

from its original behavior. Consequently, Chinchilla is unable

to guarantee forward progress though it requires substantial

manual effort. In addition, its undo logging scheme fixed

the logging granularity (i.e., 8 bytes) without DMA support

resulting in lower performance. In contrast, ELASTIN is user-

intervention-free, boundary-free, and fully-adaptive. Moreover,

it strongly guarantees forward progress even when the energy

buffer is malfunctioning or under attacks.

VII. SUMMARY

This paper presents ELASTIN, a stagnation-free intermit-

tent computing system that ensures forward progress in the

presence of frequent power outages. ELASTIN leverages both

timer-based checkpointing of volatile registers and copy-on-

write mappings of nonvolatile memory pages to restore them in

the wake of power failure. Unlike prior works, ELASTIN does

not partition program into recoverable regions or tasks. The

boundary-free nature allows ELASTIN to realize full potential

of adaptive execution, adjusting both the checkpoint interval

and the page size at will. Consequently, ELASTIN can achieve

stagnation-free intermittent computation and maximize for-

ward progress across power outages.
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