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ABSTRACT

Engineered nanomaterials are rapidly becoming an essential component of modern technology.
Thousands of tons of nanomaterials are manufactured, used, and subsequently released into the
environment annually. While the presence of these engineered nanomaterials in the environ-
ment has profound effects on various biological systems in the short term, little work has been
done to understand their consequences over long, evolutionary timescales. The evolution of
multicellularity is a critical step in the origin of complex life on Earth and a unique strategy for
microorganisms to alleviate adverse environmental impacts, yet the selective pressures that
favor the evolution of multicellular groups remain poorly understood. Here, we show that engi-
neered nanomaterials, specifically copper oxide nanoparticles (CuO NPs), promote the evolution
of undifferentiated multicellularity in Baker's yeast (Saccharomyces cerevisiae strain Y55).
Transcriptomic analysis suggests that multicellularity mitigates the negative effects of CuO NPs
in yeast cells and shifts their metabolism from alcoholic fermentation towards aerobic respir-
ation, potentially increasing resource efficiency and providing a fitness benefit during CuO NP
exposure. Competition assays also confirm that the multicellular yeast possesses a fitness advan-
tage when exposed to CuO NPs. Our results, therefore, demonstrate that nanoparticles can have
profound and unexpected evolutionary consequences, underscoring the need for a more com-
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prehensive understanding of the long-term biological impacts of nanomaterial pollution.

Introduction

Engineered nanomaterials, compared to their bulk
counterparts, possess many unique physiochemical
characteristics, making them desirable for a wide
variety of applications (Keller et al. 2010; Hendren
et al. 2011). Thousands of tons of nanomaterials are
therefore manufactured, used, and subsequently
released into the environment annually (Hendren
et al. 2011). Commonly used as antimicrobial
agents, metallic nanoparticles may exert toxicity
towards biological organisms, via damaging cell
membrane structure and inducing reactive oxygen
species (Lemire, Harrison, and Turner 2013). The
presence of these engineered nanomaterials in the
environment is known to have significant effects on

various biological systems (Ren et al. 2009; Kahru
and Dubourguier 2010). However, previous studies
on this topic have focused only on short-term, eco-
logical impacts and potential evolutionary
responses of organisms over long timescales have
not been explored (Chatterjee, Chakraborty, and
Basu 2014; Graves et al. 2015).

Our study experimentally examined the effects of
copper oxide nanoparticles (CuO NPs)—a com-
monly used engineered metallic oxide nanomate-
rial—on species adaptation to novel environmental
stressors. CuO NPs have been used in electronic
devices to improve thermophysical properties (Yu
and Choi 2003), in fertilizers to promote copper
availability to crops (Liu and Lal 2015), and in
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medical and cosmetic products to control microbial
growth (Ren et al. 2009). All these usages release
CuO NPs into the environment. Like other metallic
oxide nanoparticles, CuO NPs show significant cyto-
toxicity to various organisms, as they increase the
number of reactive oxygen species in cells, causing
damages to cell membranes and apoptosis
(Karlsson et al. 2008; Fahmy and Cormier 2009). The
cell-level damage from these NPs may accumulate
over generations, resulting in strong selection for
stress tolerating phenotypes. If individuals within a
population possess heritable variation in traits that
affect population
may adapt over generations in response to nano-
particle exposure. We note that direct experimental
demonstrations of species evolution in response to
nanomaterial exposure are lacking.

The origin of multicellular organisms from unicel-
lular ancestors is considered a major transition in
evolution (Maynard Smith and Szathmary 1999),
paving the way for further development in organis-
mal complexity. The first step in the transition to
multicellularity is the formation of undifferentiated
groups. Also, as a unique life history strategy for
microorganisms, undifferentiated multicellularity can
provide advantages to microbes in harsh environ-
ments by reducing ratios
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(Smukalla et al. 2008) and promoting resource util-
ization efficiency (Pfeiffer and Bonhoeffer 2003;
Koschwanez, Foster, and Murray 2011). These bene-
fits, however, may be outweighed by the costs of
social conflicts (Hamilton 1964), such as the
decrease in growth (Ratcliff et al. 2012). Overall, the
ecological mechanisms underlying the establish-
ment and maintenance of multicellularity in micro-
organisms  remain  poorly understood. We
experimentally investigated how CuO NP exposure
influences the evolution of multicellularity in Baker’s
yeast (Saccharomyces cerevisiae Y55). Starting with a
unicellular ancestor, we provided an evolutionary
incentive for the yeast to form groups by perform-
ing daily gravitational selection. Against the back-
drop of physical selection for group formation, we
compared the evolutionary trajectories of yeast
under exposure to CuO NPs, copper ions, or CuO
bulk particles for 42 days (~280 generations).

Material and methods
Copper oxide treatments

Our experiment included four treatments: control,
ion, bulk, and nano (Figure 1). The CuO NPs used in
our experiment were purchased from Sigma-Aldrich
Co. (St. Louis, MO, USA). These bare NPs with no

Quantification of average yeast cluster size

Every seven transfers,
average cluster size is
measured by flow cytometry.

i = sl
1.5ml

— Another —
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Figure 1. Experimental evolution of simple multicellularity in yeast with copper nanoparticle exposure. Our experiment included
four treatments: a copper-free control, copper oxide nanoparticles (CuO NPs), copper ions, and bulk CuO. One genotype of diploid,
unicellular yeast served as the ancestor. After 41 rounds of daily gravitational selection, multicellular, snowflake yeast evolved in
all populations. The size of multicellular yeast was measured weekly via flow cytometry.



coatings are in a spherical shape with an average
particle size of 25 nm (see Supplementary Figure
S1). We used 60 ml glass test tubes with open-air
culture caps, each of which contained 10 ml 1:10
yeast-extract-peptone-dextrose (YPD) medium (0.2%
glucose, 0.2% peptone, 0.1% yeast extract), as the
microcosms. We diluted the YPD to 10% of normal
strength because it allowed for a more stable sus-
pension of CuO NPs. To suspend the CuO NPs
evenly into the culture medium, we first suspended
them into deionized water at the concentration of
100 mg/L. The CuO NPs suspension and 1:5 YPD
were sterilized separately with autoclave for 40
minutes and then mixed in the ratio of 1:1 in the
microcosms. As a result, each microcosm contained
10 ml of CuO NPs and YPD mixture, with 50 mg/L
CuO NPs and 1:10 YPD.

Using a Zetasizer-Nano ZS instrument (Malvern
Instrument Ltd., UK), we determined that the CuO
NPs in the culture medium had 291.6 + 11.7 (mean
+ s.d.) nm of hydraulic diameter and -18.1 mV of
zeta potential. We prepared the microcosms with
bulk CuO in the same way. To quantify the actual
dissolved Cu concentration in the bulk and nano-
CuO treatments, we incubated microcosms (without
yeast) with either bulk or nano-CuO for 24 h, fil-
tered the samples collected from the microcosms
through 0.22 pum glass filters, and measured the
concentration of Cu ions in microcosms with an
inductively coupled plasma optical emission spec-
trometer (ICP-OES, iCAP 6300 DUO, Thermo, USA).
We found that the copper ions (Cu®") in the micro-
cosms increased from zero to 0.140 mg/L and 0.705
mg/L in the microcosms with bulk and nano CuQ,
respectively. We thus included a copper ion treat-
ment with 0.705 mg/L Cu?" added into the
medium in the form of copper sulfate (CuSO,4, 1.76
mg/L). We replicated each treatment six times.

Experimental protocols

We used Saccharomyces cerevisiae strain Y55
(Ratcliff et al. 2012) as the model of evolution in
our experiment. We began the experiment with a
single genotype of diploid S. cerevisiae, strain Y55.
At the beginning of the experiment, we streaked
out the frozen culture onto YPD agar, randomly
selected one colony, and confirmed its unicellular
form under the microscope. We propagated the
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unicellular yeast overnight and introduced it into
each experimental microcosm. During the experi-
ment, we incubated the microcosms in a shaker at
250 rpm at 30 °C. Every 24 h, we collected a ran-
dom 1.5 ml subsample of each 10 ml microcosm
for daily gravitational settling selection. We first
transferred the 1.5 ml culture to a centrifuge tube,
placed this centrifuge tube on bench top for six
minutes, and then discarded the top 1.4 ml culture
before transferring the remaining 0.1 ml culture at
the bottom to a new microcosm with fresh medium
and copper materials (Figure 1). We performed this
selection experiment for 42 days, measuring the
average cluster size of the yeast populations weekly
on a Partec Cyflow Cube 8 flow cytometer (Sysmex
Partec GmbH, Gorlitz, Germany). Average cluster
size was quantified as the mean value of forward
scatter, based on the screening of at least 20 000
clusters for each sample. At the end of the experi-
ment, we isolated two unicellular genotypes and
two multicellular genotypes from each sample. We
were unable to retrieve multicellular isolates from
one ion and one nano treatment after multiple tri-
als. We propagated these cells and clusters on YPD
agar overnight before extracting the genomic DNA
and Sanger sequencing their ACE2 genes.

Competition experiment between the unicellular
and multicellular yeast

We performed a competition experiment to deter-
mine the relative fitness of isogenic unicellular and
multicellular yeast under CuO NPs exposure. Rather
than using strains evolved under our treatment
conditions, in which treatment-specific compensa-
tory mutations other than multicellularity may have
evolved, we created otherwise isogenic unicellular
(ACE2/ACE2) and  multicellular  (ace2:KANMX4/
ace2:KANMX4) lines by completely removing ACE2
from the unicellular strain (replacing it with
KANMX4 via the lithium acetate-PEG-ssDNA method)
(Gietz et al. 1995). We set the initial frequency of
the unicellular and multicellular genotypes as 100:1
(resulting in similar initial biomass per strain), allow-
ing them to compete for three days. We replicate
each combination six times. These incubation con-
ditions were identical to the main experiment, with
the settling selection performed twice (on days 1
and 2). We measured the final frequency of these
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two genotypes by flow cytometry, and calculated
the fitness of the multicellular yeast relative to the
unicellular yeast with the selection rate constant
(Lenski et al. 1991), expressed as Equation 1.

final frequency of multicellular yeast

Library preparations

The RNA library for lllumina sequencing was pre-
pared according to the manufacturer's manual, with

final frequency of unicellular yeast

Transcriptome (RNA) sequencing

To investigate the mechanism underlying the size-
related protection, we sequenced the transcrip-
tomes of unicellular (ACE2/ACE2) and multicellular
(ace2:KANMX4/ace2::KANMX4) snowflake yeast. The
transcriptomes analysis would identify the genes
that are actively expressed in response to the nano
stress. We exposed the unicellular ancestor (ACE2/
ACE2) and isogenic multicellular genotype
(ace2::KANMX4/ace2:KANMX4) separately to the
four experimental conditions for three days. Two
biological replicates were performed for each
treatment. The protocol of the sample prepar-
ation was the same as that of the main evolution
experiment, except that we transferred these
monocultures of unicellular and multicellular
yeast without settling selection. On day 3, 24 h
after the last transfer, we collected a 1.5 ml sam-
ple from each microcosm, concentrated the yeast
cells by centrifuging the sample at 10 000 rpm
for two minutes, and snap-froze the yeast
cells before shipping them to GeneWiz, LLC.
(South Plainfield, NJ, USA), where RNA extrac-
tions, library preparations, and sequencing reac-
tions were conducted.

RNA extraction

After bead-based homogenization, total RNA was
extracted from each sample with the Qiagen
RNeasy Plus Mini Kit (Qiagen, Germantown, MD,
USA). The concentration and integrity of extracted
RNA were examined using Qubit 2.0 Fluorometer
(Life Technologies, Carlsbad, CA, USA) and 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA), respectively.

= Minitial frequency of multicellular yeast

initial frequency of unicellular yeast

the NEBNext Ultra RNA Library Prep Kit (NEB,
Ipswich, MA, USA). The mRNA was first enriched
with Oligod(T) beads, fragmented for 15 minutes at
94 °C, and conversed to cDNA. Both strands of
cDNA were synthesized, end repaired, and adeny-
lated at 3’ends. The universal adapters were further
ligated to cDNA fragments, followed by index add-
ition and library enrichment with limited cycle PCR.
The sequencing libraries were validated on the
Agilent TapeStation (Agilent Technologies, Palo
Alto, CA, USA), and quantified using Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA) and quantita-
tive PCR (Applied Biosystems, Carlsbad, CA, USA).

Sequencing reactions

The sequencing libraries were multiplexed and clus-
tered onto a flowcell. After clustering, the flowcell
was loaded on the lllumina HiSeq 2500 instrument
according to the manufacturer’s instruction. The 16
samples were pooled and sequenced using a 1 X
50 bp Single-Read (SR) configuration. Image analysis
and base calling were conducted by the HiSeq
Control Software (HCS) on the HiSeq 2500 instru-
ment. Raw sequence data (.bcl files) generated from
lllumina HiSeq 2500 was converted into fastq files
and de-multiplexed using Illumina bcl2fastq v 1.8.4
program. One mismatch was allowed for index
sequence identification.

Data analysis

We mapped the c¢cDNA sequencing reads of each
sample to the transcriptome of yeast R64-1-1 using
the software Kallisto (Bray et al. 2016). Kallisto
implements a pseudo-alignment algorithm that esti-
mates the likelihood of a transcript generating the
reads rather than real alignment, which performs
better than or as accurate as existing quantification
tools. We then quantified the gene expression



across different treatments, using a method imple-
mented in ‘sleuth’ package (Pimentel et al. 2017) of
R that decouples biological variance from inferential
variance by modeling the two sources of variances
separately in an additive response error model. This
quantification model provided the highest sensitiv-
ity at a particular false discovery rate, compared to
all the alternative methods. In addition, this
method, using bootstrapping with a low number of
biological replicates, reduces the number of false
positives through accounting for the inferential vari-
ance. We calculated divergences among the 16
transcriptomes using Jensen-Shannon index and
built a hierarchical clustering tree of expression
similarity based on the Jensen-Shannon matrix with
Wards’ sum-of-squares criterion (Murtagh and
Legendre 2014), using ‘hclust’ function in ‘vegan’
package of R (Oksanen et al. 2007). The p-values of
significantly different genes were adjusted with the
Benjamini-Hochberg correction for multiple testing
(Benjamini and Hochberg 1995) and reported as the
false-discovery-rate adjusted p-values to control for
the Type | error. We then investigated whether
genes with significantly different expressions are
enriched with certain biological processes in gene
ontology terms compared to all genes that had
expressions using GOrilla (Eden et al. 2007; Eden
et al. 2009). The enriched gene ontology terms are
clustered based the similarities measured using the
SimRel index (Hsiao and Chen 2017) and visualized
as treemaps in REViGO (Supek et al. 2011).

Results and discussion

Under our experimental conditions, multicellular
yeast evolved, and their cluster size increased over
time in all treatments (see Figure S2 for the picture
of a multicellular yeast). However, the multicellular
snowflake yeast evolved the largest cluster size
when exposed to CuO NPs, compared to other
treatments, after day 28 (Figure 2; Tukey’s HSD, p <
0.05). 16.7%, 40%, and 60% of the sampled multi-
cellular individuals carried nonsynonymous muta-
tions in ACE2—a transcription factor necessary for
mother-daughter cell separation (Oud et al. 2013)—
from the control, ion, and nano treatments, respect-
ively. However, neither the unicellular nor the multi-
cellular individuals from the bulk treatment carried
any mutations in ACE2. Thus, exposure to CuO NPs
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Figure 3. The relative fitness of the multicellular yeast com-
pared to the unicellular ancestor. The relative fitness was
quantified as the selection rate constant. The unicellular and
multicellular genotypes were initially set as 100:1 (resulting in
similar initial biomass per strain). Values are mean=s.e.m.
Treatments sharing the same letter do not differ from each
other, according to one-way ANOVA, followed by Tukey’s HSD.
Asterisks indicate that the fitness values significantly differ
from zero, according to the one-sample t-tests (**: p < 0.01;
ik p < 0,001).

changed the genetic basis of adaptation, driving
the parallel evolution of mutations in a regulatory
element known to produce large snowflake yeast
clusters when disabled (Ratcliff et al. 2015).

To examine whether multicellularity provides
yeast with protection from toxic CuO NPs exposure,
we measured the fitness of the multicellular geno-
types relative to the unicellular one directly via the
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competition experiment. Multicellular snowflake
yeast increased in frequency and attained the high-
est fitness in the nano treatments (Figure 3; ANOVA:
F320=19.973, p < 0.001; Tukey’s HSD, p < 0.05). The
increase in the multicellular yeast cluster size and fit-
ness under nano exposure supports the idea that
simple, undifferentiated multicellularity protects
microorganisms  from  environmental  stressors
through size-related benefits (Smukalla et al. 2008).

Furthermore, the transcriptome analysis indicated
that yeast genotype and copper environment inter-
actively determined the overall transcriptome pat-
tern (Figure 4). First, both genotypes responded to
copper stress systematically, creating a distinct
expression profile in the three copper treatments,
compared to the copper-free control (Figure 4(a);
654 differentially expressed genes; false-discovery-
rate adjusted-p < 0.05; see the Supplementary
tables and Figure S3). To alleviate Cu toxicity, yeast
in the copper treatments had at least a 55-fold
increase in the expression of CUPI, metallothionein
that sequesters Cu ions (Figure 4(b)) (Winge et al.
1985), and a six-fold decrease in the expression of
CTR3, a high-affinity copper transporter to reduce
copper uptake (Figure 4(c)) (Ishida et al. 2002).
Notably, changes in gene expression were most sig-
nificant in the nano treatment (Figure 4(b,c)).
Second, yeast genotype determined the overall
expression patterns within the three copper treat-
ments, with the multicellular genotype less affected
by copper stress than the unicellular genotype
(Figure 4(a) and S4). In the unicellular genotype,
551 genes (e.g. COXT) were upregulated, enriched
with processes related to redox reactions and ADP/
ATP metabolism (Figure 4(d,e)); only 364 genes of
multicellular yeast were upregulated, enriched with
transmembrane transporting processes. Changes in
CUP1, CTR3, COX1 expressions and other metabol-
ism-related genes (Supplementary tables and Figure
S4), for example, were higher in the unicellular than
multicellular genotype within each treatment
(Figure 4(b-d)). Together, these results suggest that
undifferentiated multicellularity provided a protect-
ive barrier during copper exposure, maintaining
metabolism and copper homeostasis as the copper-
free treatment.

Previous simulation (Pfeiffer and Bonhoeffer
2003), analytical (Pfeiffer, Schuster, and Bonhoeffer
2001), and experimental studies (Koschwanez,
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Foster, and Murray 2011) suggested that efficient
resource use resulting from cooperative behavior in
undifferentiated cell clusters may facilitate the
establishment of multicellular organisms. Yeast can
regulate ATP yield and rate to adapt to varying
environments. While yeast often rapidly produces
ATP by fermenting glucose, it also respires ethanol
and yields more ATP, albeit with a lower production
rate (Gasmi et al. 2014). In the multicellular geno-
type found in the three copper treatments, PDC]1, a
key alcoholic fermentation enzyme, was downregu-
lated (Figure 4(f)), while PCKI, a gluconeogenesis
enzyme, was upregulated (Figure 4(g)). This finding
suggests that the multicellular yeast, under nano
stress, may have shifted their metabolism from fer-
mentation to respiration, allowing them to utilize
limited resources more efficiently.

Conclusions

Our study demonstrates that engineered nanomate-
rials can modulate evolutionary  dynamics.
Nanoparticles promote the evolution of undifferen-
tiated multicellularity in yeast, as multicellularity
mitigates the cellular stresses associated with nano-
particle exposure and favors the switch to a more
efficient energy-generating pathway. Engineered
nanomaterials, therefore, can precipitate fundamen-
tal shifts in species life history evolution. Given that
novel engineered nanomaterials with poorly charac-
terized ecological and evolutionary consequences
may have significant impacts on microbial commun-
ities in various environments, further care should be
taken during their manufacture, usage, and dis-
posal. It is also worth noting that many nanopar-
ticles in the environment, such as colloids or
macromolecules, are naturally occurring, not artifi-
cially manufactured (Hough et al. 2008; Jimenez
et al. 2011). Further work is needed to determine
the extent to which these natural nanoparticles
affect the ecological and evolutionary dynamics of
environmental microorganisms.
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